mz_persist_client/internal/
state_diff.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::fmt::Debug;
use std::sync::Arc;

use bytes::{Bytes, BytesMut};
use differential_dataflow::lattice::Lattice;
use differential_dataflow::trace::Description;
use mz_ore::assert_none;
use mz_ore::cast::CastFrom;
use mz_persist::location::{SeqNo, VersionedData};
use mz_persist_types::schema::SchemaId;
use mz_persist_types::Codec64;
use mz_proto::TryFromProtoError;
use timely::progress::{Antichain, Timestamp};
use timely::PartialOrder;
use tracing::debug;

use crate::critical::CriticalReaderId;
use crate::internal::paths::PartialRollupKey;
use crate::internal::state::{
    CriticalReaderState, EncodedSchemas, HollowBatch, HollowBlobRef, HollowRollup,
    LeasedReaderState, ProtoStateField, ProtoStateFieldDiffType, ProtoStateFieldDiffs, State,
    StateCollections, WriterState,
};
use crate::internal::trace::{FueledMergeRes, SpineId, ThinMerge, ThinSpineBatch, Trace};
use crate::read::LeasedReaderId;
use crate::write::WriterId;
use crate::{Metrics, PersistConfig, ShardId};

use StateFieldValDiff::*;

#[derive(Clone, Debug)]
#[cfg_attr(any(test, debug_assertions), derive(PartialEq))]
pub enum StateFieldValDiff<V> {
    Insert(V),
    Update(V, V),
    Delete(V),
}

#[derive(Clone)]
#[cfg_attr(any(test, debug_assertions), derive(PartialEq))]
pub struct StateFieldDiff<K, V> {
    pub key: K,
    pub val: StateFieldValDiff<V>,
}

impl<K: Debug, V: Debug> std::fmt::Debug for StateFieldDiff<K, V> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("StateFieldDiff")
            // In the cases we've seen in the wild, it's been more useful to
            // have the val printed first.
            .field("val", &self.val)
            .field("key", &self.key)
            .finish()
    }
}

#[derive(Debug)]
#[cfg_attr(any(test, debug_assertions), derive(Clone, PartialEq))]
pub struct StateDiff<T> {
    pub(crate) applier_version: semver::Version,
    pub(crate) seqno_from: SeqNo,
    pub(crate) seqno_to: SeqNo,
    pub(crate) walltime_ms: u64,
    pub(crate) latest_rollup_key: PartialRollupKey,
    pub(crate) rollups: Vec<StateFieldDiff<SeqNo, HollowRollup>>,
    pub(crate) hostname: Vec<StateFieldDiff<(), String>>,
    pub(crate) last_gc_req: Vec<StateFieldDiff<(), SeqNo>>,
    pub(crate) leased_readers: Vec<StateFieldDiff<LeasedReaderId, LeasedReaderState<T>>>,
    pub(crate) critical_readers: Vec<StateFieldDiff<CriticalReaderId, CriticalReaderState<T>>>,
    pub(crate) writers: Vec<StateFieldDiff<WriterId, WriterState<T>>>,
    pub(crate) schemas: Vec<StateFieldDiff<SchemaId, EncodedSchemas>>,
    pub(crate) since: Vec<StateFieldDiff<(), Antichain<T>>>,
    pub(crate) legacy_batches: Vec<StateFieldDiff<HollowBatch<T>, ()>>,
    pub(crate) hollow_batches: Vec<StateFieldDiff<SpineId, Arc<HollowBatch<T>>>>,
    pub(crate) spine_batches: Vec<StateFieldDiff<SpineId, ThinSpineBatch<T>>>,
    pub(crate) merges: Vec<StateFieldDiff<SpineId, ThinMerge<T>>>,
}

impl<T: Timestamp + Codec64> StateDiff<T> {
    pub fn new(
        applier_version: semver::Version,
        seqno_from: SeqNo,
        seqno_to: SeqNo,
        walltime_ms: u64,
        latest_rollup_key: PartialRollupKey,
    ) -> Self {
        StateDiff {
            applier_version,
            seqno_from,
            seqno_to,
            walltime_ms,
            latest_rollup_key,
            rollups: Vec::default(),
            hostname: Vec::default(),
            last_gc_req: Vec::default(),
            leased_readers: Vec::default(),
            critical_readers: Vec::default(),
            writers: Vec::default(),
            schemas: Vec::default(),
            since: Vec::default(),
            legacy_batches: Vec::default(),
            hollow_batches: Vec::default(),
            spine_batches: Vec::default(),
            merges: Vec::default(),
        }
    }

    pub fn referenced_batches(&self) -> impl Iterator<Item = StateFieldValDiff<&HollowBatch<T>>> {
        let legacy_batches = self
            .legacy_batches
            .iter()
            .filter_map(|diff| match diff.val {
                Insert(()) => Some(Insert(&diff.key)),
                Update((), ()) => None, // Ignoring a noop diff.
                Delete(()) => Some(Delete(&diff.key)),
            });
        let hollow_batches = self.hollow_batches.iter().map(|diff| match &diff.val {
            Insert(batch) => Insert(&**batch),
            Update(before, after) => Update(&**before, &**after),
            Delete(batch) => Delete(&**batch),
        });
        legacy_batches.chain(hollow_batches)
    }
}

impl<T: Timestamp + Lattice + Codec64> StateDiff<T> {
    pub fn from_diff(from: &State<T>, to: &State<T>) -> Self {
        // Deconstruct from and to so we get a compile failure if new
        // fields are added.
        let State {
            applier_version: _,
            shard_id: from_shard_id,
            seqno: from_seqno,
            hostname: from_hostname,
            walltime_ms: _, // Intentionally unused
            collections:
                StateCollections {
                    last_gc_req: from_last_gc_req,
                    rollups: from_rollups,
                    leased_readers: from_leased_readers,
                    critical_readers: from_critical_readers,
                    writers: from_writers,
                    schemas: from_schemas,
                    trace: from_trace,
                },
        } = from;
        let State {
            applier_version: to_applier_version,
            shard_id: to_shard_id,
            seqno: to_seqno,
            walltime_ms: to_walltime_ms,
            hostname: to_hostname,
            collections:
                StateCollections {
                    last_gc_req: to_last_gc_req,
                    rollups: to_rollups,
                    leased_readers: to_leased_readers,
                    critical_readers: to_critical_readers,
                    writers: to_writers,
                    schemas: to_schemas,
                    trace: to_trace,
                },
        } = to;
        assert_eq!(from_shard_id, to_shard_id);

        let (_, latest_rollup) = to.latest_rollup();
        let mut diffs = Self::new(
            to_applier_version.clone(),
            *from_seqno,
            *to_seqno,
            *to_walltime_ms,
            latest_rollup.key.clone(),
        );
        diff_field_single(from_hostname, to_hostname, &mut diffs.hostname);
        diff_field_single(from_last_gc_req, to_last_gc_req, &mut diffs.last_gc_req);
        diff_field_sorted_iter(from_rollups.iter(), to_rollups, &mut diffs.rollups);
        diff_field_sorted_iter(
            from_leased_readers.iter(),
            to_leased_readers,
            &mut diffs.leased_readers,
        );
        diff_field_sorted_iter(
            from_critical_readers.iter(),
            to_critical_readers,
            &mut diffs.critical_readers,
        );
        diff_field_sorted_iter(from_writers.iter(), to_writers, &mut diffs.writers);
        diff_field_sorted_iter(from_schemas.iter(), to_schemas, &mut diffs.schemas);
        diff_field_single(from_trace.since(), to_trace.since(), &mut diffs.since);

        let from_flat = from_trace.flatten();
        let to_flat = to_trace.flatten();
        diff_field_sorted_iter(
            from_flat.legacy_batches.iter().map(|(k, v)| (&**k, v)),
            to_flat.legacy_batches.iter().map(|(k, v)| (&**k, v)),
            &mut diffs.legacy_batches,
        );
        diff_field_sorted_iter(
            from_flat.hollow_batches.iter(),
            to_flat.hollow_batches.iter(),
            &mut diffs.hollow_batches,
        );
        diff_field_sorted_iter(
            from_flat.spine_batches.iter(),
            to_flat.spine_batches.iter(),
            &mut diffs.spine_batches,
        );
        diff_field_sorted_iter(
            from_flat.merges.iter(),
            to_flat.merges.iter(),
            &mut diffs.merges,
        );
        diffs
    }

    pub(crate) fn blob_inserts(&self) -> impl Iterator<Item = HollowBlobRef<T>> {
        let batches = self
            .referenced_batches()
            .filter_map(|spine_diff| match spine_diff {
                Insert(b) | Update(_, b) => Some(HollowBlobRef::Batch(b)),
                Delete(_) => None, // No-op
            });
        let rollups = self
            .rollups
            .iter()
            .filter_map(|rollups_diff| match &rollups_diff.val {
                StateFieldValDiff::Insert(x) | StateFieldValDiff::Update(_, x) => {
                    Some(HollowBlobRef::Rollup(x))
                }
                StateFieldValDiff::Delete(_) => None, // No-op
            });
        batches.chain(rollups)
    }

    pub(crate) fn blob_deletes(&self) -> impl Iterator<Item = HollowBlobRef<T>> {
        let batches = self
            .referenced_batches()
            .filter_map(|spine_diff| match spine_diff {
                Insert(_) => None,
                Update(a, _) | Delete(a) => Some(HollowBlobRef::Batch(a)),
            });
        let rollups = self
            .rollups
            .iter()
            .filter_map(|rollups_diff| match &rollups_diff.val {
                Insert(_) => None,
                Update(a, _) | Delete(a) => Some(HollowBlobRef::Rollup(a)),
            });
        batches.chain(rollups)
    }

    #[cfg(any(test, debug_assertions))]
    #[allow(dead_code)]
    pub fn validate_roundtrip<K, V, D>(
        metrics: &Metrics,
        from_state: &crate::internal::state::TypedState<K, V, T, D>,
        diff: &Self,
        to_state: &crate::internal::state::TypedState<K, V, T, D>,
    ) -> Result<(), String>
    where
        K: mz_persist_types::Codec + std::fmt::Debug,
        V: mz_persist_types::Codec + std::fmt::Debug,
        D: differential_dataflow::difference::Semigroup + Codec64,
    {
        use mz_proto::RustType;
        use prost::Message;

        use crate::internal::state::ProtoStateDiff;

        let mut roundtrip_state = from_state.clone(
            from_state.applier_version.clone(),
            from_state.hostname.clone(),
        );
        roundtrip_state.apply_diff(metrics, diff.clone())?;

        if &roundtrip_state != to_state {
            // The weird spacing in this format string is so they all line up
            // when printed out.
            return Err(format!("state didn't roundtrip\n  from_state {:?}\n  to_state   {:?}\n  rt_state   {:?}\n  diff       {:?}\n", from_state, to_state, roundtrip_state, diff));
        }

        let encoded_diff = diff.into_proto().encode_to_vec();
        let roundtrip_diff = Self::from_proto(
            ProtoStateDiff::decode(encoded_diff.as_slice()).map_err(|err| err.to_string())?,
        )
        .map_err(|err| err.to_string())?;

        if &roundtrip_diff != diff {
            // The weird spacing in this format string is so they all line up
            // when printed out.
            return Err(format!(
                "diff didn't roundtrip\n  diff    {:?}\n  rt_diff {:?}",
                diff, roundtrip_diff
            ));
        }

        Ok(())
    }
}

impl<T: Timestamp + Lattice + Codec64> State<T> {
    pub fn apply_encoded_diffs<'a, I: IntoIterator<Item = &'a VersionedData>>(
        &mut self,
        cfg: &PersistConfig,
        metrics: &Metrics,
        diffs: I,
    ) {
        let mut state_seqno = self.seqno;
        let diffs = diffs.into_iter().filter_map(move |x| {
            if x.seqno != state_seqno.next() {
                // No-op.
                return None;
            }
            let data = x.data.clone();
            let diff = metrics
                .codecs
                .state_diff
                // Note: `x.data` is a `Bytes`, so cloning just increments a ref count
                .decode(|| StateDiff::decode(&cfg.build_version, x.data.clone()));
            assert_eq!(diff.seqno_from, state_seqno);
            state_seqno = diff.seqno_to;
            Some((diff, data))
        });
        self.apply_diffs(metrics, diffs);
    }
}

impl<T: Timestamp + Lattice + Codec64> State<T> {
    pub fn apply_diffs<I: IntoIterator<Item = (StateDiff<T>, Bytes)>>(
        &mut self,
        metrics: &Metrics,
        diffs: I,
    ) {
        for (diff, data) in diffs {
            // TODO: This could special-case batch apply for diffs where it's
            // more efficient (in particular, spine batches that hit the slow
            // path).
            match self.apply_diff(metrics, diff) {
                Ok(()) => {}
                Err(err) => {
                    // Having the full diff in the error message is critical for debugging any
                    // issues that may arise from diff application. We pass along the original
                    // Bytes it decoded from just so we can decode in this error path, while
                    // avoiding any extraneous clones in the expected Ok path.
                    let diff = StateDiff::<T>::decode(&self.applier_version, data);
                    panic!(
                        "state diff should apply cleanly: {} diff {:?} state {:?}",
                        err, diff, self
                    )
                }
            }
        }
    }

    // Intentionally not even pub(crate) because all callers should use
    // [Self::apply_diffs].
    pub(super) fn apply_diff(
        &mut self,
        metrics: &Metrics,
        diff: StateDiff<T>,
    ) -> Result<(), String> {
        // Deconstruct diff so we get a compile failure if new fields are added.
        let StateDiff {
            applier_version: diff_applier_version,
            seqno_from: diff_seqno_from,
            seqno_to: diff_seqno_to,
            walltime_ms: diff_walltime_ms,
            latest_rollup_key: _,
            rollups: diff_rollups,
            hostname: diff_hostname,
            last_gc_req: diff_last_gc_req,
            leased_readers: diff_leased_readers,
            critical_readers: diff_critical_readers,
            writers: diff_writers,
            schemas: diff_schemas,
            since: diff_since,
            legacy_batches: diff_legacy_batches,
            hollow_batches: diff_hollow_batches,
            spine_batches: diff_spine_batches,
            merges: diff_merges,
        } = diff;
        if self.seqno == diff_seqno_to {
            return Ok(());
        }
        if self.seqno != diff_seqno_from {
            return Err(format!(
                "could not apply diff {} -> {} to state {}",
                diff_seqno_from, diff_seqno_to, self.seqno
            ));
        }
        self.seqno = diff_seqno_to;
        self.applier_version = diff_applier_version;
        self.walltime_ms = diff_walltime_ms;
        force_apply_diffs_single(
            &self.shard_id,
            diff_seqno_to,
            "hostname",
            diff_hostname,
            &mut self.hostname,
            metrics,
        )?;

        // Deconstruct collections so we get a compile failure if new fields are
        // added.
        let StateCollections {
            last_gc_req,
            rollups,
            leased_readers,
            critical_readers,
            writers,
            schemas,
            trace,
        } = &mut self.collections;

        apply_diffs_map("rollups", diff_rollups, rollups)?;
        apply_diffs_single("last_gc_req", diff_last_gc_req, last_gc_req)?;
        apply_diffs_map("leased_readers", diff_leased_readers, leased_readers)?;
        apply_diffs_map("critical_readers", diff_critical_readers, critical_readers)?;
        apply_diffs_map("writers", diff_writers, writers)?;
        apply_diffs_map("schemas", diff_schemas, schemas)?;

        let structure_unchanged = diff_hollow_batches.is_empty()
            && diff_spine_batches.is_empty()
            && diff_merges.is_empty();
        let spine_unchanged =
            diff_since.is_empty() && diff_legacy_batches.is_empty() && structure_unchanged;

        if spine_unchanged {
            return Ok(());
        }

        let mut flat = if trace.roundtrip_structure {
            metrics.state.apply_spine_flattened.inc();
            let mut flat = trace.flatten();
            apply_diffs_single("since", diff_since, &mut flat.since)?;
            apply_diffs_map(
                "legacy_batches",
                diff_legacy_batches
                    .into_iter()
                    .map(|StateFieldDiff { key, val }| StateFieldDiff {
                        key: Arc::new(key),
                        val,
                    }),
                &mut flat.legacy_batches,
            )?;
            Some(flat)
        } else {
            for x in diff_since {
                match x.val {
                    Update(from, to) => {
                        if trace.since() != &from {
                            return Err(format!(
                                "since update didn't match: {:?} vs {:?}",
                                self.collections.trace.since(),
                                &from
                            ));
                        }
                        trace.downgrade_since(&to);
                    }
                    Insert(_) => return Err("cannot insert since field".to_string()),
                    Delete(_) => return Err("cannot delete since field".to_string()),
                }
            }
            if !diff_legacy_batches.is_empty() {
                apply_diffs_spine(metrics, diff_legacy_batches, trace)?;
                debug_assert_eq!(trace.validate(), Ok(()), "{:?}", trace);
            }
            None
        };

        if !structure_unchanged {
            let flat = flat.get_or_insert_with(|| trace.flatten());
            apply_diffs_map(
                "hollow_batches",
                diff_hollow_batches,
                &mut flat.hollow_batches,
            )?;
            apply_diffs_map("spine_batches", diff_spine_batches, &mut flat.spine_batches)?;
            apply_diffs_map("merges", diff_merges, &mut flat.merges)?;
        }

        if let Some(flat) = flat {
            *trace = Trace::unflatten(flat)?;
        }

        // There's various sanity checks that this method could run (e.g. since,
        // upper, seqno_since, etc don't regress or that diff.latest_rollup ==
        // state.rollups.last()), are they a good idea? On one hand, I like
        // sanity checks, other the other, one of the goals here is to keep
        // apply logic as straightforward and unchanging as possible.
        Ok(())
    }
}

fn diff_field_single<T: PartialEq + Clone>(
    from: &T,
    to: &T,
    diffs: &mut Vec<StateFieldDiff<(), T>>,
) {
    // This could use the `diff_field_sorted_iter(once(from), once(to), diffs)`
    // general impl, but we just do the obvious thing.
    if from != to {
        diffs.push(StateFieldDiff {
            key: (),
            val: Update(from.clone(), to.clone()),
        })
    }
}

fn apply_diffs_single<X: PartialEq + Debug>(
    name: &str,
    diffs: Vec<StateFieldDiff<(), X>>,
    single: &mut X,
) -> Result<(), String> {
    for diff in diffs {
        apply_diff_single(name, diff, single)?;
    }
    Ok(())
}

fn apply_diff_single<X: PartialEq + Debug>(
    name: &str,
    diff: StateFieldDiff<(), X>,
    single: &mut X,
) -> Result<(), String> {
    match diff.val {
        Update(from, to) => {
            if single != &from {
                return Err(format!(
                    "{} update didn't match: {:?} vs {:?}",
                    name, single, &from
                ));
            }
            *single = to
        }
        Insert(_) => return Err(format!("cannot insert {} field", name)),
        Delete(_) => return Err(format!("cannot delete {} field", name)),
    }
    Ok(())
}

// A hack to force apply a diff, making `single` equal to
// the Update `to` value, ignoring a mismatch on `from`.
// Used to migrate forward after writing down incorrect
// diffs.
//
// TODO: delete this once `hostname` has zero mismatches
fn force_apply_diffs_single<X: PartialEq + Debug>(
    shard_id: &ShardId,
    seqno: SeqNo,
    name: &str,
    diffs: Vec<StateFieldDiff<(), X>>,
    single: &mut X,
    metrics: &Metrics,
) -> Result<(), String> {
    for diff in diffs {
        force_apply_diff_single(shard_id, seqno, name, diff, single, metrics)?;
    }
    Ok(())
}

fn force_apply_diff_single<X: PartialEq + Debug>(
    shard_id: &ShardId,
    seqno: SeqNo,
    name: &str,
    diff: StateFieldDiff<(), X>,
    single: &mut X,
    metrics: &Metrics,
) -> Result<(), String> {
    match diff.val {
        Update(from, to) => {
            if single != &from {
                debug!(
                    "{}: update didn't match: {:?} vs {:?}, continuing to force apply diff to {:?} for shard {} and seqno {}",
                    name, single, &from, &to, shard_id, seqno
                );
                metrics.state.force_apply_hostname.inc();
            }
            *single = to
        }
        Insert(_) => return Err(format!("cannot insert {} field", name)),
        Delete(_) => return Err(format!("cannot delete {} field", name)),
    }
    Ok(())
}

fn diff_field_sorted_iter<'a, K, V, IF, IT>(from: IF, to: IT, diffs: &mut Vec<StateFieldDiff<K, V>>)
where
    K: Ord + Clone + 'a,
    V: PartialEq + Clone + 'a,
    IF: IntoIterator<Item = (&'a K, &'a V)>,
    IT: IntoIterator<Item = (&'a K, &'a V)>,
{
    let (mut from, mut to) = (from.into_iter(), to.into_iter());
    let (mut f, mut t) = (from.next(), to.next());
    loop {
        match (f, t) {
            (None, None) => break,
            (Some((fk, fv)), Some((tk, tv))) => match fk.cmp(tk) {
                Ordering::Less => {
                    diffs.push(StateFieldDiff {
                        key: fk.clone(),
                        val: Delete(fv.clone()),
                    });
                    let f_next = from.next();
                    debug_assert!(f_next.as_ref().map_or(true, |(fk_next, _)| fk_next > &fk));
                    f = f_next;
                }
                Ordering::Greater => {
                    diffs.push(StateFieldDiff {
                        key: tk.clone(),
                        val: Insert(tv.clone()),
                    });
                    let t_next = to.next();
                    debug_assert!(t_next.as_ref().map_or(true, |(tk_next, _)| tk_next > &tk));
                    t = t_next;
                }
                Ordering::Equal => {
                    // TODO: regression test for this if, I missed it in the
                    // original impl :)
                    if fv != tv {
                        diffs.push(StateFieldDiff {
                            key: fk.clone(),
                            val: Update(fv.clone(), tv.clone()),
                        });
                    }
                    let f_next = from.next();
                    debug_assert!(f_next.as_ref().map_or(true, |(fk_next, _)| fk_next > &fk));
                    f = f_next;
                    let t_next = to.next();
                    debug_assert!(t_next.as_ref().map_or(true, |(tk_next, _)| tk_next > &tk));
                    t = t_next;
                }
            },
            (None, Some((tk, tv))) => {
                diffs.push(StateFieldDiff {
                    key: tk.clone(),
                    val: Insert(tv.clone()),
                });
                let t_next = to.next();
                debug_assert!(t_next.as_ref().map_or(true, |(tk_next, _)| tk_next > &tk));
                t = t_next;
            }
            (Some((fk, fv)), None) => {
                diffs.push(StateFieldDiff {
                    key: fk.clone(),
                    val: Delete(fv.clone()),
                });
                let f_next = from.next();
                debug_assert!(f_next.as_ref().map_or(true, |(fk_next, _)| fk_next > &fk));
                f = f_next;
            }
        }
    }
}

fn apply_diffs_map<K: Ord, V: PartialEq + Debug>(
    name: &str,
    diffs: impl IntoIterator<Item = StateFieldDiff<K, V>>,
    map: &mut BTreeMap<K, V>,
) -> Result<(), String> {
    for diff in diffs {
        apply_diff_map(name, diff, map)?;
    }
    Ok(())
}

// This might leave state in an invalid (umm) state when returning an error. The
// caller ultimately ends up panic'ing on error, but if that changes, we might
// want to revisit this.
fn apply_diff_map<K: Ord, V: PartialEq + Debug>(
    name: &str,
    diff: StateFieldDiff<K, V>,
    map: &mut BTreeMap<K, V>,
) -> Result<(), String> {
    match diff.val {
        Insert(to) => {
            let prev = map.insert(diff.key, to);
            if prev != None {
                return Err(format!("{} insert found existing value: {:?}", name, prev));
            }
        }
        Update(from, to) => {
            let prev = map.insert(diff.key, to);
            if prev.as_ref() != Some(&from) {
                return Err(format!(
                    "{} update didn't match: {:?} vs {:?}",
                    name,
                    prev,
                    Some(from),
                ));
            }
        }
        Delete(from) => {
            let prev = map.remove(&diff.key);
            if prev.as_ref() != Some(&from) {
                return Err(format!(
                    "{} delete didn't match: {:?} vs {:?}",
                    name,
                    prev,
                    Some(from),
                ));
            }
        }
    };
    Ok(())
}

// This might leave state in an invalid (umm) state when returning an error. The
// caller ultimately ends up panic'ing on error, but if that changes, we might
// want to revisit this.
fn apply_diffs_spine<T: Timestamp + Lattice>(
    metrics: &Metrics,
    mut diffs: Vec<StateFieldDiff<HollowBatch<T>, ()>>,
    trace: &mut Trace<T>,
) -> Result<(), String> {
    // Another special case: sniff out a newly inserted batch (one whose lower
    // lines up with the current upper) and handle that now. Then fall through
    // to the rest of the handling on whatever is left.
    if let Some(insert) = sniff_insert(&mut diffs, trace.upper()) {
        // Ignore merge_reqs because whichever process generated this diff is
        // assigned the work.
        let () = trace.push_batch_no_merge_reqs(insert);
        // If this insert was the only thing in diffs, then return now instead
        // of falling through to the "no diffs" case in the match so we can inc
        // the apply_spine_fast_path metric.
        if diffs.is_empty() {
            metrics.state.apply_spine_fast_path.inc();
            return Ok(());
        }
    }

    match &diffs[..] {
        // Fast-path: no diffs.
        [] => return Ok(()),

        // Fast-path: batch insert with both new and most recent batch empty.
        // Spine will happily merge these empty batches together without a call
        // out to compaction.
        [StateFieldDiff {
            key: del,
            val: StateFieldValDiff::Delete(()),
        }, StateFieldDiff {
            key: ins,
            val: StateFieldValDiff::Insert(()),
        }] => {
            if del.is_empty()
                && ins.is_empty()
                && del.desc.lower() == ins.desc.lower()
                && PartialOrder::less_than(del.desc.upper(), ins.desc.upper())
            {
                // Ignore merge_reqs because whichever process generated this diff is
                // assigned the work.
                let () = trace.push_batch_no_merge_reqs(HollowBatch::empty(Description::new(
                    del.desc.upper().clone(),
                    ins.desc.upper().clone(),
                    // `keys.len() == 0` for both `del` and `ins` means we
                    // don't have to think about what the compaction
                    // frontier is for these batches (nothing in them, so nothing could have been compacted.
                    Antichain::from_elem(T::minimum()),
                )));
                metrics.state.apply_spine_fast_path.inc();
                return Ok(());
            }
        }
        // Fall-through
        _ => {}
    }

    // Fast-path: compaction
    if let Some((_inputs, output)) = sniff_compaction(&diffs) {
        let res = FueledMergeRes { output };
        // We can't predict how spine will arrange the batches when it's
        // hydrated. This means that something that is maintaining a Spine
        // starting at some seqno may not exactly match something else
        // maintaining the same spine starting at a different seqno. (Plus,
        // maybe these aren't even on the same version of the code and we've
        // changed the spine logic.) Because apply_merge_res is strict,
        // we're not _guaranteed_ that we can apply a compaction response
        // that was generated elsewhere. Most of the time we can, though, so
        // count the good ones and fall back to the slow path below when we
        // can't.
        if trace.apply_merge_res(&res).applied() {
            // Maybe return the replaced batches from apply_merge_res and verify
            // that they match _inputs?
            metrics.state.apply_spine_fast_path.inc();
            return Ok(());
        }

        // Otherwise, try our lenient application of a compaction result.
        let mut batches = Vec::new();
        trace.map_batches(|b| batches.push(b.clone()));

        match apply_compaction_lenient(metrics, batches, &res.output) {
            Ok(batches) => {
                let mut new_trace = Trace::default();
                new_trace.roundtrip_structure = trace.roundtrip_structure;
                new_trace.downgrade_since(trace.since());
                for batch in batches {
                    // Ignore merge_reqs because whichever process generated
                    // this diff is assigned the work.
                    let () = new_trace.push_batch_no_merge_reqs(batch.clone());
                }
                *trace = new_trace;
                metrics.state.apply_spine_slow_path_lenient.inc();
                return Ok(());
            }
            Err(err) => {
                return Err(format!(
                    "lenient compaction result apply unexpectedly failed: {}",
                    err
                ))
            }
        }
    }

    // Something complicated is going on, so reconstruct the Trace from scratch.
    metrics.state.apply_spine_slow_path.inc();
    debug!(
        "apply_diffs_spine didn't hit a fast-path diffs={:?} trace={:?}",
        diffs, trace
    );

    let batches = {
        let mut batches = BTreeMap::new();
        trace.map_batches(|b| assert_none!(batches.insert(b.clone(), ())));
        apply_diffs_map("spine", diffs.clone(), &mut batches).map(|_ok| batches)
    };

    let batches = match batches {
        Ok(batches) => batches,
        Err(err) => {
            metrics
                .state
                .apply_spine_slow_path_with_reconstruction
                .inc();
            debug!(
                "apply_diffs_spines could not apply diffs directly to existing trace batches: {}. diffs={:?} trace={:?}",
                err, diffs, trace
            );
            // if we couldn't apply our diffs directly to our trace's batches, we can
            // try one more trick: reconstruct a new spine with our existing batches,
            // in an attempt to create different merges than we currently have. then,
            // we can try to apply our diffs on top of these new (potentially) merged
            // batches.
            let mut reconstructed_spine = Trace::default();
            reconstructed_spine.roundtrip_structure = trace.roundtrip_structure;
            trace.map_batches(|b| {
                // Ignore merge_reqs because whichever process generated this
                // diff is assigned the work.
                let () = reconstructed_spine.push_batch_no_merge_reqs(b.clone());
            });

            let mut batches = BTreeMap::new();
            reconstructed_spine.map_batches(|b| assert_none!(batches.insert(b.clone(), ())));
            apply_diffs_map("spine", diffs, &mut batches)?;
            batches
        }
    };

    let mut new_trace = Trace::default();
    new_trace.roundtrip_structure = trace.roundtrip_structure;
    new_trace.downgrade_since(trace.since());
    for (batch, ()) in batches {
        // Ignore merge_reqs because whichever process generated this diff is
        // assigned the work.
        let () = new_trace.push_batch_no_merge_reqs(batch);
    }
    *trace = new_trace;
    Ok(())
}

fn sniff_insert<T: Timestamp + Lattice>(
    diffs: &mut Vec<StateFieldDiff<HollowBatch<T>, ()>>,
    upper: &Antichain<T>,
) -> Option<HollowBatch<T>> {
    for idx in 0..diffs.len() {
        match &diffs[idx] {
            StateFieldDiff {
                key,
                val: StateFieldValDiff::Insert(()),
            } if key.desc.lower() == upper => return Some(diffs.remove(idx).key),
            _ => continue,
        }
    }
    None
}

// TODO: Instead of trying to sniff out a compaction from diffs, should we just
// be explicit?
fn sniff_compaction<'a, T: Timestamp + Lattice>(
    diffs: &'a [StateFieldDiff<HollowBatch<T>, ()>],
) -> Option<(Vec<&'a HollowBatch<T>>, HollowBatch<T>)> {
    // Compaction always produces exactly one output batch (with possibly many
    // parts, but we get one Insert for the whole batch.
    let mut inserts = diffs.iter().flat_map(|x| match x.val {
        StateFieldValDiff::Insert(()) => Some(&x.key),
        _ => None,
    });
    let compaction_output = match inserts.next() {
        Some(x) => x,
        None => return None,
    };
    if let Some(_) = inserts.next() {
        return None;
    }

    // Grab all deletes and sanity check that there are no updates.
    let mut compaction_inputs = Vec::with_capacity(diffs.len() - 1);
    for diff in diffs.iter() {
        match diff.val {
            StateFieldValDiff::Delete(()) => {
                compaction_inputs.push(&diff.key);
            }
            StateFieldValDiff::Insert(()) => {}
            StateFieldValDiff::Update((), ()) => {
                // Fall through to let the general case create the error
                // message.
                return None;
            }
        }
    }

    Some((compaction_inputs, compaction_output.clone()))
}

/// Apply a compaction diff that doesn't exactly line up with the set of
/// HollowBatches.
///
/// Because of the way Spine internally optimizes only _some_ empty batches
/// (immediately merges them in), we can end up in a situation where a
/// compaction res applied on another copy of state, but when we replay all of
/// the state diffs against a new Spine locally, it merges empty batches
/// differently in-mem and we can't exactly apply the compaction diff. Example:
///
/// - compact: [1,2),[2,3) -> [1,3)
/// - this spine: [0,2),[2,3) (0,1 is empty)
///
/// Ideally, we'd figure out a way to avoid this, but nothing immediately comes
/// to mind. In the meantime, force the application (otherwise the shard is
/// stuck and we can't do anything with it) by manually splitting the empty
/// batch back out. For the example above:
///
/// - [0,1),[1,3) (0,1 is empty)
///
/// This can only happen when the batch needing to be split is empty, so error
/// out if it isn't because that means something unexpected is going on.
///
/// TODO: This implementation is certainly not correct if T is actually only
/// partially ordered.
fn apply_compaction_lenient<'a, T: Timestamp + Lattice>(
    metrics: &Metrics,
    mut trace: Vec<HollowBatch<T>>,
    replacement: &'a HollowBatch<T>,
) -> Result<Vec<HollowBatch<T>>, String> {
    let mut overlapping_batches = Vec::new();
    trace.retain(|b| {
        let before_replacement = PartialOrder::less_equal(b.desc.upper(), replacement.desc.lower());
        let after_replacement = PartialOrder::less_equal(replacement.desc.upper(), b.desc.lower());
        let overlaps_replacement = !(before_replacement || after_replacement);
        if overlaps_replacement {
            overlapping_batches.push(b.clone());
            false
        } else {
            true
        }
    });

    {
        let first_overlapping_batch = match overlapping_batches.first() {
            Some(x) => x,
            None => return Err("replacement didn't overlap any batches".into()),
        };
        if PartialOrder::less_than(
            first_overlapping_batch.desc.lower(),
            replacement.desc.lower(),
        ) {
            if first_overlapping_batch.len > 0 {
                return Err(format!(
                    "overlapping batch was unexpectedly non-empty: {:?}",
                    first_overlapping_batch
                ));
            }
            let desc = Description::new(
                first_overlapping_batch.desc.lower().clone(),
                replacement.desc.lower().clone(),
                first_overlapping_batch.desc.since().clone(),
            );
            trace.push(HollowBatch::empty(desc));
            metrics.state.apply_spine_slow_path_lenient_adjustment.inc();
        }
    }

    {
        let last_overlapping_batch = match overlapping_batches.last() {
            Some(x) => x,
            None => return Err("replacement didn't overlap any batches".into()),
        };
        if PartialOrder::less_than(
            replacement.desc.upper(),
            last_overlapping_batch.desc.upper(),
        ) {
            if last_overlapping_batch.len > 0 {
                return Err(format!(
                    "overlapping batch was unexpectedly non-empty: {:?}",
                    last_overlapping_batch
                ));
            }
            let desc = Description::new(
                replacement.desc.upper().clone(),
                last_overlapping_batch.desc.upper().clone(),
                last_overlapping_batch.desc.since().clone(),
            );
            trace.push(HollowBatch::empty(desc));
            metrics.state.apply_spine_slow_path_lenient_adjustment.inc();
        }
    }
    trace.push(replacement.clone());

    // We just inserted stuff at the end, so re-sort them into place.
    trace.sort_by(|a, b| a.desc.lower().elements().cmp(b.desc.lower().elements()));

    // This impl is a touch complex, so sanity check our work.
    let mut expected_lower = &Antichain::from_elem(T::minimum());
    for b in trace.iter() {
        if b.desc.lower() != expected_lower {
            return Err(format!(
                "lower {:?} did not match expected {:?}: {:?}",
                b.desc.lower(),
                expected_lower,
                trace
            ));
        }
        expected_lower = b.desc.upper();
    }
    Ok(trace)
}

/// A type that facilitates the proto encoding of a [`ProtoStateFieldDiffs`]
///
/// [`ProtoStateFieldDiffs`] is a columnar encoding of [`StateFieldDiff`]s, see
/// its doc comment for more info. The underlying buffer for a [`ProtoStateFieldDiffs`]
/// is a [`Bytes`] struct, which is an immutable, shared, reference counted,
/// buffer of data. Using a [`Bytes`] struct is a very efficient way to manage data
/// becuase multiple [`Bytes`] can reference different parts of the same underlying
/// portion of memory. See its doc comment for more info.
///
/// A [`ProtoStateFieldDiffsWriter`] maintains a mutable, unique, data buffer, i.e.
/// a [`BytesMut`], which we use when encoding a [`StateFieldDiff`]. And when
/// finished encoding, we convert it into a [`ProtoStateFieldDiffs`] by "freezing" the
/// underlying buffer, converting it into a [`Bytes`] struct, so it can be shared.
///
/// [`Bytes`]: bytes::Bytes
#[derive(Debug)]
pub struct ProtoStateFieldDiffsWriter {
    data_buf: BytesMut,
    proto: ProtoStateFieldDiffs,
}

impl ProtoStateFieldDiffsWriter {
    /// Record a [`ProtoStateField`] for our columnar encoding.
    pub fn push_field(&mut self, field: ProtoStateField) {
        self.proto.fields.push(i32::from(field));
    }

    /// Record a [`ProtoStateFieldDiffType`] for our columnar encoding.
    pub fn push_diff_type(&mut self, diff_type: ProtoStateFieldDiffType) {
        self.proto.diff_types.push(i32::from(diff_type));
    }

    /// Encode a message for our columnar encoding.
    pub fn encode_proto<M: prost::Message>(&mut self, msg: &M) {
        let len_before = self.data_buf.len();
        self.data_buf.reserve(msg.encoded_len());

        // Note: we use `encode_raw` as opposed to `encode` because all `encode` does is
        // check to make sure there's enough bytes in the buffer to fit our message
        // which we know there are because we just reserved the space. When benchmarking
        // `encode_raw` does offer a slight performance improvement over `encode`.
        msg.encode_raw(&mut self.data_buf);

        // Record exactly how many bytes were written.
        let written_len = self.data_buf.len() - len_before;
        self.proto.data_lens.push(u64::cast_from(written_len));
    }

    pub fn into_proto(self) -> ProtoStateFieldDiffs {
        let ProtoStateFieldDiffsWriter {
            data_buf,
            mut proto,
        } = self;

        // Assert we didn't write into the proto's data_bytes field
        assert!(proto.data_bytes.is_empty());

        // Move our buffer into the proto
        let data_bytes = data_buf.freeze();
        proto.data_bytes = data_bytes;

        proto
    }
}

impl ProtoStateFieldDiffs {
    pub fn into_writer(mut self) -> ProtoStateFieldDiffsWriter {
        // Create a new buffer which we'll encode data into.
        let mut data_buf = BytesMut::with_capacity(self.data_bytes.len());

        // Take our existing data, and copy it into our buffer.
        let existing_data = std::mem::take(&mut self.data_bytes);
        data_buf.extend(existing_data);

        ProtoStateFieldDiffsWriter {
            data_buf,
            proto: self,
        }
    }

    pub fn iter<'a>(&'a self) -> ProtoStateFieldDiffsIter<'a> {
        let len = self.fields.len();
        assert_eq!(self.diff_types.len(), len);

        ProtoStateFieldDiffsIter {
            len,
            diff_idx: 0,
            data_idx: 0,
            data_offset: 0,
            diffs: self,
        }
    }

    pub fn validate(&self) -> Result<(), String> {
        if self.fields.len() != self.diff_types.len() {
            return Err(format!(
                "fields {} and diff_types {} lengths disagree",
                self.fields.len(),
                self.diff_types.len()
            ));
        }

        let mut expected_data_slices = 0;
        for diff_type in self.diff_types.iter() {
            // We expect one for the key.
            expected_data_slices += 1;
            // And 1 or 2 for val depending on the diff type.
            match ProtoStateFieldDiffType::try_from(*diff_type) {
                Ok(ProtoStateFieldDiffType::Insert) => expected_data_slices += 1,
                Ok(ProtoStateFieldDiffType::Update) => expected_data_slices += 2,
                Ok(ProtoStateFieldDiffType::Delete) => expected_data_slices += 1,
                Err(_) => return Err(format!("unknown diff_type {}", diff_type)),
            }
        }
        if expected_data_slices != self.data_lens.len() {
            return Err(format!(
                "expected {} data slices got {}",
                expected_data_slices,
                self.data_lens.len()
            ));
        }

        let expected_data_bytes = usize::cast_from(self.data_lens.iter().copied().sum::<u64>());
        if expected_data_bytes != self.data_bytes.len() {
            return Err(format!(
                "expected {} data bytes got {}",
                expected_data_bytes,
                self.data_bytes.len()
            ));
        }

        Ok(())
    }
}

#[derive(Debug)]
pub struct ProtoStateFieldDiff<'a> {
    pub key: &'a [u8],
    pub diff_type: ProtoStateFieldDiffType,
    pub from: &'a [u8],
    pub to: &'a [u8],
}

pub struct ProtoStateFieldDiffsIter<'a> {
    len: usize,
    diff_idx: usize,
    data_idx: usize,
    data_offset: usize,
    diffs: &'a ProtoStateFieldDiffs,
}

impl<'a> Iterator for ProtoStateFieldDiffsIter<'a> {
    type Item = Result<(ProtoStateField, ProtoStateFieldDiff<'a>), TryFromProtoError>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.diff_idx >= self.len {
            return None;
        }
        let mut next_data = || {
            let start = self.data_offset;
            let end = start + usize::cast_from(self.diffs.data_lens[self.data_idx]);
            let data = &self.diffs.data_bytes[start..end];
            self.data_idx += 1;
            self.data_offset = end;
            data
        };
        let field = match ProtoStateField::try_from(self.diffs.fields[self.diff_idx]) {
            Ok(x) => x,
            Err(_) => {
                return Some(Err(TryFromProtoError::unknown_enum_variant(format!(
                    "ProtoStateField({})",
                    self.diffs.fields[self.diff_idx]
                ))))
            }
        };
        let diff_type =
            match ProtoStateFieldDiffType::try_from(self.diffs.diff_types[self.diff_idx]) {
                Ok(x) => x,
                Err(_) => {
                    return Some(Err(TryFromProtoError::unknown_enum_variant(format!(
                        "ProtoStateFieldDiffType({})",
                        self.diffs.diff_types[self.diff_idx]
                    ))))
                }
            };
        let key = next_data();
        let (from, to): (&[u8], &[u8]) = match diff_type {
            ProtoStateFieldDiffType::Insert => (&[], next_data()),
            ProtoStateFieldDiffType::Update => (next_data(), next_data()),
            ProtoStateFieldDiffType::Delete => (next_data(), &[]),
        };
        let diff = ProtoStateFieldDiff {
            key,
            diff_type,
            from,
            to,
        };
        self.diff_idx += 1;
        Some(Ok((field, diff)))
    }
}

#[cfg(test)]
mod tests {
    use semver::Version;
    use std::ops::ControlFlow::Continue;

    use crate::internal::paths::{PartId, PartialBatchKey, RollupId, WriterKey};
    use mz_ore::metrics::MetricsRegistry;

    use crate::internal::state::TypedState;
    use crate::ShardId;

    use super::*;

    /// Model a situation where a "leader" is constantly making changes to its state, and a "follower"
    /// is applying those changes as diffs.
    #[mz_ore::test]
    #[cfg_attr(miri, ignore)] // too slow
    fn test_state_sync() {
        use proptest::prelude::*;

        #[derive(Debug, Clone)]
        enum Action {
            /// Append a (non)empty batch to the shard that covers the given length of time.
            Append { empty: bool, time_delta: u64 },
            /// Apply the Nth compaction request we've received to the shard state.
            Compact { req: usize },
        }

        let action_gen: BoxedStrategy<Action> = {
            prop::strategy::Union::new([
                (any::<bool>(), 1u64..10u64)
                    .prop_map(|(empty, time_delta)| Action::Append { empty, time_delta })
                    .boxed(),
                (0usize..10usize)
                    .prop_map(|req| Action::Compact { req })
                    .boxed(),
            ])
            .boxed()
        };

        fn run(actions: Vec<(Action, bool)>, metrics: &Metrics) {
            let version = Version::new(0, 100, 0);
            let writer_key = WriterKey::Version(version.to_string());
            let id = ShardId::new();
            let hostname = "computer";
            let typed: TypedState<String, (), u64, i64> =
                TypedState::new(version, id, hostname.to_string(), 0);
            let mut leader = typed.state;

            let seqno = SeqNo::minimum();
            let mut lower = 0u64;
            let mut merge_reqs = vec![];

            leader.collections.rollups.insert(
                seqno,
                HollowRollup {
                    key: PartialRollupKey::new(seqno, &RollupId::new()),
                    encoded_size_bytes: None,
                },
            );
            leader.collections.trace.roundtrip_structure = false;
            let mut follower = leader.clone();

            for (action, roundtrip_structure) in actions {
                // Apply the given action and the new roundtrip_structure setting and take a diff.
                let mut old_leader = leader.clone();
                match action {
                    Action::Append { empty, time_delta } => {
                        let upper = lower + time_delta;
                        let key = if empty {
                            None
                        } else {
                            let id = PartId::new();
                            Some(PartialBatchKey::new(&writer_key, &id))
                        };

                        let keys = key.as_ref().map(|k| k.0.as_str());
                        let reqs = leader.collections.trace.push_batch(
                            crate::internal::state::tests::hollow(
                                lower,
                                upper,
                                keys.as_slice(),
                                if empty { 0 } else { 1 },
                            ),
                        );
                        merge_reqs.extend(reqs);
                        lower = upper;
                    }
                    Action::Compact { req } => {
                        if !merge_reqs.is_empty() {
                            let req = merge_reqs.remove(req.min(merge_reqs.len() - 1));
                            let len = req.inputs.iter().map(|p| p.batch.len).sum();
                            let parts = req
                                .inputs
                                .into_iter()
                                .flat_map(|p| p.batch.parts.clone())
                                .collect();
                            let output = HollowBatch::new_run(req.desc, parts, len);
                            leader
                                .collections
                                .trace
                                .apply_merge_res(&FueledMergeRes { output });
                        }
                    }
                }
                leader.collections.trace.roundtrip_structure = roundtrip_structure;
                leader.seqno.0 += 1;
                let diff = StateDiff::from_diff(&old_leader, &leader);

                // Validate that the diff applies to both the previous state (also checked in
                // debug asserts) and our follower that's only synchronized via diffs.
                old_leader
                    .apply_diff(metrics, diff.clone())
                    .expect("diff applies to the old version of the leader state");
                follower
                    .apply_diff(metrics, diff.clone())
                    .expect("diff applies to the synced version of the follower state");

                // TODO: once spine structure is roundtripped through diffs, assert that the follower
                // has the same batches etc. as the leader does.
            }
        }

        let config = PersistConfig::new_for_tests();
        let metrics_registry = MetricsRegistry::new();
        let metrics: Metrics = Metrics::new(&config, &metrics_registry);

        proptest!(|(actions in prop::collection::vec((action_gen, any::<bool>()), 1..20))| {
            run(actions, &metrics)
        })
    }

    // Regression test for the apply_diffs_spine special case that sniffs out an
    // insert, applies it, and then lets the remaining diffs (if any) fall
    // through to the rest of the code. See database-issues#4431.
    #[mz_ore::test]
    fn regression_15493_sniff_insert() {
        fn hb(lower: u64, upper: u64, len: usize) -> HollowBatch<u64> {
            HollowBatch::new_run(
                Description::new(
                    Antichain::from_elem(lower),
                    Antichain::from_elem(upper),
                    Antichain::from_elem(0),
                ),
                Vec::new(),
                len,
            )
        }

        // The bug handled here is essentially a set of batches that look like
        // the pattern matched by `apply_lenient` _plus_ an insert. In
        // apply_diffs_spine, we use `sniff_insert` to steal the insert out of
        // the diffs and fall back to the rest of the logic to handle the
        // remaining diffs.
        //
        // Concretely, something like (the numbers are truncated versions of the
        // actual bug posted in the issue):
        // - spine: [0][7094664]0, [7094664][7185234]100
        // - diffs: [0][6805359]0 del, [6805359][7083793]0 del, [0][7083793]0 ins,
        //   [7185234][7185859]20 ins
        //
        // Where this allows us to handle the [7185234,7185859) and then
        // apply_lenient handles splitting up [0,7094664) so we can apply the
        // [0,6805359)+[6805359,7083793)->[0,7083793) swap.

        let batches_before = vec![hb(0, 7094664, 0), hb(7094664, 7185234, 100)];

        let diffs = vec![
            StateFieldDiff {
                key: hb(0, 6805359, 0),
                val: StateFieldValDiff::Delete(()),
            },
            StateFieldDiff {
                key: hb(6805359, 7083793, 0),
                val: StateFieldValDiff::Delete(()),
            },
            StateFieldDiff {
                key: hb(0, 7083793, 0),
                val: StateFieldValDiff::Insert(()),
            },
            StateFieldDiff {
                key: hb(7185234, 7185859, 20),
                val: StateFieldValDiff::Insert(()),
            },
        ];

        // Ideally this first batch would be [0][7083793], [7083793,7094664]
        // here because `apply_lenient` splits it out, but when `apply_lenient`
        // reconstructs the trace, Spine happens to (deterministically) collapse
        // them back together. The main value of this test is that the
        // `apply_diffs_spine` call below doesn't return an Err, so don't worry
        // too much about this, it's just a sanity check.
        let batches_after = vec![
            hb(0, 7094664, 0),
            hb(7094664, 7185234, 100),
            hb(7185234, 7185859, 20),
        ];

        let cfg = PersistConfig::new_for_tests();
        let state = TypedState::<(), (), u64, i64>::new(
            cfg.build_version.clone(),
            ShardId::new(),
            cfg.hostname.clone(),
            (cfg.now)(),
        );
        let state = state.clone_apply(&cfg, &mut |_seqno, _cfg, state| {
            for b in batches_before.iter() {
                let _merge_reqs = state.trace.push_batch(b.clone());
            }
            Continue::<(), ()>(())
        });
        let mut state = match state {
            Continue((_, x)) => x,
            _ => unreachable!(),
        };

        let metrics = Metrics::new(&PersistConfig::new_for_tests(), &MetricsRegistry::new());
        assert_eq!(
            apply_diffs_spine(&metrics, diffs, &mut state.collections.trace),
            Ok(())
        );

        let mut actual = Vec::new();
        state
            .collections
            .trace
            .map_batches(|b| actual.push(b.clone()));
        assert_eq!(actual, batches_after);
    }

    #[mz_ore::test]
    #[cfg_attr(miri, ignore)] // too slow
    fn apply_lenient() {
        #[track_caller]
        fn testcase(
            replacement: (u64, u64, u64, usize),
            spine: &[(u64, u64, u64, usize)],
            expected: Result<&[(u64, u64, u64, usize)], &str>,
        ) {
            fn batch(x: &(u64, u64, u64, usize)) -> HollowBatch<u64> {
                let (lower, upper, since, len) = x;
                let desc = Description::new(
                    Antichain::from_elem(*lower),
                    Antichain::from_elem(*upper),
                    Antichain::from_elem(*since),
                );
                HollowBatch::new_run(desc, Vec::new(), *len)
            }
            let replacement = batch(&replacement);
            let batches = spine.iter().map(batch).collect::<Vec<_>>();

            let metrics = Metrics::new(&PersistConfig::new_for_tests(), &MetricsRegistry::new());
            let actual = apply_compaction_lenient(&metrics, batches, &replacement);
            let expected = match expected {
                Ok(batches) => Ok(batches.iter().map(batch).collect::<Vec<_>>()),
                Err(err) => Err(err.to_owned()),
            };
            assert_eq!(actual, expected);
        }

        // Exact swap of N batches
        testcase(
            (0, 3, 0, 100),
            &[(0, 1, 0, 0), (1, 2, 0, 0), (2, 3, 0, 0)],
            Ok(&[(0, 3, 0, 100)]),
        );

        // Swap out the middle of a batch
        testcase(
            (1, 2, 0, 100),
            &[(0, 3, 0, 0)],
            Ok(&[(0, 1, 0, 0), (1, 2, 0, 100), (2, 3, 0, 0)]),
        );

        // Split batch at replacement lower
        testcase(
            (2, 4, 0, 100),
            &[(0, 3, 0, 0), (3, 4, 0, 0)],
            Ok(&[(0, 2, 0, 0), (2, 4, 0, 100)]),
        );

        // Err: split batch at replacement lower not empty
        testcase(
            (2, 4, 0, 100),
            &[(0, 3, 0, 1), (3, 4, 0, 0)],
            Err("overlapping batch was unexpectedly non-empty: HollowBatch { desc: ([0], [3], [0]), parts: [], len: 1, runs: [], run_meta: [] }")
        );

        // Split batch at replacement lower (untouched batch before the split one)
        testcase(
            (2, 4, 0, 100),
            &[(0, 1, 0, 0), (1, 3, 0, 0), (3, 4, 0, 0)],
            Ok(&[(0, 1, 0, 0), (1, 2, 0, 0), (2, 4, 0, 100)]),
        );

        // Split batch at replacement lower (since is preserved)
        testcase(
            (2, 4, 0, 100),
            &[(0, 3, 200, 0), (3, 4, 0, 0)],
            Ok(&[(0, 2, 200, 0), (2, 4, 0, 100)]),
        );

        // Split batch at replacement upper
        testcase(
            (0, 2, 0, 100),
            &[(0, 1, 0, 0), (1, 4, 0, 0)],
            Ok(&[(0, 2, 0, 100), (2, 4, 0, 0)]),
        );

        // Err: split batch at replacement upper not empty
        testcase(
            (0, 2, 0, 100),
            &[(0, 1, 0, 0), (1, 4, 0, 1)],
            Err("overlapping batch was unexpectedly non-empty: HollowBatch { desc: ([1], [4], [0]), parts: [], len: 1, runs: [], run_meta: [] }")
        );

        // Split batch at replacement upper (untouched batch after the split one)
        testcase(
            (0, 2, 0, 100),
            &[(0, 1, 0, 0), (1, 3, 0, 0), (3, 4, 0, 0)],
            Ok(&[(0, 2, 0, 100), (2, 3, 0, 0), (3, 4, 0, 0)]),
        );

        // Split batch at replacement upper (since is preserved)
        testcase(
            (0, 2, 0, 100),
            &[(0, 1, 0, 0), (1, 4, 200, 0)],
            Ok(&[(0, 2, 0, 100), (2, 4, 200, 0)]),
        );

        // Split batch at replacement lower and upper
        testcase(
            (2, 6, 0, 100),
            &[(0, 3, 0, 0), (3, 5, 0, 0), (5, 8, 0, 0)],
            Ok(&[(0, 2, 0, 0), (2, 6, 0, 100), (6, 8, 0, 0)]),
        );

        // Replacement doesn't overlap (after)
        testcase(
            (2, 3, 0, 100),
            &[(0, 1, 0, 0)],
            Err("replacement didn't overlap any batches"),
        );

        // Replacement doesn't overlap (before, though this would never happen in practice)
        testcase(
            (2, 3, 0, 100),
            &[(4, 5, 0, 0)],
            Err("replacement didn't overlap any batches"),
        );
    }
}