1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

use differential_dataflow::consolidation::ConsolidatingContainerBuilder;
use mz_expr::MfpPlan;
use mz_expr::{MapFilterProject, MirScalarExpr, TableFunc};
use mz_repr::{DatumVec, RowArena, SharedRow};
use mz_repr::{Diff, Row, Timestamp};
use mz_timely_util::operator::StreamExt;
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::channels::pushers::buffer::Session;
use timely::dataflow::channels::pushers::{Counter, Tee};
use timely::dataflow::Scope;
use timely::progress::Antichain;

use crate::render::context::{CollectionBundle, Context};
use crate::render::DataflowError;

impl<G> Context<G>
where
    G: Scope,
    G::Timestamp: crate::render::RenderTimestamp,
{
    /// Applies a `TableFunc` to every row, followed by an `mfp`.
    pub fn render_flat_map(
        &self,
        input: CollectionBundle<G>,
        func: TableFunc,
        exprs: Vec<MirScalarExpr>,
        mfp: MapFilterProject,
        input_key: Option<Vec<MirScalarExpr>>,
    ) -> CollectionBundle<G> {
        let until = self.until.clone();
        let mfp_plan = mfp.into_plan().expect("MapFilterProject planning failed");
        let (ok_collection, err_collection) = input.as_specific_collection(input_key.as_deref());
        let stream = ok_collection.inner;
        let (oks, errs) = stream.unary_fallible(Pipeline, "FlatMapStage", move |_, _| {
            Box::new(move |input, ok_output, err_output| {
                let mut datums = DatumVec::new();
                let mut datums_mfp = DatumVec::new();

                // Buffer for extensions to `input_row`.
                let mut table_func_output = Vec::new();

                input.for_each(|cap, data| {
                    let mut ok_session = ok_output.session_with_builder(&cap);
                    let mut err_session = err_output.session_with_builder(&cap);

                    'input: for (input_row, time, diff) in data.drain(..) {
                        let temp_storage = RowArena::new();

                        // Unpack datums for expression evaluation.
                        let datums_local = datums.borrow_with(&input_row);
                        let args = exprs
                            .iter()
                            .map(|e| e.eval(&datums_local, &temp_storage))
                            .collect::<Result<Vec<_>, _>>();
                        let args = match args {
                            Ok(args) => args,
                            Err(e) => {
                                err_session.give((e.into(), time, diff));
                                continue 'input;
                            }
                        };
                        let mut extensions = match func.eval(&args, &temp_storage) {
                            Ok(exts) => exts.fuse(),
                            Err(e) => {
                                err_session.give((e.into(), time, diff));
                                continue 'input;
                            }
                        };

                        // Draw additional columns out of the table func evaluation.
                        while let Some((extension, output_diff)) = extensions.next() {
                            table_func_output.push((extension, output_diff));
                            table_func_output.extend((&mut extensions).take(1023));
                            // We could consolidate `table_func_output`, but it seems unlikely to be productive.
                            drain_through_mfp(
                                &input_row,
                                &time,
                                &diff,
                                &mut datums_mfp,
                                &table_func_output,
                                &mfp_plan,
                                &until,
                                &mut ok_session,
                                &mut err_session,
                            );
                            table_func_output.clear();
                        }
                    }
                })
            })
        });

        use differential_dataflow::AsCollection;
        let ok_collection = oks.as_collection();
        let new_err_collection = errs.as_collection();
        let err_collection = err_collection.concat(&new_err_collection);
        CollectionBundle::from_collections(ok_collection, err_collection)
    }
}

/// Drains a list of extensions to `input_row` through a supplied `MfpPlan` and into output buffers.
///
/// The method decodes `input_row`, and should be amortized across non-trivial `extensions`.
fn drain_through_mfp<T>(
    input_row: &Row,
    input_time: &T,
    input_diff: &Diff,
    datum_vec: &mut DatumVec,
    extensions: &[(Row, Diff)],
    mfp_plan: &MfpPlan,
    until: &Antichain<Timestamp>,
    ok_output: &mut Session<
        T,
        ConsolidatingContainerBuilder<Vec<(Row, T, Diff)>>,
        Counter<T, Vec<(Row, T, Diff)>, Tee<T, Vec<(Row, T, Diff)>>>,
    >,
    err_output: &mut Session<
        T,
        ConsolidatingContainerBuilder<Vec<(DataflowError, T, Diff)>>,
        Counter<T, Vec<(DataflowError, T, Diff)>, Tee<T, Vec<(DataflowError, T, Diff)>>>,
    >,
) where
    T: crate::render::RenderTimestamp,
{
    let temp_storage = RowArena::new();
    let binding = SharedRow::get();
    let mut row_builder = binding.borrow_mut();

    // This is not cheap, and is meant to be amortized across many `extensions`.
    let mut datums_local = datum_vec.borrow_with(input_row);
    let datums_len = datums_local.len();

    let event_time = input_time.event_time().clone();

    for (cols, diff) in extensions.iter() {
        // Arrange `datums_local` to reflect the intended output pre-mfp.
        datums_local.truncate(datums_len);
        datums_local.extend(cols.iter());

        let results = mfp_plan.evaluate(
            &mut datums_local,
            &temp_storage,
            event_time,
            diff * *input_diff,
            |time| !until.less_equal(time),
            &mut row_builder,
        );

        for result in results {
            match result {
                Ok((row, event_time, diff)) => {
                    // Copy the whole time, and re-populate event time.
                    let mut time = input_time.clone();
                    *time.event_time_mut() = event_time;
                    ok_output.give((row, time, diff));
                }
                Err((err, event_time, diff)) => {
                    // Copy the whole time, and re-populate event time.
                    let mut time = input_time.clone();
                    *time.event_time_mut() = event_time;
                    err_output.give((err, time, diff));
                }
            };
        }
    }
}