1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Channel utilities and extensions.
use std::pin::Pin;
use std::task::{Context, Poll};
use futures::{Future, FutureExt};
use prometheus::core::Atomic;
use tokio::sync::mpsc::{error, unbounded_channel, UnboundedReceiver, UnboundedSender};
use tokio::sync::oneshot;
use crate::metrics::PromLabelsExt;
pub mod trigger;
/// A trait describing a metric that can be used with an `instrumented_unbounded_channel`.
pub trait InstrumentedChannelMetric {
/// Bump the metric, increasing the count of operators (send or receives) that occurred.
fn bump(&self);
}
impl<'a, P, L> InstrumentedChannelMetric for crate::metrics::DeleteOnDropCounter<'a, P, L>
where
P: Atomic,
L: PromLabelsExt<'a>,
{
fn bump(&self) {
self.inc()
}
}
/// A wrapper around tokio's mpsc unbounded channels that connects
/// metrics that are incremented when sends or receives happen.
pub fn instrumented_unbounded_channel<T, M>(
sender_metric: M,
receiver_metric: M,
) -> (
InstrumentedUnboundedSender<T, M>,
InstrumentedUnboundedReceiver<T, M>,
)
where
M: InstrumentedChannelMetric,
{
let (tx, rx) = unbounded_channel();
(
InstrumentedUnboundedSender {
tx,
metric: sender_metric,
},
InstrumentedUnboundedReceiver {
rx,
metric: receiver_metric,
},
)
}
/// A wrapper around tokio's `UnboundedSender` that increments a metric when a send occurs.
///
/// The metric is not dropped until this sender is dropped.
#[derive(Debug, Clone)]
pub struct InstrumentedUnboundedSender<T, M> {
tx: UnboundedSender<T>,
metric: M,
}
impl<T, M> InstrumentedUnboundedSender<T, M>
where
M: InstrumentedChannelMetric,
{
/// The same as `UnboundedSender::send`.
pub fn send(&self, message: T) -> Result<(), error::SendError<T>> {
let res = self.tx.send(message);
self.metric.bump();
res
}
}
/// A wrapper around tokio's `UnboundedReceiver` that increments a metric when a recv _finishes_.
///
/// The metric is not dropped until this receiver is dropped.
#[derive(Debug)]
pub struct InstrumentedUnboundedReceiver<T, M> {
rx: UnboundedReceiver<T>,
metric: M,
}
impl<T, M> InstrumentedUnboundedReceiver<T, M>
where
M: InstrumentedChannelMetric,
{
/// The same as `UnboundedSender::recv`.
pub async fn recv(&mut self) -> Option<T> {
let res = self.rx.recv().await;
self.metric.bump();
res
}
/// The same as `UnboundedSender::try_recv`.
pub fn try_recv(&mut self) -> Result<T, error::TryRecvError> {
let res = self.rx.try_recv();
if res.is_ok() {
self.metric.bump();
}
res
}
}
/// Extensions for oneshot channel types.
pub trait OneshotReceiverExt<T> {
/// If the receiver is dropped without the value being observed, the provided closure will be
/// called with the value that was left in the channel.
///
/// This is useful in cases where you want to cleanup resources if the receiver of this value
/// has gone away. If the sender and receiver are running on separate threads, it's possible
/// for the sender to succeed, and for the receiver to be concurrently dropped, never realizing
/// that it received a value.
fn with_guard<F>(self, guard: F) -> GuardedReceiver<F, T>
where
F: FnMut(T);
}
impl<T> OneshotReceiverExt<T> for oneshot::Receiver<T> {
fn with_guard<F>(self, guard: F) -> GuardedReceiver<F, T>
where
F: FnMut(T),
{
GuardedReceiver { guard, inner: self }
}
}
/// A wrapper around [`oneshot::Receiver`] that will call the provided closure if there is a value
/// in the receiver when it's dropped.
#[derive(Debug)]
pub struct GuardedReceiver<F: FnMut(T), T> {
guard: F,
inner: oneshot::Receiver<T>,
}
// Note(parkmycar): If this Unpin requirement becomes too restrictive, we can refactor
// GuardedReceiver to use `pin_project`.
impl<F: FnMut(T) + Unpin, T> Future for GuardedReceiver<F, T> {
type Output = Result<T, oneshot::error::RecvError>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
self.inner.poll_unpin(cx)
}
}
impl<F: FnMut(T), T> Drop for GuardedReceiver<F, T> {
fn drop(&mut self) {
// Close the channel so the sender is guaranteed to fail.
self.inner.close();
// If there was some value waiting in the channel call the guard with the value.
if let Ok(x) = self.inner.try_recv() {
(self.guard)(x)
}
}
}