tokio_io_utility/async_read_utility/inner.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
use std::{
cmp,
future::Future,
io::{ErrorKind, Result},
marker::Unpin,
mem::MaybeUninit,
ops::Bound::*,
pin::Pin,
task::{Context, Poll},
};
use tokio::io::{AsyncRead, ReadBuf};
pub trait Container {
/// Reserve at least `n` bytes that can be used in
/// [`Container::spare_mut`].
fn reserve(&mut self, n: usize);
/// Number of initialized bytes.
fn len(&self) -> usize;
/// If there is no initialized bytes in the container, return `true`.
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Return the capacity reserved.
fn capacity(&self) -> usize;
/// The returned uninit slice must not be empty.
///
/// NOTE that the returned uninit slice might be smaller
/// than bytes reserved in [`Container::reserve`] or
/// ([`Container::capacity`] - [`Container::len`]).
///
/// This is because that the container might be a ring buffer.
/// If you consume all uninit slices, then the sum of their lengths
/// must be equal to the spare capacity ([`Container::capacity`] -
/// [`Container::len`]).
///
/// # Safety
///
/// The slice returned must not be read from and users should
/// never write uninitialized bytes to it.
unsafe fn spare_mut(&mut self) -> &mut [MaybeUninit<u8>];
/// # Safety
///
/// The users must have actually initialized at least `n` bytes
/// in the uninit slice returned by [`Container::spare_mut`].
unsafe fn advance(&mut self, n: usize);
}
impl<T: Container> Container for &mut T {
fn reserve(&mut self, n: usize) {
(**self).reserve(n)
}
fn len(&self) -> usize {
(**self).len()
}
fn capacity(&self) -> usize {
(**self).capacity()
}
unsafe fn spare_mut(&mut self) -> &mut [MaybeUninit<u8>] {
(**self).spare_mut()
}
unsafe fn advance(&mut self, n: usize) {
(**self).advance(n)
}
}
impl Container for Vec<u8> {
fn reserve(&mut self, n: usize) {
Vec::reserve_exact(self, n)
}
fn len(&self) -> usize {
Vec::len(self)
}
fn capacity(&self) -> usize {
Vec::capacity(self)
}
unsafe fn spare_mut(&mut self) -> &mut [MaybeUninit<u8>] {
self.spare_capacity_mut()
}
unsafe fn advance(&mut self, n: usize) {
let len = self.len();
self.set_len(len + n)
}
}
#[derive(Debug)]
pub struct ReadToContainerRngFuture<'a, C: ?Sized, Reader: ?Sized> {
reader: &'a mut Reader,
container: &'a mut C,
min: usize,
max: usize,
}
impl<C, Reader> Future for ReadToContainerRngFuture<'_, C, Reader>
where
C: Container + ?Sized,
Reader: AsyncRead + ?Sized + Unpin,
{
type Output = Result<()>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = &mut *self;
let reader = &mut *this.reader;
let container = &mut *this.container;
let min = &mut this.min;
let max = &mut this.max;
if *max == 0 {
return Poll::Ready(Ok(()));
}
// Do not test *min here so that if:
//
// ```rust
// read_to_container_rng(r, c, 0..10).await
// ```
//
// is called, then we would at least try toread in some bytes.
loop {
// safety:
//
// We will never read from it and never write uninitialized bytes
// to it.
let uninit_slice = unsafe { container.spare_mut() };
let len = cmp::min(uninit_slice.len(), *max);
let uninit_slice = &mut uninit_slice[..len];
debug_assert_ne!(uninit_slice.len(), 0);
let mut read_buf = ReadBuf::uninit(uninit_slice);
ready!(Pin::new(&mut *reader).poll_read(cx, &mut read_buf))?;
let filled = read_buf.filled().len();
if filled == 0 {
return Poll::Ready(Err(ErrorKind::UnexpectedEof.into()));
}
// safety:
//
// `read_buf.filled().len()` return number of bytes read in.
unsafe { container.advance(filled) };
*min = min.saturating_sub(filled);
*max -= filled;
if *min == 0 {
break;
}
}
Poll::Ready(Ok(()))
}
}
/// * `rng` - The start of the range specify the minimum of bytes to read in,
/// while the end of the range specify the maximum of bytes that
/// can be read in.
/// If the lower bound is not specified, it is default to 0.
/// If the upper bound is not specified, it is default to the
/// capacity of `bytes`.
/// The lower bound must not be larger than the upper bound.
///
/// Return [`ErrorKind::UnexpectedEof`] on Eof.
///
/// NOTE that this function does not modify any existing data.
///
/// # Cancel safety
///
/// It is cancel safe and dropping the returned future will not stop the
/// wakeup from happening.
pub fn read_to_container_rng<'a, C, Reader>(
reader: &'a mut Reader,
container: &'a mut C,
rng: impl std::ops::RangeBounds<usize>,
) -> ReadToContainerRngFuture<'a, C, Reader>
where
C: Container + ?Sized,
Reader: AsyncRead + ?Sized + Unpin,
{
let min = match rng.start_bound().cloned() {
Included(val) => val,
Excluded(val) => val + 1,
Unbounded => 0,
};
let max = match rng.end_bound().cloned() {
Included(val) => val,
Excluded(val) => val - 1,
Unbounded => min.max(container.capacity() - container.len()),
};
container.reserve(max);
assert!(min <= max, "min {min} should be no larger than max {max}");
ReadToContainerRngFuture {
reader,
container,
min,
max,
}
}