mz_persist_client/
read.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Read capabilities and handles

use async_stream::stream;
use std::backtrace::Backtrace;
use std::collections::BTreeMap;
use std::fmt::Debug;
use std::future::Future;
use std::sync::Arc;
use std::time::Duration;

use differential_dataflow::consolidation::consolidate_updates;
use differential_dataflow::difference::Semigroup;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::trace::Description;
use futures::Stream;
use futures_util::{stream, StreamExt};
use itertools::Either;
use mz_dyncfg::Config;
use mz_ore::instrument;
use mz_ore::now::EpochMillis;
use mz_ore::task::{AbortOnDropHandle, JoinHandle, RuntimeExt};
use mz_persist::location::{Blob, SeqNo};
use mz_persist_types::columnar::{ColumnDecoder, Schema2};
use mz_persist_types::{Codec, Codec64};
use proptest_derive::Arbitrary;
use serde::{Deserialize, Serialize};
use timely::progress::{Antichain, Timestamp};
use timely::PartialOrder;
use tokio::runtime::Handle;
use tracing::{debug_span, warn, Instrument};
use uuid::Uuid;

use crate::batch::{BLOB_TARGET_SIZE, STRUCTURED_ORDER, STRUCTURED_ORDER_UNTIL_SHARD};
use crate::cfg::RetryParameters;
use crate::fetch::{fetch_leased_part, FetchBatchFilter, FetchedPart, Lease, LeasedBatchPart};
use crate::internal::encoding::Schemas;
use crate::internal::machine::{ExpireFn, Machine};
use crate::internal::metrics::Metrics;
use crate::internal::state::{BatchPart, HollowBatch};
use crate::internal::watch::StateWatch;
use crate::iter::{CodecSort, Consolidator, StructuredSort};
use crate::schema::SchemaCache;
use crate::stats::{SnapshotPartStats, SnapshotPartsStats, SnapshotStats};
use crate::{parse_id, GarbageCollector, PersistConfig, ShardId};

pub use crate::internal::encoding::LazyPartStats;
pub use crate::internal::state::Since;

/// An opaque identifier for a reader of a persist durable TVC (aka shard).
#[derive(Arbitrary, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
#[serde(try_from = "String", into = "String")]
pub struct LeasedReaderId(pub(crate) [u8; 16]);

impl std::fmt::Display for LeasedReaderId {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "r{}", Uuid::from_bytes(self.0))
    }
}

impl std::fmt::Debug for LeasedReaderId {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "LeasedReaderId({})", Uuid::from_bytes(self.0))
    }
}

impl std::str::FromStr for LeasedReaderId {
    type Err = String;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        parse_id('r', "LeasedReaderId", s).map(LeasedReaderId)
    }
}

impl From<LeasedReaderId> for String {
    fn from(reader_id: LeasedReaderId) -> Self {
        reader_id.to_string()
    }
}

impl TryFrom<String> for LeasedReaderId {
    type Error = String;

    fn try_from(s: String) -> Result<Self, Self::Error> {
        s.parse()
    }
}

impl LeasedReaderId {
    pub(crate) fn new() -> Self {
        LeasedReaderId(*Uuid::new_v4().as_bytes())
    }
}

/// Capable of generating a snapshot of all data at `as_of`, followed by a
/// listen of all updates.
///
/// For more details, see [`ReadHandle::snapshot`] and [`Listen`].
#[derive(Debug)]
pub struct Subscribe<K: Codec, V: Codec, T, D> {
    snapshot: Option<Vec<LeasedBatchPart<T>>>,
    listen: Listen<K, V, T, D>,
}

impl<K, V, T, D> Subscribe<K, V, T, D>
where
    K: Debug + Codec,
    V: Debug + Codec,
    T: Timestamp + Lattice + Codec64,
    D: Semigroup + Codec64 + Send + Sync,
{
    fn new(snapshot_parts: Vec<LeasedBatchPart<T>>, listen: Listen<K, V, T, D>) -> Self {
        Subscribe {
            snapshot: Some(snapshot_parts),
            listen,
        }
    }

    /// Returns a `LeasedBatchPart` enriched with the proper metadata.
    ///
    /// First returns snapshot parts, until they're exhausted, at which point
    /// begins returning listen parts.
    ///
    /// The returned `Antichain` represents the subscription progress as it will
    /// be _after_ the returned parts are fetched.
    #[instrument(level = "debug", fields(shard = %self.listen.handle.machine.shard_id()))]
    pub async fn next(
        &mut self,
        // If Some, an override for the default listen sleep retry parameters.
        listen_retry: Option<RetryParameters>,
    ) -> Vec<ListenEvent<T, LeasedBatchPart<T>>> {
        match self.snapshot.take() {
            Some(parts) => vec![ListenEvent::Updates(parts)],
            None => {
                let (parts, upper) = self.listen.next(listen_retry).await;
                vec![ListenEvent::Updates(parts), ListenEvent::Progress(upper)]
            }
        }
    }
}

impl<K, V, T, D> Subscribe<K, V, T, D>
where
    K: Debug + Codec,
    V: Debug + Codec,
    T: Timestamp + Lattice + Codec64,
    D: Semigroup + Codec64 + Send + Sync,
{
    /// Equivalent to `next`, but rather than returning a [`LeasedBatchPart`],
    /// fetches and returns the data from within it.
    #[instrument(level = "debug", fields(shard = %self.listen.handle.machine.shard_id()))]
    pub async fn fetch_next(
        &mut self,
    ) -> Vec<ListenEvent<T, ((Result<K, String>, Result<V, String>), T, D)>> {
        let events = self.next(None).await;
        let new_len = events
            .iter()
            .map(|event| match event {
                ListenEvent::Updates(parts) => parts.len(),
                ListenEvent::Progress(_) => 1,
            })
            .sum();
        let mut ret = Vec::with_capacity(new_len);
        for event in events {
            match event {
                ListenEvent::Updates(parts) => {
                    for part in parts {
                        let fetched_part = self.listen.fetch_batch_part(part).await;
                        let updates = fetched_part.collect::<Vec<_>>();
                        if !updates.is_empty() {
                            ret.push(ListenEvent::Updates(updates));
                        }
                    }
                }
                ListenEvent::Progress(progress) => ret.push(ListenEvent::Progress(progress)),
            }
        }
        ret
    }

    /// Fetches the contents of `part` and returns its lease.
    pub async fn fetch_batch_part(&mut self, part: LeasedBatchPart<T>) -> FetchedPart<K, V, T, D> {
        self.listen.fetch_batch_part(part).await
    }
}

impl<K, V, T, D> Subscribe<K, V, T, D>
where
    K: Debug + Codec,
    V: Debug + Codec,
    T: Timestamp + Lattice + Codec64,
    D: Semigroup + Codec64 + Send + Sync,
{
    /// Politely expires this subscribe, releasing its lease.
    ///
    /// There is a best-effort impl in Drop for [`ReadHandle`] to expire the
    /// [`ReadHandle`] held by the subscribe that wasn't explicitly expired
    /// with this method. When possible, explicit expiry is still preferred
    /// because the Drop one is best effort and is dependant on a tokio
    /// [Handle] being available in the TLC at the time of drop (which is a bit
    /// subtle). Also, explicit expiry allows for control over when it happens.
    pub async fn expire(mut self) {
        let _ = self.snapshot.take(); // Drop all leased parts.
        self.listen.expire().await;
    }
}

/// Data and progress events of a shard subscription.
///
/// TODO: Unify this with [timely::dataflow::operators::capture::event::Event].
#[derive(Debug, PartialEq)]
pub enum ListenEvent<T, D> {
    /// Progress of the shard.
    Progress(Antichain<T>),
    /// Data of the shard.
    Updates(Vec<D>),
}

/// An ongoing subscription of updates to a shard.
#[derive(Debug)]
pub struct Listen<K: Codec, V: Codec, T, D> {
    handle: ReadHandle<K, V, T, D>,
    watch: StateWatch<K, V, T, D>,

    as_of: Antichain<T>,
    since: Antichain<T>,
    frontier: Antichain<T>,
}

impl<K, V, T, D> Listen<K, V, T, D>
where
    K: Debug + Codec,
    V: Debug + Codec,
    T: Timestamp + Lattice + Codec64,
    D: Semigroup + Codec64 + Send + Sync,
{
    async fn new(mut handle: ReadHandle<K, V, T, D>, as_of: Antichain<T>) -> Self {
        let since = as_of.clone();
        // This listen only needs to distinguish things after its frontier
        // (initially as_of although the frontier is inclusive and the as_of
        // isn't). Be a good citizen and downgrade early.
        handle.downgrade_since(&since).await;

        let watch = handle.machine.applier.watch();
        Listen {
            handle,
            watch,
            since,
            frontier: as_of.clone(),
            as_of,
        }
    }

    /// An exclusive upper bound on the progress of this Listen.
    pub fn frontier(&self) -> &Antichain<T> {
        &self.frontier
    }

    /// Attempt to pull out the next values of this subscription.
    ///
    /// The returned [`LeasedBatchPart`] is appropriate to use with
    /// `crate::fetch::fetch_leased_part`.
    ///
    /// The returned `Antichain` represents the subscription progress as it will
    /// be _after_ the returned parts are fetched.
    pub async fn next(
        &mut self,
        // If Some, an override for the default listen sleep retry parameters.
        retry: Option<RetryParameters>,
    ) -> (Vec<LeasedBatchPart<T>>, Antichain<T>) {
        let batch = self
            .handle
            .machine
            .next_listen_batch(
                &self.frontier,
                &mut self.watch,
                Some(&self.handle.reader_id),
                retry,
            )
            .await;

        // A lot of things across mz have to line up to hold the following
        // invariant and violations only show up as subtle correctness errors,
        // so explictly validate it here. Better to panic and roll back a
        // release than be incorrect (also potentially corrupting a sink).
        //
        // Note that the since check is intentionally less_than, not less_equal.
        // If a batch's since is X, that means we can no longer distinguish X
        // (beyond self.frontier) from X-1 (not beyond self.frontier) to keep
        // former and filter out the latter.
        assert!(
            PartialOrder::less_than(batch.desc.since(), &self.frontier)
                // Special case when the frontier == the as_of (i.e. the first
                // time this is called on a new Listen). Because as_of is
                // _exclusive_, we don't need to be able to distinguish X from
                // X-1.
                || (self.frontier == self.as_of
                    && PartialOrder::less_equal(batch.desc.since(), &self.frontier)),
            "Listen on {} received a batch {:?} advanced past the listen frontier {:?}",
            self.handle.machine.shard_id(),
            batch.desc,
            self.frontier
        );

        let new_frontier = batch.desc.upper().clone();

        // We will have a new frontier, so this is an opportunity to downgrade our
        // since capability. Go through `maybe_heartbeat` so we can rate limit
        // this along with our heartbeats.
        //
        // HACK! Everything would be simpler if we could downgrade since to the
        // new frontier, but we can't. The next call needs to be able to
        // distinguish between the times T at the frontier (to emit updates with
        // these times) and T-1 (to filter them). Advancing the since to
        // frontier would erase the ability to distinguish between them. Ideally
        // we'd use what is conceptually "batch.upper - 1" (the greatest
        // elements that are still strictly less than batch.upper, which will be
        // the new value of self.frontier after this call returns), but the
        // trait bounds on T don't give us a way to compute that directly.
        // Instead, we sniff out any elements in self.frontier (the upper of the
        // batch the last time we called this) that are strictly less_than the
        // batch upper to compute a new since. For totally ordered times
        // (currently always the case in mz) self.frontier will always have a
        // single element and it will be less_than upper, but the following
        // logic is (hopefully) correct for partially order times as well. We
        // could also abuse the fact that every time we actually emit is
        // guaranteed by definition to be less_than upper to be a bit more
        // prompt, but this would involve a lot more temporary antichains and
        // it's unclear if that's worth it.
        for x in self.frontier.elements().iter() {
            let less_than_upper = batch.desc.upper().elements().iter().any(|u| x.less_than(u));
            if less_than_upper {
                self.since.join_assign(&Antichain::from_elem(x.clone()));
            }
        }

        // IMPORTANT! Make sure this `lease_batch_parts` stays before the
        // `maybe_downgrade_since` call. Otherwise, we might give up our
        // capability on the batch's SeqNo before we lease it, which could lead
        // to blobs that it references being GC'd.
        let filter = FetchBatchFilter::Listen {
            as_of: self.as_of.clone(),
            lower: self.frontier.clone(),
        };
        let parts = self.handle.lease_batch_parts(batch, filter).collect().await;

        self.handle.maybe_downgrade_since(&self.since).await;

        // NB: Keep this after we use self.frontier to join_assign self.since
        // and also after we construct metadata.
        self.frontier = new_frontier;

        (parts, self.frontier.clone())
    }
}

impl<K, V, T, D> Listen<K, V, T, D>
where
    K: Debug + Codec,
    V: Debug + Codec,
    T: Timestamp + Lattice + Codec64,
    D: Semigroup + Codec64 + Send + Sync,
{
    /// Attempt to pull out the next values of this subscription.
    ///
    /// The updates received in [ListenEvent::Updates] should be assumed to be in arbitrary order
    /// and not necessarily consolidated. However, the timestamp of each individual update will be
    /// greater than or equal to the last received [ListenEvent::Progress] frontier (or this
    /// [Listen]'s initial `as_of` frontier if no progress event has been emitted yet) and less
    /// than the next [ListenEvent::Progress] frontier.
    ///
    /// If you have a use for consolidated listen output, given that snapshots can't be
    /// consolidated, come talk to us!
    #[instrument(level = "debug", name = "listen::next", fields(shard = %self.handle.machine.shard_id()))]
    pub async fn fetch_next(
        &mut self,
    ) -> Vec<ListenEvent<T, ((Result<K, String>, Result<V, String>), T, D)>> {
        let (parts, progress) = self.next(None).await;
        let mut ret = Vec::with_capacity(parts.len() + 1);
        for part in parts {
            let fetched_part = self.fetch_batch_part(part).await;
            let updates = fetched_part.collect::<Vec<_>>();
            if !updates.is_empty() {
                ret.push(ListenEvent::Updates(updates));
            }
        }
        ret.push(ListenEvent::Progress(progress));
        ret
    }

    /// Convert listener into futures::Stream
    pub fn into_stream(
        mut self,
    ) -> impl Stream<Item = ListenEvent<T, ((Result<K, String>, Result<V, String>), T, D)>> {
        async_stream::stream!({
            loop {
                for msg in self.fetch_next().await {
                    yield msg;
                }
            }
        })
    }

    /// Test helper to read from the listener until the given frontier is
    /// reached. Because compaction can arbitrarily combine batches, we only
    /// return the final progress info.
    #[cfg(test)]
    #[track_caller]
    pub async fn read_until(
        &mut self,
        ts: &T,
    ) -> (
        Vec<((Result<K, String>, Result<V, String>), T, D)>,
        Antichain<T>,
    ) {
        let mut updates = Vec::new();
        let mut frontier = Antichain::from_elem(T::minimum());
        while self.frontier.less_than(ts) {
            for event in self.fetch_next().await {
                match event {
                    ListenEvent::Updates(mut x) => updates.append(&mut x),
                    ListenEvent::Progress(x) => frontier = x,
                }
            }
        }
        // Unlike most tests, intentionally don't consolidate updates here
        // because Listen replays them at the original fidelity.
        (updates, frontier)
    }
}

impl<K, V, T, D> Listen<K, V, T, D>
where
    K: Debug + Codec,
    V: Debug + Codec,
    T: Timestamp + Lattice + Codec64,
    D: Semigroup + Codec64 + Send + Sync,
{
    /// Fetches the contents of `part` and returns its lease.
    ///
    /// This is broken out into its own function to provide a trivial means for
    /// [`Subscribe`], which contains a [`Listen`], to fetch batches.
    async fn fetch_batch_part(&mut self, part: LeasedBatchPart<T>) -> FetchedPart<K, V, T, D> {
        let fetched_part = fetch_leased_part(
            &self.handle.cfg,
            &part,
            self.handle.blob.as_ref(),
            Arc::clone(&self.handle.metrics),
            &self.handle.metrics.read.listen,
            &self.handle.machine.applier.shard_metrics,
            &self.handle.reader_id,
            self.handle.read_schemas.clone(),
            &mut self.handle.schema_cache,
        )
        .await;
        fetched_part
    }

    /// Politely expires this listen, releasing its lease.
    ///
    /// There is a best-effort impl in Drop for [`ReadHandle`] to expire the
    /// [`ReadHandle`] held by the listen that wasn't explicitly expired with
    /// this method. When possible, explicit expiry is still preferred because
    /// the Drop one is best effort and is dependant on a tokio [Handle] being
    /// available in the TLC at the time of drop (which is a bit subtle). Also,
    /// explicit expiry allows for control over when it happens.
    pub async fn expire(self) {
        self.handle.expire().await
    }
}

/// A "capability" granting the ability to read the state of some shard at times
/// greater or equal to `self.since()`.
///
/// Production users should call [Self::expire] before dropping a ReadHandle so
/// that it can expire its leases. If/when rust gets AsyncDrop, this will be
/// done automatically.
///
/// All async methods on ReadHandle retry for as long as they are able, but the
/// returned [std::future::Future]s implement "cancel on drop" semantics. This
/// means that callers can add a timeout using [tokio::time::timeout] or
/// [tokio::time::timeout_at].
///
/// ```rust,no_run
/// # let mut read: mz_persist_client::read::ReadHandle<String, String, u64, i64> = unimplemented!();
/// # let timeout: std::time::Duration = unimplemented!();
/// # let new_since: timely::progress::Antichain<u64> = unimplemented!();
/// # async {
/// tokio::time::timeout(timeout, read.downgrade_since(&new_since)).await
/// # };
/// ```
#[derive(Debug)]
pub struct ReadHandle<K: Codec, V: Codec, T, D> {
    pub(crate) cfg: PersistConfig,
    pub(crate) metrics: Arc<Metrics>,
    pub(crate) machine: Machine<K, V, T, D>,
    pub(crate) gc: GarbageCollector<K, V, T, D>,
    pub(crate) blob: Arc<dyn Blob>,
    pub(crate) reader_id: LeasedReaderId,
    pub(crate) read_schemas: Schemas<K, V>,
    pub(crate) schema_cache: SchemaCache<K, V, T, D>,

    since: Antichain<T>,
    pub(crate) last_heartbeat: EpochMillis,
    pub(crate) leased_seqnos: BTreeMap<SeqNo, Lease>,
    pub(crate) unexpired_state: Option<UnexpiredReadHandleState>,
}

/// Length of time after a reader's last operation after which the reader may be
/// expired.
pub(crate) const READER_LEASE_DURATION: Config<Duration> = Config::new(
    "persist_reader_lease_duration",
    Duration::from_secs(60 * 15),
    "The time after which we'll clean up stale read leases",
);

impl<K, V, T, D> ReadHandle<K, V, T, D>
where
    K: Debug + Codec,
    V: Debug + Codec,
    T: Timestamp + Lattice + Codec64,
    D: Semigroup + Codec64 + Send + Sync,
{
    pub(crate) async fn new(
        cfg: PersistConfig,
        metrics: Arc<Metrics>,
        machine: Machine<K, V, T, D>,
        gc: GarbageCollector<K, V, T, D>,
        blob: Arc<dyn Blob>,
        reader_id: LeasedReaderId,
        read_schemas: Schemas<K, V>,
        since: Antichain<T>,
        last_heartbeat: EpochMillis,
    ) -> Self {
        let schema_cache = machine.applier.schema_cache();
        let expire_fn = Self::expire_fn(machine.clone(), gc.clone(), reader_id.clone());
        ReadHandle {
            cfg,
            metrics: Arc::clone(&metrics),
            machine: machine.clone(),
            gc: gc.clone(),
            blob,
            reader_id: reader_id.clone(),
            read_schemas,
            schema_cache,
            since,
            last_heartbeat,
            leased_seqnos: BTreeMap::new(),
            unexpired_state: Some(UnexpiredReadHandleState {
                expire_fn,
                _heartbeat_tasks: machine
                    .start_reader_heartbeat_tasks(reader_id, gc)
                    .await
                    .into_iter()
                    .map(JoinHandle::abort_on_drop)
                    .collect(),
            }),
        }
    }

    /// This handle's shard id.
    pub fn shard_id(&self) -> ShardId {
        self.machine.shard_id()
    }

    /// This handle's `since` frontier.
    ///
    /// This will always be greater or equal to the shard-global `since`.
    pub fn since(&self) -> &Antichain<T> {
        &self.since
    }

    fn outstanding_seqno(&mut self) -> Option<SeqNo> {
        while let Some(first) = self.leased_seqnos.first_entry() {
            if first.get().count() <= 1 {
                first.remove();
            } else {
                return Some(*first.key());
            }
        }
        None
    }

    /// Forwards the since frontier of this handle, giving up the ability to
    /// read at times not greater or equal to `new_since`.
    ///
    /// This may trigger (asynchronous) compaction and consolidation in the
    /// system. A `new_since` of the empty antichain "finishes" this shard,
    /// promising that no more data will ever be read by this handle.
    ///
    /// This also acts as a heartbeat for the reader lease (including if called
    /// with `new_since` equal to something like `self.since()` or the minimum
    /// timestamp, making the call a no-op).
    #[instrument(level = "debug", fields(shard = %self.machine.shard_id()))]
    pub async fn downgrade_since(&mut self, new_since: &Antichain<T>) {
        // Guaranteed to be the smallest/oldest outstanding lease on a `SeqNo`.
        let outstanding_seqno = self.outstanding_seqno();

        let heartbeat_ts = (self.cfg.now)();
        let (_seqno, current_reader_since, maintenance) = self
            .machine
            .downgrade_since(&self.reader_id, outstanding_seqno, new_since, heartbeat_ts)
            .await;

        // Debugging for database-issues#4590.
        if let Some(outstanding_seqno) = outstanding_seqno {
            let seqnos_held = _seqno.0.saturating_sub(outstanding_seqno.0);
            // We get just over 1 seqno-per-second on average for a shard in
            // prod, so this is about an hour.
            const SEQNOS_HELD_THRESHOLD: u64 = 60 * 60;
            if seqnos_held >= SEQNOS_HELD_THRESHOLD {
                tracing::info!(
                    "{} reader {} holding an unexpected number of seqnos {} vs {}: {:?}. bt: {:?}",
                    self.machine.shard_id(),
                    self.reader_id,
                    outstanding_seqno,
                    _seqno,
                    self.leased_seqnos.keys().take(10).collect::<Vec<_>>(),
                    // The Debug impl of backtrace is less aesthetic, but will put the trace
                    // on a single line and play more nicely with our Honeycomb quota
                    Backtrace::capture(),
                );
            }
        }

        self.since = current_reader_since.0;
        // A heartbeat is just any downgrade_since traffic, so update the
        // internal rate limiter here to play nicely with `maybe_heartbeat`.
        self.last_heartbeat = heartbeat_ts;
        maintenance.start_performing(&self.machine, &self.gc);
    }

    /// Returns an ongoing subscription of updates to a shard.
    ///
    /// The stream includes all data at times greater than `as_of`. Combined
    /// with [Self::snapshot] it will produce exactly correct results: the
    /// snapshot is the TVCs contents at `as_of` and all subsequent updates
    /// occur at exactly their indicated time. The recipient should only
    /// downgrade their read capability when they are certain they have all data
    /// through the frontier they would downgrade to.
    ///
    /// This takes ownership of the ReadHandle so the Listen can use it to
    /// [Self::downgrade_since] as it progresses. If you need to keep this
    /// handle, then [Self::clone] it before calling listen.
    ///
    /// The `Since` error indicates that the requested `as_of` cannot be served
    /// (the caller has out of date information) and includes the smallest
    /// `as_of` that would have been accepted.
    #[instrument(level = "debug", fields(shard = %self.machine.shard_id()))]
    pub async fn listen(self, as_of: Antichain<T>) -> Result<Listen<K, V, T, D>, Since<T>> {
        let () = self.machine.verify_listen(&as_of)?;
        Ok(Listen::new(self, as_of).await)
    }

    /// Returns all of the contents of the shard TVC at `as_of` broken up into
    /// [`LeasedBatchPart`]es. These parts can be "turned in" via
    /// `crate::fetch::fetch_batch_part` to receive the data they contain.
    ///
    /// This command returns the contents of this shard as of `as_of` once they
    /// are known. This may "block" (in an async-friendly way) if `as_of` is
    /// greater or equal to the current `upper` of the shard. The recipient
    /// should only downgrade their read capability when they are certain they
    /// have all data through the frontier they would downgrade to.
    ///
    /// The `Since` error indicates that the requested `as_of` cannot be served
    /// (the caller has out of date information) and includes the smallest
    /// `as_of` that would have been accepted.
    #[instrument(level = "trace", fields(shard = %self.machine.shard_id()))]
    pub async fn snapshot(
        &mut self,
        as_of: Antichain<T>,
    ) -> Result<Vec<LeasedBatchPart<T>>, Since<T>> {
        let batches = self.machine.snapshot(&as_of).await?;

        if !PartialOrder::less_equal(self.since(), &as_of) {
            return Err(Since(self.since().clone()));
        }

        let filter = FetchBatchFilter::Snapshot { as_of };
        let mut leased_parts = Vec::new();
        for batch in batches {
            // Flatten the HollowBatch into one LeasedBatchPart per key. Each key
            // corresponds to a "part" or s3 object. This allows persist_source
            // to distribute work by parts (smallish, more even size) instead of
            // batches (arbitrarily large).
            leased_parts.extend(
                self.lease_batch_parts(batch, filter.clone())
                    .collect::<Vec<_>>()
                    .await,
            );
        }
        Ok(leased_parts)
    }

    /// Returns a snapshot of all of a shard's data using `as_of`, followed by
    /// listening to any future updates.
    ///
    /// For more details on this operation's semantics, see [Self::snapshot] and
    /// [Self::listen].
    #[instrument(level = "debug", fields(shard = %self.machine.shard_id()))]
    pub async fn subscribe(
        mut self,
        as_of: Antichain<T>,
    ) -> Result<Subscribe<K, V, T, D>, Since<T>> {
        let snapshot_parts = self.snapshot(as_of.clone()).await?;
        let listen = self.listen(as_of.clone()).await?;
        Ok(Subscribe::new(snapshot_parts, listen))
    }

    fn lease_batch_part(
        &mut self,
        desc: Description<T>,
        part: BatchPart<T>,
        filter: FetchBatchFilter<T>,
    ) -> LeasedBatchPart<T> {
        LeasedBatchPart {
            metrics: Arc::clone(&self.metrics),
            shard_id: self.machine.shard_id(),
            reader_id: self.reader_id.clone(),
            filter,
            desc,
            part,
            leased_seqno: self.machine.seqno(),
            lease: Some(self.lease_seqno()),
            filter_pushdown_audit: false,
        }
    }

    fn lease_batch_parts(
        &mut self,
        batch: HollowBatch<T>,
        filter: FetchBatchFilter<T>,
    ) -> impl Stream<Item = LeasedBatchPart<T>> + '_ {
        stream! {
            let blob = Arc::clone(&self.blob);
            let metrics = Arc::clone(&self.metrics);
            let desc = batch.desc.clone();
            for await part in batch.part_stream(self.shard_id(), &*blob, &*metrics) {
                yield self.lease_batch_part(desc.clone(), part.expect("leased part").into_owned(), filter.clone())
            }
        }
    }

    /// Tracks that the `ReadHandle`'s machine's current `SeqNo` is being
    /// "leased out" to a `LeasedBatchPart`, and cannot be garbage
    /// collected until its lease has been returned.
    fn lease_seqno(&mut self) -> Lease {
        let seqno = self.machine.seqno();
        let lease = self.leased_seqnos.entry(seqno).or_default();
        lease.clone()
    }

    /// Returns an independent [ReadHandle] with a new [LeasedReaderId] but the
    /// same `since`.
    #[instrument(level = "debug", fields(shard = %self.machine.shard_id()))]
    pub async fn clone(&self, purpose: &str) -> Self {
        let new_reader_id = LeasedReaderId::new();
        let machine = self.machine.clone();
        let gc = self.gc.clone();
        let heartbeat_ts = (self.cfg.now)();
        let (reader_state, maintenance) = machine
            .register_leased_reader(
                &new_reader_id,
                purpose,
                READER_LEASE_DURATION.get(&self.cfg),
                heartbeat_ts,
                false,
            )
            .await;
        maintenance.start_performing(&machine, &gc);
        // The point of clone is that you're guaranteed to have the same (or
        // greater) since capability, verify that.
        // TODO: better if it's the same since capability exactly.
        assert!(PartialOrder::less_equal(&reader_state.since, &self.since));
        let new_reader = ReadHandle::new(
            self.cfg.clone(),
            Arc::clone(&self.metrics),
            machine,
            gc,
            Arc::clone(&self.blob),
            new_reader_id,
            self.read_schemas.clone(),
            reader_state.since,
            heartbeat_ts,
        )
        .await;
        new_reader
    }

    /// A rate-limited version of [Self::downgrade_since].
    ///
    /// This is an internally rate limited helper, designed to allow users to
    /// call it as frequently as they like. Call this [Self::downgrade_since],
    /// or Self::maybe_heartbeat_reader on some interval that is "frequent"
    /// compared to PersistConfig::FAKE_READ_LEASE_DURATION.
    ///
    /// This is communicating actual progress information, so is given
    /// preferential treatment compared to Self::maybe_heartbeat_reader.
    pub async fn maybe_downgrade_since(&mut self, new_since: &Antichain<T>) {
        // NB: min_elapsed is intentionally smaller than the one in
        // maybe_heartbeat_reader (this is the preferential treatment mentioned
        // above).
        let min_elapsed = READER_LEASE_DURATION.get(&self.cfg) / 4;
        let elapsed_since_last_heartbeat =
            Duration::from_millis((self.cfg.now)().saturating_sub(self.last_heartbeat));
        if elapsed_since_last_heartbeat >= min_elapsed {
            self.downgrade_since(new_since).await;
        }
    }

    /// Heartbeats the read lease if necessary.
    ///
    /// This is an internally rate limited helper, designed to allow users to
    /// call it as frequently as they like. Call this [Self::downgrade_since],
    /// or [Self::maybe_downgrade_since] on some interval that is "frequent"
    /// compared to PersistConfig::FAKE_READ_LEASE_DURATION.
    #[allow(dead_code)]
    pub(crate) async fn maybe_heartbeat_reader(&mut self) {
        let min_elapsed = READER_LEASE_DURATION.get(&self.cfg) / 2;
        let heartbeat_ts = (self.cfg.now)();
        let elapsed_since_last_heartbeat =
            Duration::from_millis(heartbeat_ts.saturating_sub(self.last_heartbeat));
        if elapsed_since_last_heartbeat >= min_elapsed {
            if elapsed_since_last_heartbeat > READER_LEASE_DURATION.get(&self.machine.applier.cfg) {
                warn!(
                    "reader ({}) of shard ({}) went {}s between heartbeats",
                    self.reader_id,
                    self.machine.shard_id(),
                    elapsed_since_last_heartbeat.as_secs_f64()
                );
            }

            let (_, existed, maintenance) = self
                .machine
                .heartbeat_leased_reader(&self.reader_id, heartbeat_ts)
                .await;
            if !existed && !self.machine.applier.is_finalized() {
                // It's probably surprising to the caller that the shard
                // becoming a tombstone expired this reader. Possibly the right
                // thing to do here is pass up a bool to the caller indicating
                // whether the LeasedReaderId it's trying to heartbeat has been
                // expired, but that happening on a tombstone vs not is very
                // different. As a medium-term compromise, pretend we did the
                // heartbeat here.
                panic!(
                    "LeasedReaderId({}) was expired due to inactivity. Did the machine go to sleep?",
                    self.reader_id
                )
            }
            self.last_heartbeat = heartbeat_ts;
            maintenance.start_performing(&self.machine, &self.gc);
        }
    }

    /// Politely expires this reader, releasing its lease.
    ///
    /// There is a best-effort impl in Drop to expire a reader that wasn't
    /// explictly expired with this method. When possible, explicit expiry is
    /// still preferred because the Drop one is best effort and is dependant on
    /// a tokio [Handle] being available in the TLC at the time of drop (which
    /// is a bit subtle). Also, explicit expiry allows for control over when it
    /// happens.
    #[instrument(level = "debug", fields(shard = %self.machine.shard_id()))]
    pub async fn expire(mut self) {
        // We drop the unexpired state before expiring the reader to ensure the
        // heartbeat tasks can never observe the expired state. This doesn't
        // matter for correctness, but avoids confusing log output if the
        // heartbeat task were to discover that its lease has been expired.
        let Some(unexpired_state) = self.unexpired_state.take() else {
            return;
        };
        unexpired_state.expire_fn.0().await;
    }

    fn expire_fn(
        machine: Machine<K, V, T, D>,
        gc: GarbageCollector<K, V, T, D>,
        reader_id: LeasedReaderId,
    ) -> ExpireFn {
        ExpireFn(Box::new(move || {
            Box::pin(async move {
                let (_, maintenance) = machine.expire_leased_reader(&reader_id).await;
                maintenance.start_performing(&machine, &gc);
            })
        }))
    }

    /// Test helper for a [Self::listen] call that is expected to succeed.
    #[cfg(test)]
    #[track_caller]
    pub async fn expect_listen(self, as_of: T) -> Listen<K, V, T, D> {
        self.listen(Antichain::from_elem(as_of))
            .await
            .expect("cannot serve requested as_of")
    }
}

/// State for a read handle that has not been explicitly expired.
#[derive(Debug)]
pub(crate) struct UnexpiredReadHandleState {
    expire_fn: ExpireFn,
    pub(crate) _heartbeat_tasks: Vec<AbortOnDropHandle<()>>,
}

/// An incremental cursor through a particular shard, returned from [ReadHandle::snapshot_cursor].
///
/// To read an entire dataset, the
/// client should call `next` until it returns `None`, which signals all data has been returned...
/// but it's also free to abandon the instance at any time if it eg. only needs a few entries.
#[derive(Debug)]
pub struct Cursor<K: Codec, V: Codec, T: Timestamp + Codec64, D: Codec64> {
    consolidator: CursorConsolidator<K, V, T, D>,
    _lease: Lease,
    read_schemas: Schemas<K, V>,
}

#[derive(Debug)]
enum CursorConsolidator<K: Codec, V: Codec, T: Timestamp + Codec64, D: Codec64> {
    Codec {
        consolidator: Consolidator<T, D, CodecSort<T, D>>,
    },
    Structured {
        consolidator: Consolidator<T, D, StructuredSort<K, V, T, D>>,
        max_len: usize,
        max_bytes: usize,
    },
}

impl<K, V, T, D> Cursor<K, V, T, D>
where
    K: Debug + Codec + Ord,
    V: Debug + Codec + Ord,
    T: Timestamp + Lattice + Codec64,
    D: Semigroup + Ord + Codec64 + Send + Sync,
{
    /// Grab the next batch of consolidated data.
    pub async fn next(
        &mut self,
    ) -> Option<impl Iterator<Item = ((Result<K, String>, Result<V, String>), T, D)> + '_> {
        match &mut self.consolidator {
            CursorConsolidator::Structured {
                consolidator,
                max_len,
                max_bytes,
            } => {
                let mut iter = consolidator
                    .next_chunk(*max_len, *max_bytes)
                    .await
                    .expect("fetching a leased part")?;
                let structured = iter.get_or_make_structured::<K, V>(
                    self.read_schemas.key.as_ref(),
                    self.read_schemas.val.as_ref(),
                );
                let key_decoder = self
                    .read_schemas
                    .key
                    .decoder_any(structured.key.as_ref())
                    .expect("ok");
                let val_decoder = self
                    .read_schemas
                    .val
                    .decoder_any(structured.val.as_ref())
                    .expect("ok");
                let iter = (0..iter.len()).map(move |i| {
                    let mut k = K::default();
                    let mut v = V::default();
                    key_decoder.decode(i, &mut k);
                    val_decoder.decode(i, &mut v);
                    let t = T::decode(iter.records().timestamps().value(i).to_le_bytes());
                    let d = D::decode(iter.records().diffs().value(i).to_le_bytes());
                    ((Ok(k), Ok(v)), t, d)
                });

                Some(Either::Left(iter))
            }
            CursorConsolidator::Codec { consolidator } => {
                let iter = consolidator
                    .next()
                    .await
                    .expect("fetching a leased part")?
                    .map(|((k, v), t, d)| {
                        let key = K::decode(k, &self.read_schemas.key);
                        let val = V::decode(v, &self.read_schemas.val);
                        ((key, val), t, d)
                    });

                Some(Either::Right(iter))
            }
        }
    }
}

impl<K, V, T, D> ReadHandle<K, V, T, D>
where
    K: Debug + Codec + Ord,
    V: Debug + Codec + Ord,
    T: Timestamp + Lattice + Codec64,
    D: Semigroup + Ord + Codec64 + Send + Sync,
{
    /// Generates a [Self::snapshot], and fetches all of the batches it
    /// contains.
    ///
    /// The output is consolidated. Furthermore, to keep memory usage down when
    /// reading a snapshot that consolidates well, this consolidates as it goes.
    ///
    /// Potential future improvements (if necessary):
    /// - Accept something like a `F: Fn(K,V) -> (K,V)` argument, which looks
    ///   like an MFP you might be pushing down. Reason being that if you are
    ///   projecting or transforming in a way that allows further consolidation,
    ///   amazing.
    /// - Reuse any code we write to streaming-merge consolidate in
    ///   persist_source here.
    pub async fn snapshot_and_fetch(
        &mut self,
        as_of: Antichain<T>,
    ) -> Result<Vec<((Result<K, String>, Result<V, String>), T, D)>, Since<T>> {
        let mut cursor = self.snapshot_cursor(as_of, |_| true).await?;
        let mut contents = Vec::new();
        while let Some(iter) = cursor.next().await {
            contents.extend(iter);
        }

        // We don't currently guarantee that encoding is one-to-one, so we still need to
        // consolidate the decoded outputs. However, let's report if this isn't a noop.
        let old_len = contents.len();
        consolidate_updates(&mut contents);
        if old_len != contents.len() {
            // TODO(bkirwi): do we need more / finer-grained metrics for this?
            self.machine
                .applier
                .shard_metrics
                .unconsolidated_snapshot
                .inc();
        }

        Ok(contents)
    }

    /// Generates a [Self::snapshot], and fetches all of the batches it
    /// contains.
    ///
    /// To keep memory usage down when reading a snapshot that consolidates well, this consolidates
    /// as it goes. However, note that only the serialized data is consolidated: the deserialized
    /// data will only be consolidated if your K/V codecs are one-to-one.
    pub async fn snapshot_cursor(
        &mut self,
        as_of: Antichain<T>,
        should_fetch_part: impl for<'a> Fn(Option<&'a LazyPartStats>) -> bool,
    ) -> Result<Cursor<K, V, T, D>, Since<T>> {
        let batches = self.machine.snapshot(&as_of).await?;

        let context = format!("{}[as_of={:?}]", self.shard_id(), as_of.elements());
        let filter = FetchBatchFilter::Snapshot {
            as_of: as_of.clone(),
        };
        let lease = self.lease_seqno();

        let structured_order = STRUCTURED_ORDER.get(&self.cfg) && {
            self.shard_id().to_string() < STRUCTURED_ORDER_UNTIL_SHARD.get(&self.cfg)
        };
        let consolidator = if structured_order {
            let mut consolidator = Consolidator::new(
                context,
                self.shard_id(),
                StructuredSort::new(self.read_schemas.clone()),
                Arc::clone(&self.blob),
                Arc::clone(&self.metrics),
                Arc::clone(&self.machine.applier.shard_metrics),
                self.metrics.read.snapshot.clone(),
                filter,
                self.cfg.dynamic.compaction_memory_bound_bytes(),
            );
            for batch in batches {
                for (meta, run) in batch.runs() {
                    consolidator.enqueue_run(
                        &batch.desc,
                        meta,
                        run.into_iter()
                            .filter(|p| should_fetch_part(p.stats()))
                            .cloned(),
                    );
                }
            }
            CursorConsolidator::Structured {
                consolidator,
                // This default may end up consolidating more records than previously
                // for cases like fast-path peeks, where only the first few entries are used.
                // If this is a noticeable performance impact, thread the max-len in from the caller.
                max_len: self.cfg.compaction_yield_after_n_updates,
                max_bytes: BLOB_TARGET_SIZE.get(&self.cfg).max(1),
            }
        } else {
            let mut consolidator = Consolidator::new(
                context,
                self.shard_id(),
                CodecSort::default(),
                Arc::clone(&self.blob),
                Arc::clone(&self.metrics),
                Arc::clone(&self.machine.applier.shard_metrics),
                self.metrics.read.snapshot.clone(),
                filter,
                self.cfg.dynamic.compaction_memory_bound_bytes(),
            );
            for batch in batches {
                for (meta, run) in batch.runs() {
                    consolidator.enqueue_run(
                        &batch.desc,
                        meta,
                        run.into_iter()
                            .filter(|p| should_fetch_part(p.stats()))
                            .cloned(),
                    );
                }
            }
            CursorConsolidator::Codec { consolidator }
        };

        Ok(Cursor {
            consolidator,
            _lease: lease,
            read_schemas: self.read_schemas.clone(),
        })
    }

    /// Returns aggregate statistics about the contents of the shard TVC at the
    /// given frontier.
    ///
    /// This command returns the contents of this shard as of `as_of` once they
    /// are known. This may "block" (in an async-friendly way) if `as_of` is
    /// greater or equal to the current `upper` of the shard. If `None` is given
    /// for `as_of`, then the latest stats known by this process are used.
    ///
    /// The `Since` error indicates that the requested `as_of` cannot be served
    /// (the caller has out of date information) and includes the smallest
    /// `as_of` that would have been accepted.
    pub fn snapshot_stats(
        &self,
        as_of: Option<Antichain<T>>,
    ) -> impl Future<Output = Result<SnapshotStats, Since<T>>> + Send + 'static {
        let machine = self.machine.clone();
        async move {
            let batches = match as_of {
                Some(as_of) => machine.snapshot(&as_of).await?,
                None => machine.applier.all_batches(),
            };
            let num_updates = batches.iter().map(|b| b.len).sum();
            Ok(SnapshotStats {
                shard_id: machine.shard_id(),
                num_updates,
            })
        }
    }

    /// Returns aggregate statistics about the contents of the shard TVC at the
    /// given frontier.
    ///
    /// This command returns the contents of this shard as of `as_of` once they
    /// are known. This may "block" (in an async-friendly way) if `as_of` is
    /// greater or equal to the current `upper` of the shard.
    ///
    /// The `Since` error indicates that the requested `as_of` cannot be served
    /// (the caller has out of date information) and includes the smallest
    /// `as_of` that would have been accepted.
    pub async fn snapshot_parts_stats(
        &self,
        as_of: Antichain<T>,
    ) -> Result<SnapshotPartsStats, Since<T>> {
        let batches = self.machine.snapshot(&as_of).await?;
        let parts = stream::iter(&batches)
            .flat_map(|b| b.part_stream(self.shard_id(), &*self.blob, &*self.metrics))
            .map(|p| {
                let p = p.expect("live batch");
                SnapshotPartStats {
                    encoded_size_bytes: p.encoded_size_bytes(),
                    stats: p.stats().cloned(),
                }
            })
            .collect()
            .await;
        Ok(SnapshotPartsStats {
            metrics: Arc::clone(&self.machine.applier.metrics),
            shard_id: self.machine.shard_id(),
            parts,
        })
    }
}

impl<K, V, T, D> ReadHandle<K, V, T, D>
where
    K: Debug + Codec + Ord,
    V: Debug + Codec + Ord,
    T: Timestamp + Lattice + Codec64,
    D: Semigroup + Codec64 + Send + Sync,
{
    /// Generates a [Self::snapshot], and streams out all of the updates
    /// it contains in bounded memory.
    ///
    /// The output is not consolidated.
    pub async fn snapshot_and_stream(
        &mut self,
        as_of: Antichain<T>,
    ) -> Result<impl Stream<Item = ((Result<K, String>, Result<V, String>), T, D)>, Since<T>> {
        let snap = self.snapshot(as_of).await?;

        let blob = Arc::clone(&self.blob);
        let metrics = Arc::clone(&self.metrics);
        let snapshot_metrics = self.metrics.read.snapshot.clone();
        let shard_metrics = Arc::clone(&self.machine.applier.shard_metrics);
        let reader_id = self.reader_id.clone();
        let schemas = self.read_schemas.clone();
        let mut schema_cache = self.schema_cache.clone();
        let persist_cfg = self.cfg.clone();
        let stream = async_stream::stream! {
            for part in snap {
                let mut fetched_part = fetch_leased_part(
                    &persist_cfg,
                    &part,
                    blob.as_ref(),
                    Arc::clone(&metrics),
                    &snapshot_metrics,
                    &shard_metrics,
                    &reader_id,
                    schemas.clone(),
                    &mut schema_cache,
                )
                .await;

                while let Some(next) = fetched_part.next() {
                    yield next;
                }
            }
        };

        Ok(stream)
    }
}

impl<K, V, T, D> ReadHandle<K, V, T, D>
where
    K: Debug + Codec + Ord,
    V: Debug + Codec + Ord,
    T: Timestamp + Lattice + Codec64 + Ord,
    D: Semigroup + Ord + Codec64 + Send + Sync,
{
    /// Test helper to generate a [Self::snapshot] call that is expected to
    /// succeed, process its batches, and then return its data sorted.
    #[cfg(test)]
    #[track_caller]
    pub async fn expect_snapshot_and_fetch(
        &mut self,
        as_of: T,
    ) -> Vec<((Result<K, String>, Result<V, String>), T, D)> {
        let mut ret = self
            .snapshot_and_fetch(Antichain::from_elem(as_of))
            .await
            .expect("cannot serve requested as_of");

        ret.sort();
        ret
    }
}

impl<K: Codec, V: Codec, T, D> Drop for ReadHandle<K, V, T, D> {
    fn drop(&mut self) {
        // We drop the unexpired state before expiring the reader to ensure the
        // heartbeat tasks can never observe the expired state. This doesn't
        // matter for correctness, but avoids confusing log output if the
        // heartbeat task were to discover that its lease has been expired.
        let Some(unexpired_state) = self.unexpired_state.take() else {
            return;
        };

        let handle = match Handle::try_current() {
            Ok(x) => x,
            Err(_) => {
                warn!("ReadHandle {} dropped without being explicitly expired, falling back to lease timeout", self.reader_id);
                return;
            }
        };
        // Spawn a best-effort task to expire this read handle. It's fine if
        // this doesn't run to completion, we'd just have to wait out the lease
        // before the shard-global since is unblocked.
        //
        // Intentionally create the span outside the task to set the parent.
        let expire_span = debug_span!("drop::expire");
        handle.spawn_named(
            || format!("ReadHandle::expire ({})", self.reader_id),
            unexpired_state.expire_fn.0().instrument(expire_span),
        );
    }
}

#[cfg(test)]
mod tests {
    use std::pin;
    use std::str::FromStr;

    use mz_dyncfg::ConfigUpdates;
    use mz_ore::cast::CastFrom;
    use mz_ore::metrics::MetricsRegistry;
    use mz_persist::mem::{MemBlob, MemBlobConfig, MemConsensus};
    use mz_persist::unreliable::{UnreliableConsensus, UnreliableHandle};
    use serde::{Deserialize, Serialize};
    use serde_json::json;
    use tokio_stream::StreamExt;

    use crate::async_runtime::IsolatedRuntime;
    use crate::batch::BLOB_TARGET_SIZE;
    use crate::cache::StateCache;
    use crate::internal::metrics::Metrics;
    use crate::rpc::NoopPubSubSender;
    use crate::tests::{all_ok, new_test_client};
    use crate::{Diagnostics, PersistClient, PersistConfig, ShardId};

    use super::*;

    // Verifies `Subscribe` can be dropped while holding snapshot batches.
    #[mz_persist_proc::test(tokio::test)]
    #[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
    async fn drop_unused_subscribe(dyncfgs: ConfigUpdates) {
        let data = [
            (("0".to_owned(), "zero".to_owned()), 0, 1),
            (("1".to_owned(), "one".to_owned()), 1, 1),
            (("2".to_owned(), "two".to_owned()), 2, 1),
        ];

        let (mut write, read) = new_test_client(&dyncfgs)
            .await
            .expect_open::<String, String, u64, i64>(crate::ShardId::new())
            .await;

        write.expect_compare_and_append(&data[0..1], 0, 1).await;
        write.expect_compare_and_append(&data[1..2], 1, 2).await;
        write.expect_compare_and_append(&data[2..3], 2, 3).await;

        let subscribe = read
            .subscribe(timely::progress::Antichain::from_elem(2))
            .await
            .unwrap();
        assert!(
            !subscribe.snapshot.as_ref().unwrap().is_empty(),
            "snapshot must have batches for test to be meaningful"
        );
        drop(subscribe);
    }

    // Verifies that we streaming-consolidate away identical key-values in the same batch.
    #[mz_persist_proc::test(tokio::test)]
    #[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
    async fn streaming_consolidate(dyncfgs: ConfigUpdates) {
        let data = &[
            // Identical records should sum together...
            (("k".to_owned(), "v".to_owned()), 0, 1),
            (("k".to_owned(), "v".to_owned()), 1, 1),
            (("k".to_owned(), "v".to_owned()), 2, 1),
            // ...and when they cancel out entirely they should be omitted.
            (("k2".to_owned(), "v".to_owned()), 0, 1),
            (("k2".to_owned(), "v".to_owned()), 1, -1),
        ];

        let (mut write, read) = {
            let client = new_test_client(&dyncfgs).await;
            client.cfg.set_config(&BLOB_TARGET_SIZE, 1000); // So our batch stays together!
            client
                .expect_open::<String, String, u64, i64>(crate::ShardId::new())
                .await
        };

        write.expect_compare_and_append(data, 0, 5).await;

        let mut snapshot = read
            .subscribe(timely::progress::Antichain::from_elem(4))
            .await
            .unwrap();

        let mut updates = vec![];
        'outer: loop {
            for event in snapshot.fetch_next().await {
                match event {
                    ListenEvent::Progress(t) => {
                        if !t.less_than(&4) {
                            break 'outer;
                        }
                    }
                    ListenEvent::Updates(data) => {
                        updates.extend(data);
                    }
                }
            }
        }
        assert_eq!(
            updates,
            &[((Ok("k".to_owned()), Ok("v".to_owned())), 4u64, 3i64)],
        )
    }

    #[mz_persist_proc::test(tokio::test)]
    #[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
    async fn snapshot_and_stream(dyncfgs: ConfigUpdates) {
        let data = &mut [
            (("k1".to_owned(), "v1".to_owned()), 0, 1),
            (("k2".to_owned(), "v2".to_owned()), 1, 1),
            (("k3".to_owned(), "v3".to_owned()), 2, 1),
            (("k4".to_owned(), "v4".to_owned()), 2, 1),
            (("k5".to_owned(), "v5".to_owned()), 3, 1),
        ];

        let (mut write, mut read) = {
            let client = new_test_client(&dyncfgs).await;
            client.cfg.set_config(&BLOB_TARGET_SIZE, 0); // split batches across multiple parts
            client
                .expect_open::<String, String, u64, i64>(crate::ShardId::new())
                .await
        };

        write.expect_compare_and_append(&data[0..2], 0, 2).await;
        write.expect_compare_and_append(&data[2..4], 2, 3).await;
        write.expect_compare_and_append(&data[4..], 3, 4).await;

        let as_of = Antichain::from_elem(3);
        let mut snapshot = pin::pin!(read.snapshot_and_stream(as_of.clone()).await.unwrap());

        let mut snapshot_rows = vec![];
        while let Some(((k, v), t, d)) = snapshot.next().await {
            snapshot_rows.push(((k.expect("valid key"), v.expect("valid key")), t, d));
        }

        for ((_k, _v), t, _d) in data.as_mut_slice() {
            t.advance_by(as_of.borrow());
        }

        assert_eq!(data.as_slice(), snapshot_rows.as_slice());
    }

    // Verifies the semantics of `SeqNo` leases + checks dropping `LeasedBatchPart` semantics.
    #[mz_persist_proc::test(tokio::test)]
    #[cfg_attr(miri, ignore)] // https://github.com/MaterializeInc/database-issues/issues/5964
    async fn seqno_leases(dyncfgs: ConfigUpdates) {
        let mut data = vec![];
        for i in 0..20 {
            data.push(((i.to_string(), i.to_string()), i, 1))
        }

        let shard_id = ShardId::new();

        let client = new_test_client(&dyncfgs).await;
        let (mut write, read) = client
            .expect_open::<String, String, u64, i64>(shard_id)
            .await;

        // Seed with some values
        let mut offset = 0;
        let mut width = 2;

        for i in offset..offset + width {
            write
                .expect_compare_and_append(
                    &data[i..i + 1],
                    u64::cast_from(i),
                    u64::cast_from(i) + 1,
                )
                .await;
        }
        offset += width;

        // Create machinery for subscribe + fetch
        let mut fetcher = client
            .create_batch_fetcher::<String, String, u64, i64>(
                shard_id,
                Default::default(),
                Default::default(),
                false,
                Diagnostics::for_tests(),
            )
            .await
            .unwrap();

        let mut subscribe = read
            .subscribe(timely::progress::Antichain::from_elem(1))
            .await
            .expect("cannot serve requested as_of");

        // Determine sequence number at outset.
        let original_seqno_since = subscribe.listen.handle.machine.applier.seqno_since();

        let mut parts = vec![];

        width = 4;
        // Collect parts while continuing to write values
        for i in offset..offset + width {
            for event in subscribe.next(None).await {
                if let ListenEvent::Updates(mut new_parts) = event {
                    parts.append(&mut new_parts);
                    // Here and elsewhere we "cheat" and immediately downgrade the since
                    // to demonstrate the effects of SeqNo leases immediately.
                    subscribe
                        .listen
                        .handle
                        .downgrade_since(&subscribe.listen.since)
                        .await;
                }
            }

            write
                .expect_compare_and_append(
                    &data[i..i + 1],
                    u64::cast_from(i),
                    u64::cast_from(i) + 1,
                )
                .await;

            // SeqNo is not downgraded
            assert_eq!(
                subscribe.listen.handle.machine.applier.seqno_since(),
                original_seqno_since
            );
        }

        offset += width;

        let mut seqno_since = subscribe.listen.handle.machine.applier.seqno_since();

        // We're starting out with the original, non-downgraded SeqNo
        assert_eq!(seqno_since, original_seqno_since);

        // We have to handle the parts we generate during the next loop to
        // ensure they don't panic.
        let mut subsequent_parts = vec![];

        // Ensure monotonicity of seqnos we're processing, otherwise the
        // invariant we're testing (returning the last part of a seqno will
        // downgrade its since) will not hold.
        let mut this_seqno = SeqNo::minimum();

        // Repeat the same process as above, more or less, while fetching + returning parts
        for (mut i, part) in parts.into_iter().enumerate() {
            let part_seqno = part.leased_seqno;
            let last_seqno = this_seqno;
            this_seqno = part_seqno;
            assert!(this_seqno >= last_seqno);

            let _ = fetcher.fetch_leased_part(&part).await;
            drop(part);

            // Simulates an exchange
            for event in subscribe.next(None).await {
                if let ListenEvent::Updates(parts) = event {
                    for part in parts {
                        if let (_, Some(lease)) = part.into_exchangeable_part() {
                            subsequent_parts.push(lease);
                        }
                    }
                }
            }

            subscribe
                .listen
                .handle
                .downgrade_since(&subscribe.listen.since)
                .await;

            // Write more new values
            i += offset;
            write
                .expect_compare_and_append(
                    &data[i..i + 1],
                    u64::cast_from(i),
                    u64::cast_from(i) + 1,
                )
                .await;

            // We should expect the SeqNo to be downgraded if this part's SeqNo
            // is no longer leased to any other parts, either.
            let expect_downgrade = subscribe.listen.handle.outstanding_seqno() > Some(part_seqno);

            let new_seqno_since = subscribe.listen.handle.machine.applier.seqno_since();
            if expect_downgrade {
                assert!(new_seqno_since > seqno_since);
            } else {
                assert_eq!(new_seqno_since, seqno_since);
            }
            seqno_since = new_seqno_since;
        }

        // SeqNo since was downgraded
        assert!(seqno_since > original_seqno_since);

        // Return any outstanding parts, to prevent a panic!
        drop(subsequent_parts);
        drop(subscribe);
    }

    #[mz_ore::test]
    fn reader_id_human_readable_serde() {
        #[derive(Debug, Serialize, Deserialize)]
        struct Container {
            reader_id: LeasedReaderId,
        }

        // roundtrip through json
        let id =
            LeasedReaderId::from_str("r00000000-1234-5678-0000-000000000000").expect("valid id");
        assert_eq!(
            id,
            serde_json::from_value(serde_json::to_value(id.clone()).expect("serializable"))
                .expect("deserializable")
        );

        // deserialize a serialized string directly
        assert_eq!(
            id,
            serde_json::from_str("\"r00000000-1234-5678-0000-000000000000\"")
                .expect("deserializable")
        );

        // roundtrip id through a container type
        let json = json!({ "reader_id": id });
        assert_eq!(
            "{\"reader_id\":\"r00000000-1234-5678-0000-000000000000\"}",
            &json.to_string()
        );
        let container: Container = serde_json::from_value(json).expect("deserializable");
        assert_eq!(container.reader_id, id);
    }

    // Verifies performance optimizations where a Listener doesn't fetch the
    // latest Consensus state if the one it currently has can serve the next
    // request.
    #[mz_ore::test(tokio::test)]
    #[cfg_attr(miri, ignore)] // too slow
    async fn skip_consensus_fetch_optimization() {
        let data = vec![
            (("0".to_owned(), "zero".to_owned()), 0, 1),
            (("1".to_owned(), "one".to_owned()), 1, 1),
            (("2".to_owned(), "two".to_owned()), 2, 1),
        ];

        let cfg = PersistConfig::new_for_tests();
        let blob = Arc::new(MemBlob::open(MemBlobConfig::default()));
        let consensus = Arc::new(MemConsensus::default());
        let unreliable = UnreliableHandle::default();
        unreliable.totally_available();
        let consensus = Arc::new(UnreliableConsensus::new(consensus, unreliable.clone()));
        let metrics = Arc::new(Metrics::new(&cfg, &MetricsRegistry::new()));
        let pubsub_sender = Arc::new(NoopPubSubSender);
        let (mut write, mut read) = PersistClient::new(
            cfg,
            blob,
            consensus,
            metrics,
            Arc::new(IsolatedRuntime::default()),
            Arc::new(StateCache::new_no_metrics()),
            pubsub_sender,
        )
        .expect("client construction failed")
        .expect_open::<String, String, u64, i64>(ShardId::new())
        .await;

        write.expect_compare_and_append(&data[0..1], 0, 1).await;
        write.expect_compare_and_append(&data[1..2], 1, 2).await;
        write.expect_compare_and_append(&data[2..3], 2, 3).await;

        let snapshot = read.expect_snapshot_and_fetch(2).await;
        let mut listen = read.expect_listen(0).await;

        // Manually advance the listener's machine so that it has the latest
        // state by fetching the first events from next. This is awkward but
        // only necessary because we're about to do some weird things with
        // unreliable.
        let listen_actual = listen.fetch_next().await;
        let expected_events = vec![ListenEvent::Progress(Antichain::from_elem(1))];
        assert_eq!(listen_actual, expected_events);

        // At this point, the snapshot and listen's state should have all the
        // writes. Test this by making consensus completely unavailable.
        unreliable.totally_unavailable();
        assert_eq!(snapshot, all_ok(&data, 2));
        assert_eq!(
            listen.read_until(&3).await,
            (all_ok(&data[1..], 1), Antichain::from_elem(3))
        );
    }
}