criterion/stats/univariate/outliers/tukey.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
//! Tukey's method
//!
//! The original method uses two "fences" to classify the data. All the observations "inside" the
//! fences are considered "normal", and the rest are considered outliers.
//!
//! The fences are computed from the quartiles of the sample, according to the following formula:
//!
//! ``` ignore
//! // q1, q3 are the first and third quartiles
//! let iqr = q3 - q1; // The interquartile range
//! let (f1, f2) = (q1 - 1.5 * iqr, q3 + 1.5 * iqr); // the "fences"
//!
//! let is_outlier = |x| if x > f1 && x < f2 { true } else { false };
//! ```
//!
//! The classifier provided here adds two extra outer fences:
//!
//! ``` ignore
//! let (f3, f4) = (q1 - 3 * iqr, q3 + 3 * iqr); // the outer "fences"
//! ```
//!
//! The extra fences add a sense of "severity" to the classification. Data points outside of the
//! outer fences are considered "severe" outliers, whereas points outside the inner fences are just
//! "mild" outliers, and, as the original method, everything inside the inner fences is considered
//! "normal" data.
//!
//! Some ASCII art for the visually oriented people:
//!
//! ``` ignore
//! LOW-ish NORMAL-ish HIGH-ish
//! x | + | o o o o o o o | + | x
//! f3 f1 f2 f4
//!
//! Legend:
//! o: "normal" data (not an outlier)
//! +: "mild" outlier
//! x: "severe" outlier
//! ```
use std::iter::IntoIterator;
use std::ops::{Deref, Index};
use std::slice;
use crate::stats::float::Float;
use crate::stats::univariate::Sample;
use self::Label::*;
/// A classified/labeled sample.
///
/// The labeled data can be accessed using the indexing operator. The order of the data points is
/// retained.
///
/// NOTE: Due to limitations in the indexing traits, only the label is returned. Once the
/// `IndexGet` trait lands in stdlib, the indexing operation will return a `(data_point, label)`
/// pair.
#[derive(Clone, Copy)]
pub struct LabeledSample<'a, A>
where
A: Float,
{
fences: (A, A, A, A),
sample: &'a Sample<A>,
}
impl<'a, A> LabeledSample<'a, A>
where
A: Float,
{
/// Returns the number of data points per label
///
/// - Time: `O(length)`
#[cfg_attr(feature = "cargo-clippy", allow(clippy::similar_names))]
pub fn count(&self) -> (usize, usize, usize, usize, usize) {
let (mut los, mut lom, mut noa, mut him, mut his) = (0, 0, 0, 0, 0);
for (_, label) in self {
match label {
LowSevere => {
los += 1;
}
LowMild => {
lom += 1;
}
NotAnOutlier => {
noa += 1;
}
HighMild => {
him += 1;
}
HighSevere => {
his += 1;
}
}
}
(los, lom, noa, him, his)
}
/// Returns the fences used to classify the outliers
pub fn fences(&self) -> (A, A, A, A) {
self.fences
}
/// Returns an iterator over the labeled data
pub fn iter(&self) -> Iter<'a, A> {
Iter {
fences: self.fences,
iter: self.sample.iter(),
}
}
}
impl<'a, A> Deref for LabeledSample<'a, A>
where
A: Float,
{
type Target = Sample<A>;
fn deref(&self) -> &Sample<A> {
self.sample
}
}
// FIXME Use the `IndexGet` trait
impl<'a, A> Index<usize> for LabeledSample<'a, A>
where
A: Float,
{
type Output = Label;
#[cfg_attr(feature = "cargo-clippy", allow(clippy::similar_names))]
fn index(&self, i: usize) -> &Label {
static LOW_SEVERE: Label = LowSevere;
static LOW_MILD: Label = LowMild;
static HIGH_MILD: Label = HighMild;
static HIGH_SEVERE: Label = HighSevere;
static NOT_AN_OUTLIER: Label = NotAnOutlier;
let x = self.sample[i];
let (lost, lomt, himt, hist) = self.fences;
if x < lost {
&LOW_SEVERE
} else if x > hist {
&HIGH_SEVERE
} else if x < lomt {
&LOW_MILD
} else if x > himt {
&HIGH_MILD
} else {
&NOT_AN_OUTLIER
}
}
}
impl<'a, 'b, A> IntoIterator for &'b LabeledSample<'a, A>
where
A: Float,
{
type Item = (A, Label);
type IntoIter = Iter<'a, A>;
fn into_iter(self) -> Iter<'a, A> {
self.iter()
}
}
/// Iterator over the labeled data
pub struct Iter<'a, A>
where
A: Float,
{
fences: (A, A, A, A),
iter: slice::Iter<'a, A>,
}
impl<'a, A> Iterator for Iter<'a, A>
where
A: Float,
{
type Item = (A, Label);
#[cfg_attr(feature = "cargo-clippy", allow(clippy::similar_names))]
fn next(&mut self) -> Option<(A, Label)> {
self.iter.next().map(|&x| {
let (lost, lomt, himt, hist) = self.fences;
let label = if x < lost {
LowSevere
} else if x > hist {
HighSevere
} else if x < lomt {
LowMild
} else if x > himt {
HighMild
} else {
NotAnOutlier
};
(x, label)
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
/// Labels used to classify outliers
pub enum Label {
/// A "mild" outlier in the "high" spectrum
HighMild,
/// A "severe" outlier in the "high" spectrum
HighSevere,
/// A "mild" outlier in the "low" spectrum
LowMild,
/// A "severe" outlier in the "low" spectrum
LowSevere,
/// A normal data point
NotAnOutlier,
}
impl Label {
/// Checks if the data point has an "unusually" high value
pub fn is_high(&self) -> bool {
matches!(*self, HighMild | HighSevere)
}
/// Checks if the data point is labeled as a "mild" outlier
pub fn is_mild(&self) -> bool {
matches!(*self, HighMild | LowMild)
}
/// Checks if the data point has an "unusually" low value
pub fn is_low(&self) -> bool {
matches!(*self, LowMild | LowSevere)
}
/// Checks if the data point is labeled as an outlier
pub fn is_outlier(&self) -> bool {
matches!(*self, NotAnOutlier)
}
/// Checks if the data point is labeled as a "severe" outlier
pub fn is_severe(&self) -> bool {
matches!(*self, HighSevere | LowSevere)
}
}
/// Classifies the sample, and returns a labeled sample.
///
/// - Time: `O(N log N) where N = length`
pub fn classify<A>(sample: &Sample<A>) -> LabeledSample<'_, A>
where
A: Float,
usize: cast::From<A, Output = Result<usize, cast::Error>>,
{
let (q1, _, q3) = sample.percentiles().quartiles();
let iqr = q3 - q1;
// Mild
let k_m = A::cast(1.5_f32);
// Severe
let k_s = A::cast(3);
LabeledSample {
fences: (
q1 - k_s * iqr,
q1 - k_m * iqr,
q3 + k_m * iqr,
q3 + k_s * iqr,
),
sample,
}
}