1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Stack management utilities.

use std::cell::RefCell;
use std::error::Error;
use std::fmt;

/// The red zone is the amount of stack space that must be available on the
/// current stack in order for [`maybe_grow`] to call the supplied closure
/// without allocating a new stack.
///
/// We use a much larger red zone in debug builds because several functions have
/// been observed to have 32KB+ stack frames when compiled without
/// optimizations. In particular, match statements on large enums are
/// problematic, because *each arm* of the match statement gets its own
/// dedicated stack space. For example, consider the following function:
///
/// ```ignore
/// fn big_stack(input: SomeEnum) {
///     match input {
///         SomeEnum::Variant1 => {
///             let a_local = SomeBigType::new();
///         }
///         SomeEnum::Variant2 => {
///             let b_local = SomeBigType::new();
///         }
///         // ...
///         SomeEnum::Variant10 => {
///             let z_local = SomeBigType::new();
///         }
///     }
/// }
/// ```
///
/// In debug builds, the compiler will generate a stack frame that contains
/// space for 10 separate copies of `SomeBigType`. This can quickly result in
/// massive stack frames for perfectly reasonable code.
pub const STACK_RED_ZONE: usize = {
    #[cfg(debug_assertions)]
    {
        1024 << 10 // 1024KiB
    }
    #[cfg(not(debug_assertions))]
    {
        64 << 10 // 64KiB
    }
};

/// The size of any freshly allocated stacks. It was chosen to match the default
/// stack size for threads in Rust.
///
/// The default stack size is larger in debug builds to correspond to the
/// larger [`STACK_RED_ZONE`].
pub const STACK_SIZE: usize = {
    #[cfg(debug_assertions)]
    {
        16 << 20 // 16MiB
    }
    #[cfg(not(debug_assertions))]
    {
        2 << 20 // 2 MiB
    }
};

/// Grows the stack if necessary before invoking `f`.
///
/// This function is intended to be called at manually instrumented points in a
/// program where arbitrarily deep recursion is known to happen. This function
/// will check to see if it is within `STACK_RED_ZONE` bytes of the end of the
/// stack, and if so it will allocate a new stack of at least `STACK_SIZE`
/// bytes.
///
/// The closure `f` is guaranteed to run on a stack with at least
/// `STACK_RED_ZONE` bytes, and it will be run on the current stack if there's
/// space available.
///
/// It is generally better to use [`CheckedRecursion`] to enforce a limit on the
/// stack growth. Not all recursive code paths support returning errors,
/// however, in which case unconditionally growing the stack with this function
/// is still preferable to panicking.
#[inline(always)]
pub fn maybe_grow<F, R>(f: F) -> R
where
    F: FnOnce() -> R,
{
    stacker::maybe_grow(STACK_RED_ZONE, STACK_SIZE, f)
}

/// A trait for types which support bounded recursion to prevent stack overflow.
///
/// The rather odd design of this trait allows checked recursion to be added to
/// existing mutually recursive functions without threading an explicit `depth:
/// &mut usize` parameter through each function. As long as there is an
/// existing context structure, or if the mutually recursive functions are
/// methods on a context structure, the [`RecursionGuard`] can be embedded
/// inside this existing structure.
///
/// # Examples
///
/// Consider a simple expression evaluator:
///
/// ```
/// # use std::collections::BTreeMap;
///
/// enum Expr {
///     Var { name: String },
///     Add { left: Box<Expr>, right: Box<Expr> },
/// }
///
/// struct Evaluator {
///     vars: BTreeMap<String, i64>,
/// }
///
/// impl Evaluator {
///     fn eval(&mut self, expr: &Expr) -> i64 {
///         match expr {
///             Expr::Var { name } => self.vars[name],
///             Expr::Add { left, right } => self.eval(left) + self.eval(right),
///         }
///     }
/// }
/// ```
///
/// Calling `eval` could overflow the stack and crash with a sufficiently large
/// `expr`. This is the situation `CheckedRecursion` is designed to solve, like
/// so:
///
/// ```
/// # use std::collections::BTreeMap;
/// # enum Expr {
/// #     Var { name: String },
/// #     Add { left: Box<Expr>, right: Box<Expr> },
/// # }
/// use mz_ore::stack::{CheckedRecursion, RecursionGuard, RecursionLimitError};
///
/// struct Evaluator {
///     vars: BTreeMap<String, i64>,
///     recursion_guard: RecursionGuard,
/// }
///
/// impl Evaluator {
///     fn eval(&mut self, expr: &Expr) -> Result<i64, RecursionLimitError> {
///         // ADDED: call to `self.checked_recur`.
///         self.checked_recur_mut(|e| match expr {
///             Expr::Var { name } => Ok(e.vars[name]),
///             Expr::Add { left, right } => Ok(e.eval(left)? + e.eval(right)?),
///         })
///     }
/// }
///
/// impl CheckedRecursion for Evaluator {
///     fn recursion_guard(&self) -> &RecursionGuard {
///         &self.recursion_guard
///     }
/// }
/// ```
pub trait CheckedRecursion {
    /// Extracts a reference to the recursion guard embedded within the type.
    fn recursion_guard(&self) -> &RecursionGuard;

    /// Checks whether it is safe to recur and calls `f` if so.
    ///
    /// If the recursion limit for the recursion guard returned by
    /// [`CheckedRecursion::recursion_guard`] has been reached, returns a
    /// `RecursionLimitError`. Otherwise, it will call `f`, possibly growing the
    /// stack if necessary.
    ///
    /// Calls to this function must be manually inserted at any point that
    /// mutual recursion occurs.
    #[inline(always)]
    fn checked_recur<F, T, E>(&self, f: F) -> Result<T, E>
    where
        F: FnOnce(&Self) -> Result<T, E>,
        E: From<RecursionLimitError>,
    {
        self.recursion_guard().descend()?;
        let out = maybe_grow(|| f(self));
        self.recursion_guard().ascend();
        out
    }

    /// Like [`CheckedRecursion::checked_recur`], but operates on a mutable
    /// reference to `Self`.
    #[inline(always)]
    fn checked_recur_mut<F, T, E>(&mut self, f: F) -> Result<T, E>
    where
        F: FnOnce(&mut Self) -> Result<T, E>,
        E: From<RecursionLimitError>,
    {
        self.recursion_guard().descend()?;
        let out = maybe_grow(|| f(self));
        self.recursion_guard().ascend();
        out
    }
}

/// Tracks recursion depth.
///
/// See the [`CheckedRecursion`] trait for usage instructions.
#[derive(Default, Debug, Clone)]
pub struct RecursionGuard {
    depth: RefCell<usize>,
    limit: usize,
}

impl CheckedRecursion for RecursionGuard {
    fn recursion_guard(&self) -> &RecursionGuard {
        self
    }
}

impl RecursionGuard {
    /// Constructs a new recursion guard with the specified recursion
    /// limit.
    pub fn with_limit(limit: usize) -> RecursionGuard {
        RecursionGuard {
            depth: RefCell::new(0),
            limit,
        }
    }

    fn descend(&self) -> Result<(), RecursionLimitError> {
        let mut depth = self.depth.borrow_mut();
        if *depth < self.limit {
            *depth += 1;
            Ok(())
        } else {
            Err(RecursionLimitError { limit: self.limit })
        }
    }

    fn ascend(&self) {
        *self.depth.borrow_mut() -= 1;
    }
}

/// A [`RecursionGuard`]'s recursion limit was reached.
#[derive(Clone, Debug)]
pub struct RecursionLimitError {
    limit: usize,
    // todo: add backtrace (say, bottom 20 frames) once `std::backtrace` stabilizes in Rust 1.65
}

impl fmt::Display for RecursionLimitError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "exceeded recursion limit of {}", self.limit)
    }
}

impl Error for RecursionLimitError {}