uuid/timestamp.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
//! Generating UUIDs from timestamps.
//!
//! Timestamps are used in a few UUID versions as a source of decentralized
//! uniqueness (as in versions 1 and 6), and as a way to enable sorting (as
//! in versions 6 and 7). Timestamps aren't encoded the same way by all UUID
//! versions so this module provides a single [`Timestamp`] type that can
//! convert between them.
//!
//! # Timestamp representations in UUIDs
//!
//! Versions 1 and 6 UUIDs use a bespoke timestamp that consists of the
//! number of 100ns ticks since `1582-10-15 00:00:00`, along with
//! a counter value to avoid duplicates.
//!
//! Version 7 UUIDs use a more standard timestamp that consists of the
//! number of millisecond ticks since the Unix epoch (`1970-01-01 00:00:00`).
//!
//! # References
//!
//! * [UUID Version 1 in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-5.1)
//! * [UUID Version 7 in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-5.7)
//! * [Timestamp Considerations in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-6.1)
use core::cmp;
use crate::Uuid;
/// The number of 100 nanosecond ticks between the RFC 9562 epoch
/// (`1582-10-15 00:00:00`) and the Unix epoch (`1970-01-01 00:00:00`).
pub const UUID_TICKS_BETWEEN_EPOCHS: u64 = 0x01B2_1DD2_1381_4000;
/// A timestamp that can be encoded into a UUID.
///
/// This type abstracts the specific encoding, so versions 1, 6, and 7
/// UUIDs can both be supported through the same type, even
/// though they have a different representation of a timestamp.
///
/// # References
///
/// * [Timestamp Considerations in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-6.1)
/// * [UUID Generator States in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-6.3)
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Timestamp {
seconds: u64,
subsec_nanos: u32,
counter: u128,
usable_counter_bits: u8,
}
impl Timestamp {
/// Get a timestamp representing the current system time and up to a 128-bit counter.
///
/// This method defers to the standard library's `SystemTime` type.
#[cfg(feature = "std")]
pub fn now(context: impl ClockSequence<Output = impl Into<u128>>) -> Self {
let (seconds, subsec_nanos) = now();
let (counter, seconds, subsec_nanos) =
context.generate_timestamp_sequence(seconds, subsec_nanos);
let counter = counter.into();
let usable_counter_bits = context.usable_bits() as u8;
Timestamp {
seconds,
subsec_nanos,
counter,
usable_counter_bits,
}
}
/// Construct a `Timestamp` from the number of 100 nanosecond ticks since 00:00:00.00,
/// 15 October 1582 (the date of Gregorian reform to the Christian calendar) and a 14-bit
/// counter, as used in versions 1 and 6 UUIDs.
///
/// # Overflow
///
/// If conversion from RFC 9562 ticks to the internal timestamp format would overflow
/// it will wrap.
pub const fn from_gregorian(ticks: u64, counter: u16) -> Self {
let (seconds, subsec_nanos) = Self::gregorian_to_unix(ticks);
Timestamp {
seconds,
subsec_nanos,
counter: counter as u128,
usable_counter_bits: 14,
}
}
/// Construct a `Timestamp` from a Unix timestamp and up to a 128-bit counter, as used in version 7 UUIDs.
pub const fn from_unix_time(
seconds: u64,
subsec_nanos: u32,
counter: u128,
usable_counter_bits: u8,
) -> Self {
Timestamp {
seconds,
subsec_nanos,
counter,
usable_counter_bits,
}
}
/// Construct a `Timestamp` from a Unix timestamp and up to a 128-bit counter, as used in version 7 UUIDs.
pub fn from_unix(
context: impl ClockSequence<Output = impl Into<u128>>,
seconds: u64,
subsec_nanos: u32,
) -> Self {
let (counter, seconds, subsec_nanos) =
context.generate_timestamp_sequence(seconds, subsec_nanos);
let counter = counter.into();
let usable_counter_bits = context.usable_bits() as u8;
Timestamp {
seconds,
subsec_nanos,
counter,
usable_counter_bits,
}
}
/// Get the value of the timestamp as the number of 100 nanosecond ticks since 00:00:00.00,
/// 15 October 1582 and a 14-bit counter, as used in versions 1 and 6 UUIDs.
///
/// # Overflow
///
/// If conversion from the internal timestamp format to ticks would overflow
/// then it will wrap.
///
/// If the internal counter is wider than 14 bits then it will be truncated to 14 bits.
pub const fn to_gregorian(&self) -> (u64, u16) {
(
Self::unix_to_gregorian_ticks(self.seconds, self.subsec_nanos),
(self.counter as u16) & 0x3FFF,
)
}
// NOTE: This method is not public; the usable counter bits are lost in a version 7 UUID
// so can't be reliably recovered.
#[cfg(feature = "v7")]
pub(crate) const fn counter(&self) -> (u128, u8) {
(self.counter, self.usable_counter_bits)
}
/// Get the value of the timestamp as a Unix timestamp, as used in version 7 UUIDs.
pub const fn to_unix(&self) -> (u64, u32) {
(self.seconds, self.subsec_nanos)
}
const fn unix_to_gregorian_ticks(seconds: u64, nanos: u32) -> u64 {
UUID_TICKS_BETWEEN_EPOCHS
.wrapping_add(seconds.wrapping_mul(10_000_000))
.wrapping_add(nanos as u64 / 100)
}
const fn gregorian_to_unix(ticks: u64) -> (u64, u32) {
(
ticks.wrapping_sub(UUID_TICKS_BETWEEN_EPOCHS) / 10_000_000,
(ticks.wrapping_sub(UUID_TICKS_BETWEEN_EPOCHS) % 10_000_000) as u32 * 100,
)
}
}
#[doc(hidden)]
impl Timestamp {
#[deprecated(
since = "1.10.0",
note = "use `Timestamp::from_gregorian(ticks, counter)`"
)]
pub const fn from_rfc4122(ticks: u64, counter: u16) -> Self {
Timestamp::from_gregorian(ticks, counter)
}
#[deprecated(since = "1.10.0", note = "use `Timestamp::to_gregorian()`")]
pub const fn to_rfc4122(&self) -> (u64, u16) {
self.to_gregorian()
}
#[deprecated(
since = "1.2.0",
note = "`Timestamp::to_unix_nanos()` is deprecated and will be removed: use `Timestamp::to_unix()`"
)]
pub const fn to_unix_nanos(&self) -> u32 {
panic!("`Timestamp::to_unix_nanos()` is deprecated and will be removed: use `Timestamp::to_unix()`")
}
}
pub(crate) const fn encode_gregorian_timestamp(
ticks: u64,
counter: u16,
node_id: &[u8; 6],
) -> Uuid {
let time_low = (ticks & 0xFFFF_FFFF) as u32;
let time_mid = ((ticks >> 32) & 0xFFFF) as u16;
let time_high_and_version = (((ticks >> 48) & 0x0FFF) as u16) | (1 << 12);
let mut d4 = [0; 8];
d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80;
d4[1] = (counter & 0xFF) as u8;
d4[2] = node_id[0];
d4[3] = node_id[1];
d4[4] = node_id[2];
d4[5] = node_id[3];
d4[6] = node_id[4];
d4[7] = node_id[5];
Uuid::from_fields(time_low, time_mid, time_high_and_version, &d4)
}
pub(crate) const fn decode_gregorian_timestamp(uuid: &Uuid) -> (u64, u16) {
let bytes = uuid.as_bytes();
let ticks: u64 = ((bytes[6] & 0x0F) as u64) << 56
| (bytes[7] as u64) << 48
| (bytes[4] as u64) << 40
| (bytes[5] as u64) << 32
| (bytes[0] as u64) << 24
| (bytes[1] as u64) << 16
| (bytes[2] as u64) << 8
| (bytes[3] as u64);
let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16);
(ticks, counter)
}
pub(crate) const fn encode_sorted_gregorian_timestamp(
ticks: u64,
counter: u16,
node_id: &[u8; 6],
) -> Uuid {
let time_high = ((ticks >> 28) & 0xFFFF_FFFF) as u32;
let time_mid = ((ticks >> 12) & 0xFFFF) as u16;
let time_low_and_version = ((ticks & 0x0FFF) as u16) | (0x6 << 12);
let mut d4 = [0; 8];
d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80;
d4[1] = (counter & 0xFF) as u8;
d4[2] = node_id[0];
d4[3] = node_id[1];
d4[4] = node_id[2];
d4[5] = node_id[3];
d4[6] = node_id[4];
d4[7] = node_id[5];
Uuid::from_fields(time_high, time_mid, time_low_and_version, &d4)
}
pub(crate) const fn decode_sorted_gregorian_timestamp(uuid: &Uuid) -> (u64, u16) {
let bytes = uuid.as_bytes();
let ticks: u64 = ((bytes[0]) as u64) << 52
| (bytes[1] as u64) << 44
| (bytes[2] as u64) << 36
| (bytes[3] as u64) << 28
| (bytes[4] as u64) << 20
| (bytes[5] as u64) << 12
| ((bytes[6] & 0xF) as u64) << 8
| (bytes[7] as u64);
let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16);
(ticks, counter)
}
pub(crate) const fn encode_unix_timestamp_millis(
millis: u64,
counter_random_bytes: &[u8; 10],
) -> Uuid {
let millis_high = ((millis >> 16) & 0xFFFF_FFFF) as u32;
let millis_low = (millis & 0xFFFF) as u16;
let counter_random_version = (counter_random_bytes[1] as u16
| ((counter_random_bytes[0] as u16) << 8) & 0x0FFF)
| (0x7 << 12);
let mut d4 = [0; 8];
d4[0] = (counter_random_bytes[2] & 0x3F) | 0x80;
d4[1] = counter_random_bytes[3];
d4[2] = counter_random_bytes[4];
d4[3] = counter_random_bytes[5];
d4[4] = counter_random_bytes[6];
d4[5] = counter_random_bytes[7];
d4[6] = counter_random_bytes[8];
d4[7] = counter_random_bytes[9];
Uuid::from_fields(millis_high, millis_low, counter_random_version, &d4)
}
pub(crate) const fn decode_unix_timestamp_millis(uuid: &Uuid) -> u64 {
let bytes = uuid.as_bytes();
let millis: u64 = (bytes[0] as u64) << 40
| (bytes[1] as u64) << 32
| (bytes[2] as u64) << 24
| (bytes[3] as u64) << 16
| (bytes[4] as u64) << 8
| (bytes[5] as u64);
millis
}
#[cfg(all(
feature = "std",
feature = "js",
all(
target_arch = "wasm32",
target_vendor = "unknown",
target_os = "unknown"
)
))]
fn now() -> (u64, u32) {
use wasm_bindgen::prelude::*;
#[wasm_bindgen]
extern "C" {
// NOTE: This signature works around https://bugzilla.mozilla.org/show_bug.cgi?id=1787770
#[wasm_bindgen(js_namespace = Date, catch)]
fn now() -> Result<f64, JsValue>;
}
let now = now().unwrap_throw();
let secs = (now / 1_000.0) as u64;
let nanos = ((now % 1_000.0) * 1_000_000.0) as u32;
(secs, nanos)
}
#[cfg(all(
feature = "std",
not(miri),
any(
not(feature = "js"),
not(all(
target_arch = "wasm32",
target_vendor = "unknown",
target_os = "unknown"
))
)
))]
fn now() -> (u64, u32) {
let dur = std::time::SystemTime::UNIX_EPOCH.elapsed().expect(
"Getting elapsed time since UNIX_EPOCH. If this fails, we've somehow violated causality",
);
(dur.as_secs(), dur.subsec_nanos())
}
#[cfg(all(feature = "std", miri))]
fn now() -> (u64, u32) {
use std::{sync::Mutex, time::Duration};
static TS: Mutex<u64> = Mutex::new(0);
let ts = Duration::from_nanos({
let mut ts = TS.lock().unwrap();
*ts += 1;
*ts
});
(ts.as_secs(), ts.subsec_nanos())
}
/// A counter that can be used by versions 1 and 6 UUIDs to support
/// the uniqueness of timestamps.
///
/// # References
///
/// * [UUID Version 1 in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-5.1)
/// * [UUID Version 6 in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-5.6)
/// * [UUID Generator States in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-6.3)
pub trait ClockSequence {
/// The type of sequence returned by this counter.
type Output;
/// Get the next value in the sequence to feed into a timestamp.
///
/// This method will be called each time a [`Timestamp`] is constructed.
///
/// Any bits beyond [`ClockSequence::usable_bits`] in the output must be unset.
fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output;
/// Get the next value in the sequence, potentially also adjusting the timestamp.
///
/// This method should be preferred over `generate_sequence`.
///
/// Any bits beyond [`ClockSequence::usable_bits`] in the output must be unset.
fn generate_timestamp_sequence(
&self,
seconds: u64,
subsec_nanos: u32,
) -> (Self::Output, u64, u32) {
(
self.generate_sequence(seconds, subsec_nanos),
seconds,
subsec_nanos,
)
}
/// The number of usable bits from the least significant bit in the result of [`ClockSequence::generate_sequence`]
/// or [`ClockSequence::generate_timestamp_sequence`].
///
/// The number of usable bits must not exceed 128.
///
/// The number of usable bits is not expected to change between calls. An implementation of `ClockSequence` should
/// always return the same value from this method.
fn usable_bits(&self) -> usize
where
Self::Output: Sized,
{
cmp::min(128, core::mem::size_of::<Self::Output>())
}
}
impl<'a, T: ClockSequence + ?Sized> ClockSequence for &'a T {
type Output = T::Output;
fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
(**self).generate_sequence(seconds, subsec_nanos)
}
fn generate_timestamp_sequence(
&self,
seconds: u64,
subsec_nanos: u32,
) -> (Self::Output, u64, u32) {
(**self).generate_timestamp_sequence(seconds, subsec_nanos)
}
fn usable_bits(&self) -> usize
where
Self::Output: Sized,
{
(**self).usable_bits()
}
}
/// Default implementations for the [`ClockSequence`] trait.
pub mod context {
use super::ClockSequence;
#[cfg(any(feature = "v1", feature = "v6"))]
mod v1_support {
use super::*;
use atomic::{Atomic, Ordering};
#[cfg(all(feature = "std", feature = "rng"))]
static CONTEXT: Context = Context {
count: Atomic::new(0),
};
#[cfg(all(feature = "std", feature = "rng"))]
static CONTEXT_INITIALIZED: Atomic<bool> = Atomic::new(false);
#[cfg(all(feature = "std", feature = "rng"))]
pub(crate) fn shared_context() -> &'static Context {
// If the context is in its initial state then assign it to a random value
// It doesn't matter if multiple threads observe `false` here and initialize the context
if CONTEXT_INITIALIZED
.compare_exchange(false, true, Ordering::Relaxed, Ordering::Relaxed)
.is_ok()
{
CONTEXT.count.store(crate::rng::u16(), Ordering::Release);
}
&CONTEXT
}
/// A thread-safe, wrapping counter that produces 14-bit values.
///
/// This type works by:
///
/// 1. Atomically incrementing the counter value for each timestamp.
/// 2. Wrapping the counter back to zero if it overflows its 14-bit storage.
///
/// This type should be used when constructing versions 1 and 6 UUIDs.
///
/// This type should not be used when constructing version 7 UUIDs. When used to
/// construct a version 7 UUID, the 14-bit counter will be padded with random data.
/// Counter overflows are more likely with a 14-bit counter than they are with a
/// 42-bit counter when working at millisecond precision. This type doesn't attempt
/// to adjust the timestamp on overflow.
#[derive(Debug)]
pub struct Context {
count: Atomic<u16>,
}
impl Context {
/// Construct a new context that's initialized with the given value.
///
/// The starting value should be a random number, so that UUIDs from
/// different systems with the same timestamps are less likely to collide.
/// When the `rng` feature is enabled, prefer the [`Context::new_random`] method.
pub const fn new(count: u16) -> Self {
Self {
count: Atomic::<u16>::new(count),
}
}
/// Construct a new context that's initialized with a random value.
#[cfg(feature = "rng")]
pub fn new_random() -> Self {
Self {
count: Atomic::<u16>::new(crate::rng::u16()),
}
}
}
impl ClockSequence for Context {
type Output = u16;
fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output {
// RFC 9562 reserves 2 bits of the clock sequence so the actual
// maximum value is smaller than `u16::MAX`. Since we unconditionally
// increment the clock sequence we want to wrap once it becomes larger
// than what we can represent in a "u14". Otherwise there'd be patches
// where the clock sequence doesn't change regardless of the timestamp
self.count.fetch_add(1, Ordering::AcqRel) & (u16::MAX >> 2)
}
fn usable_bits(&self) -> usize {
14
}
}
#[cfg(test)]
mod tests {
use crate::Timestamp;
use super::*;
#[test]
fn context() {
let seconds = 1_496_854_535;
let subsec_nanos = 812_946_000;
let context = Context::new(u16::MAX >> 2);
let ts = Timestamp::from_unix(&context, seconds, subsec_nanos);
assert_eq!(16383, ts.counter);
assert_eq!(14, ts.usable_counter_bits);
let seconds = 1_496_854_536;
let ts = Timestamp::from_unix(&context, seconds, subsec_nanos);
assert_eq!(0, ts.counter);
let seconds = 1_496_854_535;
let ts = Timestamp::from_unix(&context, seconds, subsec_nanos);
assert_eq!(1, ts.counter);
}
#[test]
fn context_overflow() {
let seconds = u64::MAX;
let subsec_nanos = u32::MAX;
let context = Context::new(u16::MAX);
// Ensure we don't panic
Timestamp::from_unix(&context, seconds, subsec_nanos);
}
}
}
#[cfg(any(feature = "v1", feature = "v6"))]
pub use v1_support::*;
#[cfg(feature = "std")]
mod std_support {
use super::*;
use core::panic::{AssertUnwindSafe, RefUnwindSafe};
use std::{sync::Mutex, thread::LocalKey};
/// A wrapper for a context that uses thread-local storage.
pub struct ThreadLocalContext<C: 'static>(&'static LocalKey<C>);
impl<C> std::fmt::Debug for ThreadLocalContext<C> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("ThreadLocalContext").finish_non_exhaustive()
}
}
impl<C: 'static> ThreadLocalContext<C> {
/// Wrap a thread-local container with a context.
pub const fn new(local_key: &'static LocalKey<C>) -> Self {
ThreadLocalContext(local_key)
}
}
impl<C: ClockSequence + 'static> ClockSequence for ThreadLocalContext<C> {
type Output = C::Output;
fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
self.0
.with(|ctxt| ctxt.generate_sequence(seconds, subsec_nanos))
}
fn generate_timestamp_sequence(
&self,
seconds: u64,
subsec_nanos: u32,
) -> (Self::Output, u64, u32) {
self.0
.with(|ctxt| ctxt.generate_timestamp_sequence(seconds, subsec_nanos))
}
fn usable_bits(&self) -> usize {
self.0.with(|ctxt| ctxt.usable_bits())
}
}
impl<C: ClockSequence> ClockSequence for AssertUnwindSafe<C> {
type Output = C::Output;
fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
self.0.generate_sequence(seconds, subsec_nanos)
}
fn generate_timestamp_sequence(
&self,
seconds: u64,
subsec_nanos: u32,
) -> (Self::Output, u64, u32) {
self.0.generate_timestamp_sequence(seconds, subsec_nanos)
}
fn usable_bits(&self) -> usize
where
Self::Output: Sized,
{
self.0.usable_bits()
}
}
impl<C: ClockSequence + RefUnwindSafe> ClockSequence for Mutex<C> {
type Output = C::Output;
fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
self.lock()
.unwrap_or_else(|err| err.into_inner())
.generate_sequence(seconds, subsec_nanos)
}
fn generate_timestamp_sequence(
&self,
seconds: u64,
subsec_nanos: u32,
) -> (Self::Output, u64, u32) {
self.lock()
.unwrap_or_else(|err| err.into_inner())
.generate_timestamp_sequence(seconds, subsec_nanos)
}
fn usable_bits(&self) -> usize
where
Self::Output: Sized,
{
self.lock()
.unwrap_or_else(|err| err.into_inner())
.usable_bits()
}
}
}
#[cfg(feature = "std")]
pub use std_support::*;
#[cfg(feature = "v7")]
mod v7_support {
use super::*;
use core::{cell::Cell, cmp, panic::RefUnwindSafe};
#[cfg(feature = "std")]
static CONTEXT_V7: SharedContextV7 =
SharedContextV7(std::sync::Mutex::new(ContextV7::new()));
#[cfg(feature = "std")]
pub(crate) fn shared_context_v7() -> &'static SharedContextV7 {
&CONTEXT_V7
}
const USABLE_BITS: usize = 42;
// Leave the most significant bit unset
// This guarantees the counter has at least 2,199,023,255,552
// values before it will overflow, which is exceptionally unlikely
// even in the worst case
const RESEED_MASK: u64 = u64::MAX >> 23;
const MAX_COUNTER: u64 = u64::MAX >> 22;
/// An unsynchronized, reseeding counter that produces 42-bit values.
///
/// This type works by:
///
/// 1. Reseeding the counter each millisecond with a random 41-bit value. The 42nd bit
/// is left unset so the counter can safely increment over the millisecond.
/// 2. Wrapping the counter back to zero if it overflows its 42-bit storage and adding a
/// millisecond to the timestamp.
///
/// The counter can use additional sub-millisecond precision from the timestamp to better
/// synchronize UUID sorting in distributed systems. In these cases, the additional precision
/// is masked into the left-most 12 bits of the counter. The counter is still reseeded on
/// each new millisecond, and incremented within the millisecond. This behavior may change
/// in the future. The only guarantee is monotonicity.
///
/// This type can be used when constructing version 7 UUIDs. When used to construct a
/// version 7 UUID, the 42-bit counter will be padded with random data. This type can
/// be used to maintain ordering of UUIDs within the same millisecond.
///
/// This type should not be used when constructing version 1 or version 6 UUIDs.
/// When used to construct a version 1 or version 6 UUID, only the 14 least significant
/// bits of the counter will be used.
#[derive(Debug)]
pub struct ContextV7 {
timestamp: Cell<ReseedingTimestamp>,
counter: Cell<Counter>,
adjust: Adjust,
precision: Precision,
}
impl RefUnwindSafe for ContextV7 {}
impl ContextV7 {
/// Construct a new context that will reseed its counter on the first
/// non-zero timestamp it receives.
pub const fn new() -> Self {
ContextV7 {
timestamp: Cell::new(ReseedingTimestamp {
last_seed: 0,
seconds: 0,
subsec_nanos: 0,
}),
counter: Cell::new(Counter { value: 0 }),
adjust: Adjust { by_ns: 0 },
precision: Precision {
bits: 0,
mask: 0,
factor: 0,
shift: 0,
},
}
}
/// Specify an amount to shift timestamps by to obfuscate their actual generation time.
pub fn with_adjust_by_millis(mut self, millis: u32) -> Self {
self.adjust = Adjust::by_millis(millis);
self
}
/// Use the leftmost 12 bits of the counter for additional timestamp precision.
///
/// This method can provide better sorting for distributed applications that generate frequent UUIDs
/// by trading a small amount of entropy for better counter synchronization. Note that the counter
/// will still be reseeded on millisecond boundaries, even though some of its storage will be
/// dedicated to the timestamp.
pub fn with_additional_precision(mut self) -> Self {
self.precision = Precision::new(12);
self
}
}
impl ClockSequence for ContextV7 {
type Output = u64;
fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
self.generate_timestamp_sequence(seconds, subsec_nanos).0
}
fn generate_timestamp_sequence(
&self,
seconds: u64,
subsec_nanos: u32,
) -> (Self::Output, u64, u32) {
let (seconds, subsec_nanos) = self.adjust.apply(seconds, subsec_nanos);
let mut counter;
let (mut timestamp, should_reseed) =
self.timestamp.get().advance(seconds, subsec_nanos);
if should_reseed {
// If the observed system time has shifted forwards then regenerate the counter
counter = Counter::reseed(&self.precision, ×tamp);
} else {
// If the observed system time has not shifted forwards then increment the counter
// If the incoming timestamp is earlier than the last observed one then
// use it instead. This may happen if the system clock jitters, or if the counter
// has wrapped and the timestamp is artificially incremented
counter = self.counter.get().increment(&self.precision, ×tamp);
// Unlikely: If the counter has overflowed its 42-bit storage then wrap it
// and increment the timestamp. Until the observed system time shifts past
// this incremented value, all timestamps will use it to maintain monotonicity
if counter.has_overflowed() {
// Increment the timestamp by 1 milli and reseed the counter
timestamp = timestamp.increment();
counter = Counter::reseed(&self.precision, ×tamp);
}
};
self.timestamp.set(timestamp);
self.counter.set(counter);
(counter.value, timestamp.seconds, timestamp.subsec_nanos)
}
fn usable_bits(&self) -> usize {
USABLE_BITS
}
}
#[derive(Debug)]
struct Adjust {
by_ns: u128,
}
impl Adjust {
#[inline]
fn by_millis(millis: u32) -> Self {
Adjust {
by_ns: (millis as u128).saturating_mul(1_000_000),
}
}
#[inline]
fn apply(&self, seconds: u64, subsec_nanos: u32) -> (u64, u32) {
if self.by_ns == 0 {
// No shift applied
return (seconds, subsec_nanos);
}
let ts = (seconds as u128)
.saturating_mul(1_000_000_000)
.saturating_add(subsec_nanos as u128)
.saturating_add(self.by_ns as u128);
((ts / 1_000_000_000) as u64, (ts % 1_000_000_000) as u32)
}
}
#[derive(Debug, Default, Clone, Copy)]
struct ReseedingTimestamp {
last_seed: u64,
seconds: u64,
subsec_nanos: u32,
}
impl ReseedingTimestamp {
#[inline]
fn advance(&self, seconds: u64, subsec_nanos: u32) -> (Self, bool) {
let incoming = ReseedingTimestamp::from_ts(seconds, subsec_nanos);
if incoming.last_seed > self.last_seed {
// The incoming value is part of a new millisecond
(incoming, true)
} else {
// The incoming value is part of the same or an earlier millisecond
// We may still have advanced the subsecond portion, so use the larger value
let mut value = *self;
value.subsec_nanos = cmp::max(self.subsec_nanos, subsec_nanos);
(value, false)
}
}
#[inline]
fn from_ts(seconds: u64, subsec_nanos: u32) -> Self {
// Reseed when the millisecond advances
let last_seed = seconds
.saturating_mul(1_000)
.saturating_add((subsec_nanos / 1_000_000) as u64);
ReseedingTimestamp {
last_seed,
seconds,
subsec_nanos,
}
}
#[inline]
fn increment(&self) -> Self {
let (seconds, subsec_nanos) =
Adjust::by_millis(1).apply(self.seconds, self.subsec_nanos);
ReseedingTimestamp::from_ts(seconds, subsec_nanos)
}
#[inline]
fn submilli_nanos(&self) -> u32 {
self.subsec_nanos % 1_000_000
}
}
#[derive(Debug)]
struct Precision {
bits: usize,
factor: u64,
mask: u64,
shift: u64,
}
impl Precision {
fn new(bits: usize) -> Self {
// The mask and shift are used to paste the sub-millisecond precision
// into the most significant bits of the counter
let mask = u64::MAX >> (64 - USABLE_BITS + bits);
let shift = (USABLE_BITS - bits) as u64;
// The factor reduces the size of the sub-millisecond precision to
// fit into the specified number of bits
let factor = (999_999 / u64::pow(2, bits as u32)) + 1;
Precision {
bits,
factor,
mask,
shift,
}
}
#[inline]
fn apply(&self, value: u64, timestamp: &ReseedingTimestamp) -> u64 {
if self.bits == 0 {
// No additional precision is being used
return value;
}
let additional = timestamp.submilli_nanos() as u64 / self.factor;
(value & self.mask) | (additional << self.shift)
}
}
#[derive(Debug, Clone, Copy)]
struct Counter {
value: u64,
}
impl Counter {
#[inline]
fn reseed(precision: &Precision, timestamp: &ReseedingTimestamp) -> Self {
Counter {
value: precision.apply(crate::rng::u64() & RESEED_MASK, timestamp),
}
}
#[inline]
fn increment(&self, precision: &Precision, timestamp: &ReseedingTimestamp) -> Self {
let mut counter = Counter {
value: precision.apply(self.value, timestamp),
};
// We unconditionally increment the counter even though the precision
// may have set higher bits already. This could technically be avoided,
// but the higher bits are a coarse approximation so we just avoid the
// `if` branch and increment it either way
// Guaranteed to never overflow u64
counter.value += 1;
counter
}
#[inline]
fn has_overflowed(&self) -> bool {
self.value > MAX_COUNTER
}
}
#[cfg(feature = "std")]
pub(crate) struct SharedContextV7(std::sync::Mutex<ContextV7>);
#[cfg(feature = "std")]
impl ClockSequence for SharedContextV7 {
type Output = u64;
fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
self.0.generate_sequence(seconds, subsec_nanos)
}
fn generate_timestamp_sequence(
&self,
seconds: u64,
subsec_nanos: u32,
) -> (Self::Output, u64, u32) {
self.0.generate_timestamp_sequence(seconds, subsec_nanos)
}
fn usable_bits(&self) -> usize
where
Self::Output: Sized,
{
USABLE_BITS
}
}
#[cfg(test)]
mod tests {
use core::time::Duration;
use super::*;
use crate::{Timestamp, Uuid};
#[test]
fn context() {
let seconds = 1_496_854_535;
let subsec_nanos = 812_946_000;
let context = ContextV7::new();
let ts1 = Timestamp::from_unix(&context, seconds, subsec_nanos);
assert_eq!(42, ts1.usable_counter_bits);
// Backwards second
let seconds = 1_496_854_534;
let ts2 = Timestamp::from_unix(&context, seconds, subsec_nanos);
// The backwards time should be ignored
// The counter should still increment
assert_eq!(ts1.seconds, ts2.seconds);
assert_eq!(ts1.subsec_nanos, ts2.subsec_nanos);
assert_eq!(ts1.counter + 1, ts2.counter);
// Forwards second
let seconds = 1_496_854_536;
let ts3 = Timestamp::from_unix(&context, seconds, subsec_nanos);
// The counter should have reseeded
assert_ne!(ts2.counter + 1, ts3.counter);
assert_ne!(0, ts3.counter);
}
#[test]
fn context_wrap() {
let seconds = 1_496_854_535u64;
let subsec_nanos = 812_946_000u32;
// This context will wrap
let context = ContextV7 {
timestamp: Cell::new(ReseedingTimestamp::from_ts(seconds, subsec_nanos)),
adjust: Adjust::by_millis(0),
precision: Precision {
bits: 0,
mask: 0,
factor: 0,
shift: 0,
},
counter: Cell::new(Counter {
value: u64::MAX >> 22,
}),
};
let ts = Timestamp::from_unix(&context, seconds, subsec_nanos);
// The timestamp should be incremented by 1ms
let expected_ts = Duration::new(seconds, subsec_nanos) + Duration::from_millis(1);
assert_eq!(expected_ts.as_secs(), ts.seconds);
assert_eq!(expected_ts.subsec_nanos(), ts.subsec_nanos);
// The counter should have reseeded
assert!(ts.counter < (u64::MAX >> 22) as u128);
assert_ne!(0, ts.counter);
}
#[test]
fn context_shift() {
let seconds = 1_496_854_535;
let subsec_nanos = 812_946_000;
let context = ContextV7::new().with_adjust_by_millis(1);
let ts = Timestamp::from_unix(&context, seconds, subsec_nanos);
assert_eq!((1_496_854_535, 813_946_000), ts.to_unix());
}
#[test]
fn context_additional_precision() {
let seconds = 1_496_854_535;
let subsec_nanos = 812_946_000;
let context = ContextV7::new().with_additional_precision();
let ts1 = Timestamp::from_unix(&context, seconds, subsec_nanos);
// NOTE: Future changes in rounding may change this value slightly
assert_eq!(3861, ts1.counter >> 30);
assert!(ts1.counter < (u64::MAX >> 22) as u128);
// Generate another timestamp; it should continue to sort
let ts2 = Timestamp::from_unix(&context, seconds, subsec_nanos);
assert!(Uuid::new_v7(ts2) > Uuid::new_v7(ts1));
// Generate another timestamp with an extra nanosecond
let subsec_nanos = subsec_nanos + 1;
let ts3 = Timestamp::from_unix(&context, seconds, subsec_nanos);
assert!(Uuid::new_v7(ts3) > Uuid::new_v7(ts2));
}
#[test]
fn context_overflow() {
let seconds = u64::MAX;
let subsec_nanos = u32::MAX;
// Ensure we don't panic
for context in [
ContextV7::new(),
ContextV7::new().with_additional_precision(),
ContextV7::new().with_adjust_by_millis(u32::MAX),
] {
Timestamp::from_unix(&context, seconds, subsec_nanos);
}
}
}
}
#[cfg(feature = "v7")]
pub use v7_support::*;
/// An empty counter that will always return the value `0`.
///
/// This type can be used when constructing version 7 UUIDs. When used to
/// construct a version 7 UUID, the entire counter segment of the UUID will be
/// filled with a random value. This type does not maintain ordering of UUIDs
/// within a millisecond but is efficient.
///
/// This type should not be used when constructing version 1 or version 6 UUIDs.
/// When used to construct a version 1 or version 6 UUID, the counter
/// segment will remain zero.
#[derive(Debug, Clone, Copy, Default)]
pub struct NoContext;
impl ClockSequence for NoContext {
type Output = u16;
fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output {
0
}
fn usable_bits(&self) -> usize {
0
}
}
}
#[cfg(all(test, any(feature = "v1", feature = "v6")))]
mod tests {
use super::*;
#[cfg(all(
target_arch = "wasm32",
target_vendor = "unknown",
target_os = "unknown"
))]
use wasm_bindgen_test::*;
#[test]
#[cfg_attr(
all(
target_arch = "wasm32",
target_vendor = "unknown",
target_os = "unknown"
),
wasm_bindgen_test
)]
fn gregorian_unix_does_not_panic() {
// Ensure timestamp conversions never panic
Timestamp::unix_to_gregorian_ticks(u64::MAX, 0);
Timestamp::unix_to_gregorian_ticks(0, u32::MAX);
Timestamp::unix_to_gregorian_ticks(u64::MAX, u32::MAX);
Timestamp::gregorian_to_unix(u64::MAX);
}
#[test]
#[cfg_attr(
all(
target_arch = "wasm32",
target_vendor = "unknown",
target_os = "unknown"
),
wasm_bindgen_test
)]
fn to_gregorian_truncates_to_usable_bits() {
let ts = Timestamp::from_gregorian(123, u16::MAX);
assert_eq!((123, u16::MAX >> 2), ts.to_gregorian());
}
}