1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Apache Parquet encodings and utils for persist data

use std::io::Write;
use std::sync::Arc;

use arrow::datatypes::Schema;
use arrow::record_batch::RecordBatch;
use differential_dataflow::trace::Description;
use mz_ore::bytes::SegmentedBytes;
use mz_ore::cast::CastFrom;
use mz_persist_types::parquet::EncodingConfig;
use mz_persist_types::Codec64;
use parquet::arrow::arrow_reader::{ArrowReaderMetadata, ParquetRecordBatchReaderBuilder};
use parquet::arrow::ArrowWriter;
use parquet::basic::Encoding;
use parquet::file::metadata::KeyValue;
use parquet::file::properties::{EnabledStatistics, WriterProperties, WriterVersion};
use timely::progress::{Antichain, Timestamp};
use tracing::warn;

use crate::error::Error;
use crate::gen::persist::proto_batch_part_inline::FormatMetadata as ProtoFormatMetadata;
use crate::gen::persist::ProtoBatchFormat;
use crate::indexed::columnar::arrow::{
    decode_arrow_batch_kvtd, decode_arrow_batch_kvtd_ks_vs, encode_arrow_batch_kvtd,
    encode_arrow_batch_kvtd_ks_vs, realloc_any, SCHEMA_ARROW_RS_KVTD,
};
use crate::indexed::columnar::ColumnarRecords;
use crate::indexed::encoding::{
    decode_trace_inline_meta, encode_trace_inline_meta, BlobTraceBatchPart, BlobTraceUpdates,
};
use crate::metrics::{ColumnarMetrics, ParquetColumnMetrics};

const INLINE_METADATA_KEY: &str = "MZ:inline";

/// Encodes a [`BlobTraceBatchPart`] into the Parquet format.
pub fn encode_trace_parquet<W: Write + Send, T: Timestamp + Codec64>(
    w: &mut W,
    batch: &BlobTraceBatchPart<T>,
    metrics: &ColumnarMetrics,
    cfg: &EncodingConfig,
) -> Result<(), Error> {
    // Better to error now than write out an invalid batch.
    batch.validate()?;

    let inline_meta = encode_trace_inline_meta(batch);
    encode_parquet_kvtd(w, inline_meta, &batch.updates, metrics, cfg)
}

/// Decodes a BlobTraceBatchPart from the Parquet format.
pub fn decode_trace_parquet<T: Timestamp + Codec64>(
    buf: SegmentedBytes,
    metrics: &ColumnarMetrics,
) -> Result<BlobTraceBatchPart<T>, Error> {
    let metadata = ArrowReaderMetadata::load(&buf, Default::default())?;
    let metadata = metadata
        .metadata()
        .file_metadata()
        .key_value_metadata()
        .as_ref()
        .and_then(|x| x.iter().find(|x| x.key == INLINE_METADATA_KEY));

    let (format, metadata) = decode_trace_inline_meta(metadata.and_then(|x| x.value.as_ref()))?;
    let updates = match format {
        ProtoBatchFormat::Unknown => return Err("unknown format".into()),
        ProtoBatchFormat::ArrowKvtd => {
            return Err("ArrowKVTD format not supported in parquet".into())
        }
        ProtoBatchFormat::ParquetKvtd => decode_parquet_file_kvtd(buf, None, metrics)?,
        ProtoBatchFormat::ParquetStructured => {
            // Even though `format_metadata` is optional, we expect it when
            // our format is ParquetStructured.
            let format_metadata = metadata
                .format_metadata
                .as_ref()
                .ok_or_else(|| "missing field 'format_metadata'".to_string())?;
            decode_parquet_file_kvtd(buf, Some(format_metadata), metrics)?
        }
    };

    let ret = BlobTraceBatchPart {
        desc: metadata.desc.map_or_else(
            || {
                Description::new(
                    Antichain::from_elem(T::minimum()),
                    Antichain::from_elem(T::minimum()),
                    Antichain::from_elem(T::minimum()),
                )
            },
            |x| x.into(),
        ),
        index: metadata.index,
        updates,
    };
    ret.validate()?;
    Ok(ret)
}

/// Encodes [`BlobTraceUpdates`] to Parquet using the [`parquet`] crate.
pub fn encode_parquet_kvtd<W: Write + Send>(
    w: &mut W,
    inline_base64: String,
    updates: &BlobTraceUpdates,
    metrics: &ColumnarMetrics,
    cfg: &EncodingConfig,
) -> Result<(), Error> {
    let metadata = KeyValue::new(INLINE_METADATA_KEY.to_string(), inline_base64);

    // Note: most of these settings are the defaults from `arrow2` which we
    // previously used and maintain until we tune with benchmarking.
    let properties = WriterProperties::builder()
        .set_dictionary_enabled(cfg.use_dictionary)
        .set_encoding(Encoding::PLAIN)
        .set_statistics_enabled(EnabledStatistics::None)
        .set_compression(cfg.compression.into())
        .set_writer_version(WriterVersion::PARQUET_2_0)
        .set_data_page_size_limit(1024 * 1024)
        .set_max_row_group_size(usize::MAX)
        .set_key_value_metadata(Some(vec![metadata]))
        .build();

    let (columns, schema, format) = match updates {
        BlobTraceUpdates::Row(updates) => (
            encode_arrow_batch_kvtd(updates),
            Arc::clone(&*SCHEMA_ARROW_RS_KVTD),
            "k,v,t,d",
        ),
        BlobTraceUpdates::Both(codec_updates, structured_updates) => {
            let (fields, arrays) = encode_arrow_batch_kvtd_ks_vs(codec_updates, structured_updates);
            let schema = Schema::new(fields);
            (arrays, Arc::new(schema), "k,v,t,d,k_s,v_s")
        }
    };

    let mut writer = ArrowWriter::try_new(w, Arc::clone(&schema), Some(properties))?;
    let batch = RecordBatch::try_new(Arc::clone(&schema), columns)?;
    writer.write(&batch)?;

    writer.flush()?;
    let bytes_written = writer.bytes_written();
    let file_metadata = writer.close()?;

    report_parquet_metrics(metrics, &file_metadata, bytes_written, format);

    Ok(())
}

/// Decodes [`BlobTraceUpdates`] from a reader, using [`arrow`].
pub fn decode_parquet_file_kvtd(
    r: impl parquet::file::reader::ChunkReader + 'static,
    format_metadata: Option<&ProtoFormatMetadata>,
    metrics: &ColumnarMetrics,
) -> Result<BlobTraceUpdates, Error> {
    let builder = ParquetRecordBatchReaderBuilder::try_new(r)?;

    // To match arrow2, we default the batch size to the number of rows in the RowGroup.
    let row_groups = builder.metadata().row_groups();
    if row_groups.len() > 1 {
        return Err(Error::String("found more than 1 RowGroup".to_string()));
    }
    let num_rows = usize::try_from(row_groups[0].num_rows())
        .map_err(|_| Error::String("found negative rows".to_string()))?;
    let builder = builder.with_batch_size(num_rows);

    let schema = Arc::clone(builder.schema());
    let mut reader = builder.build()?;

    match format_metadata {
        None => {
            // Make sure we have all of the expected columns.
            if SCHEMA_ARROW_RS_KVTD.fields() != schema.fields() {
                return Err(format!("found invalid schema {:?}", schema).into());
            }

            let mut ret = Vec::new();
            for batch in reader {
                let batch = batch.map_err(|e| Error::String(e.to_string()))?;
                ret.push(decode_arrow_batch_kvtd(batch.columns(), metrics)?);
            }
            if ret.len() != 1 {
                warn!("unexpected number of row groups: {}", ret.len());
            }
            Ok(BlobTraceUpdates::Row(ColumnarRecords::concat(
                &ret, metrics,
            )))
        }
        Some(ProtoFormatMetadata::StructuredMigration(v @ 1 | v @ 2)) => {
            if schema.fields().len() > 6 {
                return Err(
                    format!("expected at most 6 columns, got {}", schema.fields().len()).into(),
                );
            }

            let batch = reader
                .next()
                .ok_or_else(|| Error::String("found empty batch".to_string()))??;

            // We enforce an invariant that we have a single RowGroup.
            if reader.next().is_some() {
                return Err(Error::String("found more than one RowGroup".to_string()));
            }
            let columns = batch.columns();

            // The first 4 columns are our primary (K, V, T, D) and optionally
            // we also have K_S and/or V_S if we wrote structured data.
            let primary_columns = &columns[..4];

            // Version 1 is a deprecated format so we just ignored the k_s and v_s columns.
            if *v == 1 {
                let records = decode_arrow_batch_kvtd(primary_columns, metrics)?;
                return Ok(BlobTraceUpdates::Row(records));
            }

            let k_s_column = schema
                .fields()
                .iter()
                .position(|field| field.name() == "k_s")
                .map(|idx| realloc_any(Arc::clone(&columns[idx]), metrics));
            let v_s_column = schema
                .fields()
                .iter()
                .position(|field| field.name() == "v_s")
                .map(|idx| realloc_any(Arc::clone(&columns[idx]), metrics));

            match (k_s_column, v_s_column) {
                (Some(ks), Some(vs)) => {
                    let (records, structured_ext) =
                        decode_arrow_batch_kvtd_ks_vs(primary_columns, ks, vs, metrics)?;
                    Ok(BlobTraceUpdates::Both(records, structured_ext))
                }
                (ks, vs) => {
                    warn!(
                        "unable to read back structured data! version={v} ks={} vs={}",
                        ks.is_some(),
                        vs.is_some()
                    );
                    let records = decode_arrow_batch_kvtd(primary_columns, metrics)?;
                    Ok(BlobTraceUpdates::Row(records))
                }
            }
        }
        unknown => Err(format!("unkown ProtoFormatMetadata, {unknown:?}"))?,
    }
}

/// Best effort reporting of metrics from the resulting [`parquet::format::FileMetaData`] returned
/// from the [`ArrowWriter`].
fn report_parquet_metrics(
    metrics: &ColumnarMetrics,
    metadata: &parquet::format::FileMetaData,
    bytes_written: usize,
    format: &'static str,
) {
    metrics
        .parquet()
        .num_row_groups
        .with_label_values(&[format])
        .inc_by(u64::cast_from(metadata.row_groups.len()));
    metrics
        .parquet()
        .encoded_size
        .with_label_values(&[format])
        .inc_by(u64::cast_from(bytes_written));

    let report_column_size = |col_name: &str, metrics: &ParquetColumnMetrics| {
        let (uncomp, comp) = metadata
            .row_groups
            .iter()
            .map(|row_group| row_group.columns.iter())
            .flatten()
            .filter_map(|col_chunk| col_chunk.meta_data.as_ref())
            .filter(|m| m.path_in_schema.first().map(|s| s.as_str()) == Some(col_name))
            .map(|m| (m.total_uncompressed_size, m.total_compressed_size))
            .fold((0, 0), |(tot_u, tot_c), (u, c)| (tot_u + u, tot_c + c));

        let uncomp = uncomp.try_into().unwrap_or(0u64);
        let comp = comp.try_into().unwrap_or(0u64);

        metrics.report_sizes(uncomp, comp);
    };

    report_column_size("k", &metrics.parquet().k_metrics);
    report_column_size("v", &metrics.parquet().v_metrics);
    report_column_size("t", &metrics.parquet().t_metrics);
    report_column_size("d", &metrics.parquet().d_metrics);
    report_column_size("k_s", &metrics.parquet().k_s_metrics);
    report_column_size("v_s", &metrics.parquet().v_s_metrics);
}