1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::BTreeMap;
use std::ffi::c_void;
use std::io::Write;
use std::sync::atomic::AtomicBool;
use std::time::{SystemTime, UNIX_EPOCH};
use flate2::write::GzEncoder;
use flate2::Compression;
use mz_ore::cast::{CastFrom, TryCastFrom};
use pprof_util::{StackProfile, WeightedStack};
use prost::Message;
mod pprof_types;
pub mod time;
#[cfg(feature = "jemalloc")]
pub mod jemalloc;
pub trait StackProfileExt {
/// Writes out the `.mzfg` format, which is fully described in flamegraph.js.
fn to_mzfg(&self, symbolize: bool, header_extra: &[(&str, &str)]) -> String;
/// Converts the profile into the pprof format.
///
/// pprof encodes profiles as gzipped protobuf messages of the Profile message type
/// (see `pprof/profile.proto`).
fn to_pprof(
&self,
sample_type: (&str, &str),
period_type: (&str, &str),
anno_key: Option<String>,
) -> Vec<u8>;
}
impl StackProfileExt for StackProfile {
fn to_mzfg(&self, symbolize: bool, header_extra: &[(&str, &str)]) -> String {
// All the unwraps in this function are justified by the fact that
// String's fmt::Write impl is infallible.
use std::fmt::Write;
let mut builder = r#"!!! COMMENT !!!: Open with bin/fgviz /path/to/mzfg
mz_fg_version: 1
"#
.to_owned();
for (k, v) in header_extra {
assert!(!(k.contains(':') || k.contains('\n') || v.contains('\n')));
writeln!(&mut builder, "{k}: {v}").unwrap();
}
writeln!(&mut builder, "").unwrap();
for (WeightedStack { addrs, weight }, anno) in &self.stacks {
let anno = anno.map(|i| &self.annotations[i]);
for &addr in addrs {
write!(&mut builder, "{addr:#x};").unwrap();
}
write!(&mut builder, " {weight}").unwrap();
if let Some(anno) = anno {
write!(&mut builder, " {anno}").unwrap()
}
writeln!(&mut builder, "").unwrap();
}
if symbolize {
let symbols = crate::symbolize(self);
writeln!(&mut builder, "").unwrap();
for (addr, names) in symbols {
if !names.is_empty() {
write!(&mut builder, "{addr:#x} ").unwrap();
for mut name in names {
// The client splits on semicolons, so
// we have to escape them.
name = name.replace('\\', "\\\\");
name = name.replace(';', "\\;");
write!(&mut builder, "{name};").unwrap();
}
writeln!(&mut builder, "").unwrap();
}
}
}
builder
}
fn to_pprof(
&self,
sample_type: (&str, &str),
period_type: (&str, &str),
anno_key: Option<String>,
) -> Vec<u8> {
use crate::pprof_types as proto;
let mut profile = proto::Profile::default();
let mut strings = StringTable::new();
let anno_key = anno_key.unwrap_or_else(|| "annotation".into());
profile.sample_type = vec![proto::ValueType {
r#type: strings.insert(sample_type.0),
unit: strings.insert(sample_type.1),
}];
profile.period_type = Some(proto::ValueType {
r#type: strings.insert(period_type.0),
unit: strings.insert(period_type.1),
});
profile.time_nanos = SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("now is later than UNIX epoch")
.as_nanos()
.try_into()
.expect("the year 2554 is far away");
for (mapping, mapping_id) in self.mappings.iter().zip(1..) {
let pathname = mapping.pathname.to_string_lossy();
let filename_idx = strings.insert(&pathname);
let build_id_idx = match &mapping.build_id {
Some(build_id) => strings.insert(&build_id.to_string()),
None => 0,
};
profile.mapping.push(proto::Mapping {
id: mapping_id,
memory_start: u64::cast_from(mapping.memory_start),
memory_limit: u64::cast_from(mapping.memory_end),
file_offset: mapping.file_offset,
filename: filename_idx,
build_id: build_id_idx,
..Default::default()
});
// This is a is a Polar Signals-specific extension: For correct offline symbolization
// they need access to the memory offset of mappings, but the pprof format only has a
// field for the file offset. So we instead encode additional information about
// mappings in magic comments. There must be exactly one comment for each mapping.
// Take a shortcut and assume the ELF type is always `ET_DYN`. This is true for shared
// libraries and for position-independent executable, so it should always be true for
// any mappings we have.
// Getting the actual information is annoying. It's in the ELF header (the `e_type`
// field), but there is no guarantee that the full ELF header gets mapped, so we might
// not be able to find it in memory. We could try to load it from disk instead, but
// then we'd have to worry about blocking disk I/O.
let elf_type = 3;
let comment = format!(
"executableInfo={:x};{:x};{:x}",
elf_type, mapping.file_offset, mapping.memory_offset
);
profile.comment.push(strings.insert(&comment));
}
let mut location_ids = BTreeMap::new();
for (stack, anno) in self.iter() {
let mut sample = proto::Sample::default();
let value = stack.weight.trunc();
let value = i64::try_cast_from(value).expect("no exabyte heap sizes");
sample.value.push(value);
for addr in stack.addrs.iter().rev() {
// See the comment
// [here](https://github.com/rust-lang/backtrace-rs/blob/036d4909e1fb9c08c2bb0f59ac81994e39489b2f/src/symbolize/mod.rs#L123-L147)
// for why we need to subtract one. tl;dr addresses
// in stack traces are actually the return address of
// the called function, which is one past the call
// itself.
//
// Of course, the `call` instruction can be more than one byte, so after subtracting
// one, we might point somewhere in the middle of it, rather
// than to the beginning of the instruction. That's fine; symbolization
// tools don't seem to get confused by this.
let addr = u64::cast_from(*addr) - 1;
let loc_id = *location_ids.entry(addr).or_insert_with(|| {
// pprof_types.proto says the location id may be the address, but Polar Signals
// insists that location ids are sequential, starting with 1.
let id = u64::cast_from(profile.location.len()) + 1;
let mapping_id = profile
.mapping
.iter()
.find(|m| m.memory_start <= addr && m.memory_limit > addr)
.map_or(0, |m| m.id);
profile.location.push(proto::Location {
id,
mapping_id,
address: addr,
..Default::default()
});
id
});
sample.location_id.push(loc_id);
if let Some(anno) = anno {
sample.label.push(proto::Label {
key: strings.insert(&anno_key),
str: strings.insert(anno),
..Default::default()
})
}
}
profile.sample.push(sample);
}
profile.string_table = strings.finish();
let encoded = profile.encode_to_vec();
let mut gz = GzEncoder::new(Vec::new(), Compression::default());
gz.write_all(&encoded).unwrap();
gz.finish().unwrap()
}
}
/// Helper struct to simplify building a `string_table` for the pprof format.
#[derive(Default)]
struct StringTable(BTreeMap<String, i64>);
impl StringTable {
fn new() -> Self {
// Element 0 must always be the emtpy string.
let inner = [("".into(), 0)].into();
Self(inner)
}
fn insert(&mut self, s: &str) -> i64 {
if let Some(idx) = self.0.get(s) {
*idx
} else {
let idx = i64::try_from(self.0.len()).expect("must fit");
self.0.insert(s.into(), idx);
idx
}
}
fn finish(self) -> Vec<String> {
let mut vec: Vec<_> = self.0.into_iter().collect();
vec.sort_by_key(|(_, idx)| *idx);
vec.into_iter().map(|(s, _)| s).collect()
}
}
static EVER_SYMBOLIZED: AtomicBool = AtomicBool::new(false);
/// Check whether symbolization has ever been run in this process.
/// This controls whether we display a warning about increasing RAM usage
/// due to the backtrace cache on the
/// profiler page. (Because the RAM hit is one-time, we don't need to warn if it's already happened).
pub fn ever_symbolized() -> bool {
EVER_SYMBOLIZED.load(std::sync::atomic::Ordering::SeqCst)
}
/// Given some stack traces, generate a map of addresses to their
/// corresponding symbols.
///
/// Each address could correspond to more than one symbol, because
/// of inlining. (E.g. if 0x1234 comes from "g", which is inlined in "f", the corresponding vec of symbols will be ["f", "g"].)
pub fn symbolize(profile: &StackProfile) -> BTreeMap<usize, Vec<String>> {
EVER_SYMBOLIZED.store(true, std::sync::atomic::Ordering::SeqCst);
let mut all_addrs = vec![];
for (stack, _annotation) in profile.stacks.iter() {
all_addrs.extend(stack.addrs.iter().cloned());
}
// Sort so addresses from the same images are together,
// to avoid thrashing `backtrace::resolve`'s cache of
// parsed images.
all_addrs.sort_unstable();
all_addrs.dedup();
all_addrs
.into_iter()
.map(|addr| {
let mut syms = vec![];
// No other known way to convert usize to pointer.
#[allow(clippy::as_conversions)]
let addr_ptr = addr as *mut c_void;
backtrace::resolve(addr_ptr, |sym| {
let name = sym
.name()
.map(|sn| sn.to_string())
.unwrap_or_else(|| "???".to_string());
syms.push(name);
});
syms.reverse();
(addr, syms)
})
.collect()
}