1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
use std::collections::BTreeSet;
use std::ops::Range;
use itertools::Itertools;
use mz_repr::RelationType;
use crate::visit::Visit;
use crate::{MirRelationExpr, MirScalarExpr, VariadicFunc};
/// Any column in a join expression exists in two contexts:
/// 1) It has a position relative to the result of the join (global)
/// 2) It has a position relative to the specific input it came from (local)
/// This utility focuses on taking expressions that are in terms of
/// the local input and re-expressing them in global terms and vice versa.
///
/// Methods in this class that take an argument `equivalences` are only
/// guaranteed to return a correct answer if equivalence classes are in
/// canonical form.
/// (See [`crate::relation::canonicalize::canonicalize_equivalences`].)
#[derive(Debug)]
pub struct JoinInputMapper {
/// The number of columns per input. All other fields in this struct are
/// derived using the information in this field.
arities: Vec<usize>,
/// Looks up which input each column belongs to. Derived from `arities`.
/// Stored as a field to avoid recomputation.
input_relation: Vec<usize>,
/// The sum of the arities of the previous inputs in the join. Derived from
/// `arities`. Stored as a field to avoid recomputation.
prior_arities: Vec<usize>,
}
impl JoinInputMapper {
/// Creates a new `JoinInputMapper` and calculates the mapping of global context
/// columns to local context columns.
pub fn new(inputs: &[MirRelationExpr]) -> Self {
Self::new_from_input_arities(inputs.iter().map(|i| i.arity()))
}
/// Creates a new `JoinInputMapper` and calculates the mapping of global context
/// columns to local context columns. Using this method saves is more
/// efficient if input types have been pre-calculated
pub fn new_from_input_types(types: &[RelationType]) -> Self {
Self::new_from_input_arities(types.iter().map(|t| t.column_types.len()))
}
/// Creates a new `JoinInputMapper` and calculates the mapping of global context
/// columns to local context columns. Using this method saves is more
/// efficient if input arities have been pre-calculated
pub fn new_from_input_arities<I>(arities: I) -> Self
where
I: IntoIterator<Item = usize>,
{
let arities = arities.into_iter().collect::<Vec<usize>>();
let mut offset = 0;
let mut prior_arities = Vec::new();
for input in 0..arities.len() {
prior_arities.push(offset);
offset += arities[input];
}
let input_relation = arities
.iter()
.enumerate()
.flat_map(|(r, a)| std::iter::repeat(r).take(*a))
.collect::<Vec<_>>();
JoinInputMapper {
arities,
input_relation,
prior_arities,
}
}
/// reports sum of the number of columns of each input
pub fn total_columns(&self) -> usize {
self.arities.iter().sum()
}
/// reports total numbers of inputs in the join
pub fn total_inputs(&self) -> usize {
self.arities.len()
}
/// Using the keys that came from each local input,
/// figures out which keys remain unique in the larger join
/// Currently, we only figure out a small subset of the keys that
/// can remain unique.
pub fn global_keys<'a, I>(
&self,
mut local_keys: I,
equivalences: &[Vec<MirScalarExpr>],
) -> Vec<Vec<usize>>
where
I: Iterator<Item = &'a Vec<Vec<usize>>>,
{
// A relation's uniqueness constraint holds if there is a
// sequence of the other relations such that each one has
// a uniqueness constraint whose columns are used in join
// constraints with relations prior in the sequence.
//
// Currently, we only:
// 1. test for whether the uniqueness constraints for the first input will hold
// 2. try one sequence, namely the inputs in order
// 3. check that the column themselves are used in the join constraints
// Technically uniqueness constraint would still hold if a 1-to-1
// expression on a unique key is used in the join constraint.
// for inputs `1..self.total_inputs()`, store a set of columns from that
// input that exist in join constraints that have expressions belonging to
// earlier inputs.
let mut column_with_prior_bound_by_input = vec![BTreeSet::new(); self.total_inputs() - 1];
for equivalence in equivalences {
// do a scan to find the first input represented in the constraint
let min_bound_input = equivalence
.iter()
.flat_map(|expr| self.lookup_inputs(expr).max())
.min();
if let Some(min_bound_input) = min_bound_input {
for expr in equivalence {
// then store all columns in the constraint that don't come
// from the first input
if let MirScalarExpr::Column(c) = expr {
let (col, input) = self.map_column_to_local(*c);
if input > min_bound_input {
column_with_prior_bound_by_input[input - 1].insert(col);
}
}
}
}
}
if self.total_inputs() > 0 {
let first_input_keys = local_keys.next().unwrap().clone();
// for inputs `1..self.total_inputs()`, checks the keys belong to each
// input against the storage of columns that exist in join constraints
// that have expressions belonging to earlier inputs.
let remains_unique = local_keys.enumerate().all(|(index, keys)| {
keys.iter().any(|ks| {
ks.iter()
.all(|k| column_with_prior_bound_by_input[index].contains(k))
})
});
if remains_unique {
return first_input_keys;
}
}
vec![]
}
/// returns the arity for a particular input
#[inline]
pub fn input_arity(&self, index: usize) -> usize {
self.arities[index]
}
/// All column numbers in order for a particular input in the local context
#[inline]
pub fn local_columns(&self, index: usize) -> Range<usize> {
0..self.arities[index]
}
/// All column numbers in order for a particular input in the global context
#[inline]
pub fn global_columns(&self, index: usize) -> Range<usize> {
self.prior_arities[index]..(self.prior_arities[index] + self.arities[index])
}
/// Takes an expression from the global context and creates a new version
/// where column references have been remapped to the local context.
/// Assumes that all columns in `expr` are from the same input.
pub fn map_expr_to_local(&self, mut expr: MirScalarExpr) -> MirScalarExpr {
expr.visit_pre_mut(|e| {
if let MirScalarExpr::Column(c) = e {
*c -= self.prior_arities[self.input_relation[*c]];
}
});
expr
}
/// Takes an expression from the local context of the `index`th input and
/// creates a new version where column references have been remapped to the
/// global context.
pub fn map_expr_to_global(&self, mut expr: MirScalarExpr, index: usize) -> MirScalarExpr {
expr.visit_pre_mut(|e| {
if let MirScalarExpr::Column(c) = e {
*c += self.prior_arities[index];
}
});
expr
}
/// Remap column numbers from the global to the local context.
/// Returns a 2-tuple `(<new column number>, <index of input>)`
pub fn map_column_to_local(&self, column: usize) -> (usize, usize) {
let index = self.input_relation[column];
(column - self.prior_arities[index], index)
}
/// Remap a column number from a local context to the global context.
pub fn map_column_to_global(&self, column: usize, index: usize) -> usize {
column + self.prior_arities[index]
}
/// Takes a sequence of columns in the global context and splits it into
/// a `Vec` containing `self.total_inputs()` `BTreeSet`s, each containing
/// the localized columns that belong to the particular input.
pub fn split_column_set_by_input<'a, I>(&self, columns: I) -> Vec<BTreeSet<usize>>
where
I: Iterator<Item = &'a usize>,
{
let mut new_columns = vec![BTreeSet::new(); self.total_inputs()];
for column in columns {
let (new_col, input) = self.map_column_to_local(*column);
new_columns[input].extend(std::iter::once(new_col));
}
new_columns
}
/// Find the sorted, dedupped set of inputs an expression references
pub fn lookup_inputs(&self, expr: &MirScalarExpr) -> impl Iterator<Item = usize> {
expr.support()
.iter()
.map(|c| self.input_relation[*c])
.sorted()
.dedup()
}
/// Returns the index of the only input referenced in the given expression.
pub fn single_input(&self, expr: &MirScalarExpr) -> Option<usize> {
let mut inputs = self.lookup_inputs(expr);
if let Some(first_input) = inputs.next() {
if inputs.next().is_none() {
return Some(first_input);
}
}
None
}
/// Returns whether the given expr refers to columns of only the `index`th input.
pub fn is_localized(&self, expr: &MirScalarExpr, index: usize) -> bool {
if let Some(single_input) = self.single_input(expr) {
if single_input == index {
return true;
}
}
false
}
/// Takes an expression in the global context and looks in `equivalences`
/// for an equivalent expression (also expressed in the global context) that
/// belongs to one or more of the inputs in `bound_inputs`
///
/// # Examples
///
/// ```
/// use mz_repr::{Datum, ColumnType, RelationType, ScalarType};
/// use mz_expr::{JoinInputMapper, MirRelationExpr, MirScalarExpr};
///
/// // A two-column schema common to each of the three inputs
/// let schema = RelationType::new(vec![
/// ScalarType::Int32.nullable(false),
/// ScalarType::Int32.nullable(false),
/// ]);
///
/// // the specific data are not important here.
/// let data = vec![Datum::Int32(0), Datum::Int32(1)];
/// let input0 = MirRelationExpr::constant(vec![data.clone()], schema.clone());
/// let input1 = MirRelationExpr::constant(vec![data.clone()], schema.clone());
/// let input2 = MirRelationExpr::constant(vec![data.clone()], schema.clone());
///
/// // [input0(#0) = input2(#1)], [input0(#1) = input1(#0) = input2(#0)]
/// let equivalences = vec![
/// vec![MirScalarExpr::Column(0), MirScalarExpr::Column(5)],
/// vec![MirScalarExpr::Column(1), MirScalarExpr::Column(2), MirScalarExpr::Column(4)],
/// ];
///
/// let input_mapper = JoinInputMapper::new(&[input0, input1, input2]);
/// assert_eq!(
/// Some(MirScalarExpr::Column(4)),
/// input_mapper.find_bound_expr(&MirScalarExpr::Column(2), &[2], &equivalences)
/// );
/// assert_eq!(
/// None,
/// input_mapper.find_bound_expr(&MirScalarExpr::Column(0), &[1], &equivalences)
/// );
/// ```
pub fn find_bound_expr(
&self,
expr: &MirScalarExpr,
bound_inputs: &[usize],
equivalences: &[Vec<MirScalarExpr>],
) -> Option<MirScalarExpr> {
if let Some(equivalence) = equivalences.iter().find(|equivs| equivs.contains(expr)) {
if let Some(bound_expr) = equivalence
.iter()
.find(|expr| self.lookup_inputs(expr).all(|i| bound_inputs.contains(&i)))
{
return Some(bound_expr.clone());
}
}
None
}
/// Try to rewrite `expr` from the global context so that all the
/// columns point to the `index`th input by replacing subexpressions with their
/// bound equivalents in the `index`th input if necessary.
/// Returns whether the rewriting was successful.
/// If it returns true, then `expr` is in the context of the `index`th input.
/// If it returns false, then still some subexpressions might have been rewritten. However,
/// `expr` is still in the global context.
pub fn try_localize_to_input_with_bound_expr(
&self,
expr: &mut MirScalarExpr,
index: usize,
equivalences: &[Vec<MirScalarExpr>],
) -> bool {
// TODO (wangandi): Consider changing this code to be post-order
// instead of pre-order? `lookup_inputs` traverses all the nodes in
// `e` anyway, so we end up visiting nodes in `e` multiple times
// here. Alternatively, consider having the future `PredicateKnowledge`
// take over the responsibilities of this code?
#[allow(deprecated)]
expr.visit_mut_pre_post_nolimit(
&mut |e| {
let mut inputs = self.lookup_inputs(e);
if let Some(first_input) = inputs.next() {
if inputs.next().is_none() && first_input == index {
// there is only one input, and it is equal to index, so we're
// good. do not continue the recursion
return Some(vec![]);
}
}
if let Some(bound_expr) = self.find_bound_expr(e, &[index], equivalences) {
// Replace the subexpression with the equivalent one from input `index`
*e = bound_expr;
// The entire subexpression has been rewritten, so there is
// no need to visit any child expressions.
Some(vec![])
} else {
None
}
},
&mut |_| {},
);
if self.is_localized(expr, index) {
// If the localization attempt is successful, all columns in `expr`
// should only come from input `index`. Switch to the local context.
*expr = self.map_expr_to_local(expr.clone());
return true;
}
false
}
/// Try to find a consequence `c` of the given expression `e` for the given input.
///
/// If we return `Some(c)`, that means
/// 1. `c` uses only columns from the given input;
/// 2. if `c` doesn't hold on a row of the input, then `e` also wouldn't hold;
/// 3. if `c` holds on a row of the input, then `e` might or might not hold.
/// 1. and 2. means that if we have a join with predicate `e` then we can use `c` for
/// pre-filtering a join input before the join. However, 3. means that `e` shouldn't be deleted
/// from the join predicates, i.e., we can't do a "traditional" predicate pushdown.
///
/// Note that "`c` is a consequence of `e`" is the same thing as 2., see
/// <https://en.wikipedia.org/wiki/Contraposition>
///
/// Example: For
/// `(t1.f2 = 3 AND t2.f2 = 4) OR (t1.f2 = 5 AND t2.f2 = 6)`
/// we find
/// `t1.f2 = 3 OR t1.f2 = 5` for t1, and
/// `t2.f2 = 4 OR t2.f2 = 6` for t2.
///
/// Further examples are in TPC-H Q07, Q19, and chbench Q07, Q19.
///
/// Parameters:
/// - `expr`: The expression `e` from above. `try_localize_to_input_with_bound_expr` should
/// be called on `expr` before us!
/// - `index`: The index of the join input whose columns we will use.
/// - `equivalences`: Join equivalences that we can use for `try_map_to_input_with_bound_expr`.
/// If successful, the returned expression is in the local context of the specified input.
pub fn consequence_for_input(
&self,
expr: &MirScalarExpr,
index: usize,
) -> Option<MirScalarExpr> {
if self.is_localized(expr, index) {
Some(self.map_expr_to_local(expr.clone()))
} else {
match expr {
MirScalarExpr::CallVariadic {
func: VariadicFunc::Or,
exprs: or_args,
} => {
// Each OR arg should provide a consequence. If they do, we OR them.
let consequences_per_arg = or_args
.into_iter()
.map(|or_arg| {
mz_ore::stack::maybe_grow(|| self.consequence_for_input(or_arg, index))
})
.collect::<Option<Vec<_>>>()?; // return None if any of them are None
Some(MirScalarExpr::CallVariadic {
func: VariadicFunc::Or,
exprs: consequences_per_arg,
})
}
MirScalarExpr::CallVariadic {
func: VariadicFunc::And,
exprs: and_args,
} => {
// If any of the AND args provide a consequence, then we take those that do,
// and AND them.
let consequences_per_arg = and_args
.into_iter()
.map(|and_arg| {
mz_ore::stack::maybe_grow(|| self.consequence_for_input(and_arg, index))
})
.flat_map(|c| c) // take only those that provide a consequence
.collect_vec();
if consequences_per_arg.is_empty() {
None
} else {
Some(MirScalarExpr::CallVariadic {
func: VariadicFunc::And,
exprs: consequences_per_arg,
})
}
}
_ => None,
}
}
}
}
#[cfg(test)]
mod tests {
use mz_repr::{Datum, ScalarType};
use crate::{BinaryFunc, MirScalarExpr, UnaryFunc};
use super::*;
#[mz_ore::test]
#[cfg_attr(miri, ignore)] // unsupported operation: can't call foreign function `rust_psm_stack_pointer` on OS `linux`
fn try_map_to_input_with_bound_expr_test() {
let input_mapper = JoinInputMapper {
arities: vec![2, 3, 3],
input_relation: vec![0, 0, 1, 1, 1, 2, 2, 2],
prior_arities: vec![0, 2, 5],
};
// keys are numbered by (equivalence class #, input #)
let key10 = MirScalarExpr::Column(0);
let key12 = MirScalarExpr::Column(6);
let localized_key12 = MirScalarExpr::Column(1);
let mut equivalences = vec![vec![key10.clone(), key12.clone()]];
// when the column is already part of the target input, all that happens
// is that it gets localized
let mut cloned = key12.clone();
input_mapper.try_localize_to_input_with_bound_expr(&mut cloned, 2, &equivalences);
assert_eq!(MirScalarExpr::Column(1), cloned,);
// basic tests that we can find a column's corresponding column in a
// different input
let mut cloned = key12.clone();
input_mapper.try_localize_to_input_with_bound_expr(&mut cloned, 0, &equivalences);
assert_eq!(key10, cloned);
let mut cloned = key12.clone();
assert_eq!(
false,
input_mapper.try_localize_to_input_with_bound_expr(&mut cloned, 1, &equivalences),
);
let key20 = MirScalarExpr::CallUnary {
func: UnaryFunc::NegInt32(crate::func::NegInt32),
expr: Box::new(MirScalarExpr::Column(1)),
};
let key21 = MirScalarExpr::CallBinary {
func: BinaryFunc::AddInt32,
expr1: Box::new(MirScalarExpr::Column(2)),
expr2: Box::new(MirScalarExpr::literal(
Ok(Datum::Int32(4)),
ScalarType::Int32,
)),
};
let key22 = MirScalarExpr::Column(5);
let localized_key22 = MirScalarExpr::Column(0);
equivalences.push(vec![key22.clone(), key20.clone(), key21.clone()]);
// basic tests that we can find an expression's corresponding expression in a
// different input
let mut cloned = key21.clone();
input_mapper.try_localize_to_input_with_bound_expr(&mut cloned, 0, &equivalences);
assert_eq!(key20, cloned);
let mut cloned = key21.clone();
input_mapper.try_localize_to_input_with_bound_expr(&mut cloned, 2, &equivalences);
assert_eq!(localized_key22, cloned);
// test that `try_map_to_input_with_bound_expr` will map multiple
// subexpressions to the corresponding expressions bound to a different input
let key_comp = MirScalarExpr::CallBinary {
func: BinaryFunc::MulInt32,
expr1: Box::new(key12.clone()),
expr2: Box::new(key22),
};
let mut cloned = key_comp.clone();
input_mapper.try_localize_to_input_with_bound_expr(&mut cloned, 0, &equivalences);
assert_eq!(
MirScalarExpr::CallBinary {
func: BinaryFunc::MulInt32,
expr1: Box::new(key10.clone()),
expr2: Box::new(key20.clone()),
},
cloned,
);
// test that the function returns None when part
// of the expression can be mapped to an input but the rest can't
let mut cloned = key_comp.clone();
assert_eq!(
false,
input_mapper.try_localize_to_input_with_bound_expr(&mut cloned, 1, &equivalences),
);
let key_comp_plus_non_key = MirScalarExpr::CallBinary {
func: BinaryFunc::Eq,
expr1: Box::new(key_comp),
expr2: Box::new(MirScalarExpr::Column(7)),
};
let mut mutab = key_comp_plus_non_key;
assert_eq!(
false,
input_mapper.try_localize_to_input_with_bound_expr(&mut mutab, 0, &equivalences),
);
let key_comp_multi_input = MirScalarExpr::CallBinary {
func: BinaryFunc::Eq,
expr1: Box::new(key12),
expr2: Box::new(key21),
};
// test that the function works when part of the expression is already
// part of the target input
let mut cloned = key_comp_multi_input.clone();
input_mapper.try_localize_to_input_with_bound_expr(&mut cloned, 2, &equivalences);
assert_eq!(
MirScalarExpr::CallBinary {
func: BinaryFunc::Eq,
expr1: Box::new(localized_key12),
expr2: Box::new(localized_key22),
},
cloned,
);
// test that the function works when parts of the expression come from
// multiple inputs
let mut cloned = key_comp_multi_input.clone();
input_mapper.try_localize_to_input_with_bound_expr(&mut cloned, 0, &equivalences);
assert_eq!(
MirScalarExpr::CallBinary {
func: BinaryFunc::Eq,
expr1: Box::new(key10),
expr2: Box::new(key20),
},
cloned,
);
let mut mutab = key_comp_multi_input;
assert_eq!(
false,
input_mapper.try_localize_to_input_with_bound_expr(&mut mutab, 1, &equivalences),
)
}
}