hdrhistogram/serialization/
deserializer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
use super::{V2_COMPRESSED_COOKIE, V2_COOKIE};
use crate::{Counter, Histogram, RestatState};
use byteorder::{BigEndian, ReadBytesExt};
use flate2::read::ZlibDecoder;
use num_traits::ToPrimitive;
use std::io::{self, Cursor, Read};
use std::marker::PhantomData;
use std::{self, error, fmt};

/// Errors that can happen during deserialization.
#[derive(Debug)]
pub enum DeserializeError {
    /// An i/o operation failed.
    IoError(io::Error),
    /// The cookie (first 4 bytes) did not match that for any supported format.
    InvalidCookie,
    /// The histogram uses features that this implementation doesn't support (yet), so it cannot
    /// be deserialized correctly.
    UnsupportedFeature,
    /// A count exceeded what can be represented in the chosen counter type.
    UnsuitableCounterType,
    /// The histogram instance could not be created because the serialized parameters were invalid
    /// (e.g. lowest value, highest value, etc.)
    InvalidParameters,
    /// The current system's pointer width cannot represent the encoded histogram.
    UsizeTypeTooSmall,
    /// The encoded array is longer than it should be for the histogram's value range.
    EncodedArrayTooLong,
}

impl std::convert::From<std::io::Error> for DeserializeError {
    fn from(e: std::io::Error) -> Self {
        DeserializeError::IoError(e)
    }
}

impl fmt::Display for DeserializeError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            DeserializeError::IoError(e) => write!(f, "An i/o operation failed: {}", e),
            DeserializeError::InvalidCookie => write!(
                f,
                "The cookie (first 4 bytes) did not match that for any supported format"
            ),
            DeserializeError::UnsupportedFeature => write!(
                f,
                "The histogram uses features that this implementation doesn't support"
            ),
            DeserializeError::UnsuitableCounterType => write!(
                f,
                "A count exceeded what can be represented in the chosen counter type"
            ),
            DeserializeError::InvalidParameters => write!(
                f,
                "The serialized parameters were invalid(e.g. lowest value, highest value, etc)"
            ),
            DeserializeError::UsizeTypeTooSmall => write!(
                f,
                "The current system's pointer width cannot represent the encoded histogram"
            ),
            DeserializeError::EncodedArrayTooLong => write!(
                f,
                "The encoded array is longer than it should be for the histogram's value range"
            ),
        }
    }
}

impl error::Error for DeserializeError {
    fn source(&self) -> Option<&(dyn error::Error + 'static)> {
        match self {
            DeserializeError::IoError(e) => Some(e),
            _ => None,
        }
    }
}

/// Deserializer for all supported formats.
///
/// Since the serialization formats all include some magic bytes that allow reliable identification
/// of the different formats, only one Deserializer implementation is needed.
pub struct Deserializer {
    payload_buf: Vec<u8>,
}

impl Default for Deserializer {
    fn default() -> Self {
        Self::new()
    }
}

impl Deserializer {
    /// Create a new deserializer.
    pub fn new() -> Deserializer {
        Deserializer {
            payload_buf: Vec::new(),
        }
    }

    /// Deserialize an encoded histogram from the provided reader.
    ///
    /// Note that `&[u8]` and `Cursor` are convenient implementations of `Read` if you have some
    /// bytes already in slice or `Vec` form.
    pub fn deserialize<T: Counter, R: Read>(
        &mut self,
        reader: &mut R,
    ) -> Result<Histogram<T>, DeserializeError> {
        let cookie = reader.read_u32::<BigEndian>()?;

        match cookie {
            V2_COOKIE => self.deser_v2(reader),
            V2_COMPRESSED_COOKIE => self.deser_v2_compressed(reader),
            _ => Err(DeserializeError::InvalidCookie),
        }
    }

    fn deser_v2_compressed<T: Counter, R: Read>(
        &mut self,
        reader: &mut R,
    ) -> Result<Histogram<T>, DeserializeError> {
        let payload_len = reader
            .read_u32::<BigEndian>()?
            .to_usize()
            .ok_or(DeserializeError::UsizeTypeTooSmall)?;

        // TODO reuse deflate buf, or switch to lower-level flate2::Decompress
        let mut deflate_reader = ZlibDecoder::new(reader.take(payload_len as u64));
        let inner_cookie = deflate_reader.read_u32::<BigEndian>()?;
        if inner_cookie != V2_COOKIE {
            return Err(DeserializeError::InvalidCookie);
        }

        self.deser_v2(&mut deflate_reader)
    }

    #[allow(clippy::float_cmp)]
    fn deser_v2<T: Counter, R: Read>(
        &mut self,
        reader: &mut R,
    ) -> Result<Histogram<T>, DeserializeError> {
        let payload_len = reader
            .read_u32::<BigEndian>()?
            .to_usize()
            .ok_or(DeserializeError::UsizeTypeTooSmall)?;
        let normalizing_offset = reader.read_u32::<BigEndian>()?;
        if normalizing_offset != 0 {
            return Err(DeserializeError::UnsupportedFeature);
        }
        let num_digits = reader
            .read_u32::<BigEndian>()?
            .to_u8()
            .ok_or(DeserializeError::InvalidParameters)?;
        let low = reader.read_u64::<BigEndian>()?;
        let high = reader.read_u64::<BigEndian>()?;
        let int_double_ratio = reader.read_f64::<BigEndian>()?;
        if int_double_ratio != 1.0 {
            return Err(DeserializeError::UnsupportedFeature);
        }

        let mut h = Histogram::new_with_bounds(low, high, num_digits)
            .map_err(|_| DeserializeError::InvalidParameters)?;

        if payload_len > self.payload_buf.len() {
            self.payload_buf.resize(payload_len, 0);
        }

        let mut payload_slice = &mut self.payload_buf[0..payload_len];
        reader.read_exact(&mut payload_slice)?;

        let mut payload_index: usize = 0;
        let mut restat_state = RestatState::new();
        let mut decode_state = DecodeLoopState::new();

        while payload_index < payload_len.saturating_sub(9) {
            // Read with fast loop until we are within 9 of the end. Fast loop can't handle EOF,
            // so bail to slow version for the last few bytes.

            // payload_index math is safe because payload_len is a usize
            let (zz_num, bytes_read) =
                varint_read_slice(&payload_slice[payload_index..(payload_index + 9)]);
            payload_index += bytes_read;

            let count_or_zeros = zig_zag_decode(zz_num);

            decode_state.on_decoded_num(count_or_zeros, &mut restat_state, &mut h)?;
        }

        // Now read the leftovers
        let leftover_slice = &payload_slice[payload_index..];
        let mut cursor = Cursor::new(&leftover_slice);
        while cursor.position() < leftover_slice.len() as u64 {
            let count_or_zeros = zig_zag_decode(varint_read(&mut cursor)?);

            decode_state.on_decoded_num(count_or_zeros, &mut restat_state, &mut h)?;
        }

        restat_state.update_histogram(&mut h);

        Ok(h)
    }
}

// Only public for testing.
/// Read from a slice that must be 9 bytes long or longer. Returns the decoded number and how many
/// bytes were consumed.
#[inline]
pub fn varint_read_slice(slice: &[u8]) -> (u64, usize) {
    let mut b = slice[0];

    // take low 7 bits
    let mut value: u64 = low_7_bits(b);
    if !is_high_bit_set(b) {
        return (value, 1);
    }
    // high bit set, keep reading
    b = slice[1];
    value |= low_7_bits(b) << 7;
    if !is_high_bit_set(b) {
        return (value, 2);
    }
    b = slice[2];
    value |= low_7_bits(b) << (7 * 2);
    if !is_high_bit_set(b) {
        return (value, 3);
    }
    b = slice[3];
    value |= low_7_bits(b) << (7 * 3);
    if !is_high_bit_set(b) {
        return (value, 4);
    }
    b = slice[4];
    value |= low_7_bits(b) << (7 * 4);
    if !is_high_bit_set(b) {
        return (value, 5);
    }
    b = slice[5];
    value |= low_7_bits(b) << (7 * 5);
    if !is_high_bit_set(b) {
        return (value, 6);
    }
    b = slice[6];
    value |= low_7_bits(b) << (7 * 6);
    if !is_high_bit_set(b) {
        return (value, 7);
    }
    b = slice[7];
    value |= low_7_bits(b) << (7 * 7);
    if !is_high_bit_set(b) {
        return (value, 8);
    }

    b = slice[8];
    // special case: use last byte as is
    value |= u64::from(b) << (7 * 8);

    (value, 9)
}

// Only public for testing.
/// Read a LEB128-64b9B from the buffer
pub fn varint_read<R: Read>(reader: &mut R) -> io::Result<u64> {
    let mut b = reader.read_u8()?;

    // take low 7 bits
    let mut value: u64 = low_7_bits(b);

    if is_high_bit_set(b) {
        // high bit set, keep reading
        b = reader.read_u8()?;
        value |= low_7_bits(b) << 7;
        if is_high_bit_set(b) {
            b = reader.read_u8()?;
            value |= low_7_bits(b) << (7 * 2);
            if is_high_bit_set(b) {
                b = reader.read_u8()?;
                value |= low_7_bits(b) << (7 * 3);
                if is_high_bit_set(b) {
                    b = reader.read_u8()?;
                    value |= low_7_bits(b) << (7 * 4);
                    if is_high_bit_set(b) {
                        b = reader.read_u8()?;
                        value |= low_7_bits(b) << (7 * 5);
                        if is_high_bit_set(b) {
                            b = reader.read_u8()?;
                            value |= low_7_bits(b) << (7 * 6);
                            if is_high_bit_set(b) {
                                b = reader.read_u8()?;
                                value |= low_7_bits(b) << (7 * 7);
                                if is_high_bit_set(b) {
                                    b = reader.read_u8()?;
                                    // special case: use last byte as is
                                    value |= u64::from(b) << (7 * 8);
                                }
                            }
                        }
                    }
                }
            }
        }
    }

    Ok(value)
}

/// truncate byte to low 7 bits, cast to u64
#[inline]
fn low_7_bits(b: u8) -> u64 {
    u64::from(b & 0x7F)
}

#[inline]
fn is_high_bit_set(b: u8) -> bool {
    (b & 0x80) != 0
}

// Only public for testing.
#[inline]
pub fn zig_zag_decode(encoded: u64) -> i64 {
    ((encoded >> 1) as i64) ^ -((encoded & 1) as i64)
}

/// We need to perform the same logic in two different decode loops while carrying over a modicum
/// of state.
struct DecodeLoopState<T: Counter> {
    dest_index: usize,
    phantom: PhantomData<T>,
}

impl<T: Counter> DecodeLoopState<T> {
    fn new() -> DecodeLoopState<T> {
        DecodeLoopState {
            dest_index: 0,
            phantom: PhantomData,
        }
    }

    #[inline]
    fn on_decoded_num(
        &mut self,
        count_or_zeros: i64,
        restat_state: &mut RestatState<T>,
        h: &mut Histogram<T>,
    ) -> Result<(), DeserializeError> {
        if count_or_zeros < 0 {
            // For a valid histogram, negation won't overflow because you can't have anywhere close
            // to even 2^32 array length
            let zero_count = (-count_or_zeros)
                .to_usize()
                .ok_or(DeserializeError::UsizeTypeTooSmall)?;
            // skip the zeros
            self.dest_index = self
                .dest_index
                .checked_add(zero_count)
                .ok_or(DeserializeError::UsizeTypeTooSmall)?;
        } else {
            let count: T =
                T::from_i64(count_or_zeros).ok_or(DeserializeError::UnsuitableCounterType)?;

            if count > T::zero() {
                h.set_count_at_index(self.dest_index, count)
                    .map_err(|_| DeserializeError::EncodedArrayTooLong)?;

                restat_state.on_nonzero_count(self.dest_index, count);
            }

            self.dest_index = self
                .dest_index
                .checked_add(1)
                .ok_or(DeserializeError::UsizeTypeTooSmall)?;
        }

        Ok(())
    }
}