1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Detects an input being unioned with its negation and cancels them out
use itertools::Itertools;
use mz_expr::visit::Visit;
use mz_expr::MirRelationExpr;
use crate::{TransformCtx, TransformError};
/// Detects an input being unioned with its negation and cancels them out
///
/// `UnionBranchCancellation` is recursion-safe, but this is not immediately trivial:
/// It relies on the equality of certain `MirRelationExpr`s, which is a scary thing in a WMR
/// context, because `Get x` can mean not-equal things in different Let bindings.
/// However, this problematic case can't happen here, because when `UnionBranchCancellation` is
/// looking at two Gets to the same Id, then these have to be under the same Let binding.
/// This is because the recursion of `compare_branches` starts from two things in the same Let
/// binding (from two inputs of a Union), and then we don't make any `compare_branches` call
/// where `relation` and `other` are in different Let bindings.
#[derive(Debug)]
pub struct UnionBranchCancellation;
impl crate::Transform for UnionBranchCancellation {
fn name(&self) -> &'static str {
"UnionBranchCancellation"
}
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "union_branch_cancellation")
)]
fn actually_perform_transform(
&self,
relation: &mut MirRelationExpr,
_: &mut TransformCtx,
) -> Result<(), TransformError> {
let result = relation.try_visit_mut_post(&mut |e| self.action(e));
mz_repr::explain::trace_plan(&*relation);
result
}
}
/// Result of the comparison of two branches of a union for cancellation
/// purposes.
enum BranchCmp {
/// The two branches are equivalent in the sense the produce the
/// same exact results.
Equivalent,
/// The two branches are equivalent, but one of them produces negated
/// row count values, and hence, they cancel each other.
Inverse,
/// The two branches are not equivalent in any way.
Distinct,
}
impl BranchCmp {
/// Modify the result of the comparison when a Negate operator is
/// found at the top of one the branches just compared.
fn inverse(self) -> Self {
match self {
BranchCmp::Equivalent => BranchCmp::Inverse,
BranchCmp::Inverse => BranchCmp::Equivalent,
BranchCmp::Distinct => BranchCmp::Distinct,
}
}
}
impl UnionBranchCancellation {
/// Detects an input being unioned with its negation and cancels them out
pub fn action(&self, relation: &mut MirRelationExpr) -> Result<(), TransformError> {
if let MirRelationExpr::Union { base, inputs } = relation {
// Compares a union branch against the remaining branches in the union
// with opposite sign until it finds a branch that cancels the given one
// and returns its position.
let matching_negation = |input: &MirRelationExpr,
sign: bool,
inputs: &[MirRelationExpr],
input_signs: &[bool],
start_idx: usize|
-> Option<usize> {
for i in start_idx..inputs.len() {
// Only compare branches with opposite signs
if sign != input_signs[i] {
if let BranchCmp::Inverse = Self::compare_branches(input, &inputs[i]) {
return Some(i);
}
}
}
None
};
let base_sign = Self::branch_sign(base);
let input_signs = inputs.iter().map(Self::branch_sign).collect_vec();
// Compare branches if there is at least a negated branch
if std::iter::once(&base_sign).chain(&input_signs).any(|x| *x) {
if let Some(j) = matching_negation(&*base, base_sign, inputs, &input_signs, 0) {
let relation_typ = base.typ();
**base = MirRelationExpr::constant(vec![], relation_typ.clone());
inputs[j] = MirRelationExpr::constant(vec![], relation_typ);
}
for i in 0..inputs.len() {
if let Some(j) =
matching_negation(&inputs[i], input_signs[i], inputs, &input_signs, i + 1)
{
let relation_typ = inputs[i].typ();
inputs[i] = MirRelationExpr::constant(vec![], relation_typ.clone());
inputs[j] = MirRelationExpr::constant(vec![], relation_typ);
}
}
}
}
Ok(())
}
/// Returns the sign of a given union branch. The sign is `true` if the branch contains
/// an odd number of Negate operators within a chain of Map, Filter and Project
/// operators, and `false` otherwise.
///
/// This sign is pre-computed for all union branches in order to avoid performing
/// expensive comparisons of branches with the same sign since they can't possibly
/// cancel each other.
fn branch_sign(branch: &MirRelationExpr) -> bool {
let mut relation = branch;
let mut sign = false;
loop {
match relation {
MirRelationExpr::Negate { input } => {
sign ^= true;
relation = &**input;
}
MirRelationExpr::Map { input, .. }
| MirRelationExpr::Filter { input, .. }
| MirRelationExpr::Project { input, .. } => {
relation = &**input;
}
_ => return sign,
}
}
}
/// Compares two branches to check whether they produce the same results but
/// with negated row count values, ie. one of them contains an extra Negate operator.
/// Negate operators may appear interleaved with Map, Filter and Project
/// operators, but these operators must appear in the same order in both branches.
fn compare_branches(relation: &MirRelationExpr, other: &MirRelationExpr) -> BranchCmp {
match (relation, other) {
(
MirRelationExpr::Negate { input: input1 },
MirRelationExpr::Negate { input: input2 },
) => Self::compare_branches(&*input1, &*input2),
(r, MirRelationExpr::Negate { input }) | (MirRelationExpr::Negate { input }, r) => {
Self::compare_branches(&*input, r).inverse()
}
(
MirRelationExpr::Map {
input: input1,
scalars: scalars1,
},
MirRelationExpr::Map {
input: input2,
scalars: scalars2,
},
) => {
if scalars1 == scalars2 {
Self::compare_branches(&*input1, &*input2)
} else {
BranchCmp::Distinct
}
}
(
MirRelationExpr::Filter {
input: input1,
predicates: predicates1,
},
MirRelationExpr::Filter {
input: input2,
predicates: predicates2,
},
) => {
if predicates1 == predicates2 {
Self::compare_branches(&*input1, &*input2)
} else {
BranchCmp::Distinct
}
}
(
MirRelationExpr::Project {
input: input1,
outputs: outputs1,
},
MirRelationExpr::Project {
input: input2,
outputs: outputs2,
},
) => {
if outputs1 == outputs2 {
Self::compare_branches(&*input1, &*input2)
} else {
BranchCmp::Distinct
}
}
_ => {
if relation == other {
BranchCmp::Equivalent
} else {
BranchCmp::Distinct
}
}
}
}
}