lexical_write_integer/jeaiii.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
//! Optimized integer-to-string conversion routines for decimal values.
//! This algorihm is described in [`Faster Integer Formatting`], which uses
//! binary search trees for highly optimized digit writing. For large numbers,
//! the increased branching can destroy performance, but for 32-bit or smaller
//! integers it is always faster and can be optimized in 64-bit cases.
//!
//! This is based off of the work by James Anhalt (jeaiii) and Junekey Jeon
//! (jk-jeon). This has a few advantages, one is that indexing can be done
//! without bounds checking, without any major performance hits, which minimizes
//! the unchecked indexing and therefore potential unsoundness.
//!
//! This has some additional changes for performance enhancements, most notably,
//! it flattens out most of the comparisons and uses larger first, which
//! paradoxically seems to improve performance, potentially due to less
//! branching.
//!
//! See [Algorithm.md](/docs/Algorithm.md) for a more detailed description of
//! the algorithm choice here. See [Benchmarks.md](/docs/Benchmarks.md) for
//! recent benchmark data.
//!
//! [`Faster Integer Formatting`]: https://jk-jeon.github.io/posts/2022/02/jeaiii-algorithm/
#![cfg(not(feature = "compact"))]
#![doc(hidden)]
use lexical_util::digit::digit_to_char_const;
use lexical_util::div128::fast_u128_divrem;
use crate::table::DIGIT_TO_BASE10_SQUARED;
// Mask to extract the lower half.
const LO32: u64 = u32::MAX as u64;
/// Get the next 2 digits from the input.
#[inline(always)]
fn next2(prod: &mut u64) -> u32 {
*prod = (*prod & LO32) * 100;
(*prod >> 32) as u32
}
/// Quickly calculate `n / 1e10` and `n % 1e10`.
#[inline(always)]
fn u128_divrem_10_10pow10(n: u128) -> (u128, u64) {
fast_u128_divrem(
n,
10000000000,
18889465931478580854784,
10,
73075081866545145910184241635814150983,
31,
)
}
/// Quickly calculate `n / 1e10` and `n % 1e10`.
///
/// We use this for quickly breaking our integer into
/// chunks of 10 digits for fast u128 formatting.
#[inline(always)]
fn div128_rem_1e10(n: u128) -> (u128, u64) {
u128_divrem_10_10pow10(n)
}
// Index a value from a buffer without bounds checking.
macro_rules! i {
($array:ident[$index:expr]) => {
// SAFETY: Safe if `array.len() > index`.
unsafe { *$array.get_unchecked($index) }
};
}
// Write N digits to our buffer.
macro_rules! write_n {
(@1 $buffer:ident, $index:expr, $n:expr) => {{
let index = $index;
let digit = digit_to_char_const($n as u32, 10);
$buffer[index] = digit;
index + 1
}};
(@2 $buffer:ident, $index:expr, $r:expr) => {{
let index = $index;
let r = $r as usize;
// NOTE: This always should be true due to how we calculate our bounds.
// `r` is always a single digit, so `2 * r` must be smaller than our
// square table.
debug_assert!(r < DIGIT_TO_BASE10_SQUARED.len());
$buffer[index] = i!(DIGIT_TO_BASE10_SQUARED[r]);
$buffer[index + 1] = i!(DIGIT_TO_BASE10_SQUARED[r + 1]);
index + 2
}};
// Identical to `@2` except it's writing from the end, not front.
// This is for our Alexandrescu-popularized algorithm.
(@2sub $buffer:ident, $index:ident, $r:expr) => {{
$index -= 2;
_ = write_n!(@2 $buffer, $index, $r);
}};
// This writes 4 digits, using 2sub twice after getting the high and low.
(@4sub $buffer:ident, $index:ident, $value:ident) => {{
let r = $value % 10000;
$value /= 10000;
let r1 = 2 * (r / 100);
let r2 = 2 * (r % 100);
write_n!(@2sub $buffer, $index, r2);
write_n!(@2sub $buffer, $index, r1);
}};
}
// Print the next 2 digits, using `next2`.
macro_rules! print_n {
(@2 $buffer:ident, $index:ident, $prod:ident) => {
$index = write_n!(@2 $buffer, $index, next2(&mut $prod) * 2);
};
(@n $buffer:ident, $index:ident, $n:ident, $magic:expr, $shift:expr, $remaining:expr) => {{
let mut prod = ($n as u64) * $magic;
prod >>= $shift;
let two = (prod >> 32) as u32;
if two < 10 {
$index = write_n!(@1 $buffer, $index, two);
for _ in 0..$remaining {
print_n!(@2 $buffer, $index, prod);
}
} else {
$index = write_n!(@2 $buffer, $index, two * 2);
for _ in 0..$remaining {
print_n!(@2 $buffer, $index, prod);
}
}
$index
}};
}
// Optimized digit writers for the number of digits for each.
// This avoids code duplication while keeping our flat logic.
macro_rules! write_digits {
(@1 $buffer:ident, $n:ident) => {
write_n!(@1 $buffer, 0, $n)
};
(@2 $buffer:ident, $n:ident) => {
write_n!(@2 $buffer, 0, $n * 2)
};
// NOTE: This is only used for u8
(@3 $buffer:ident, $n:ident) => {{
// `42949673 = ceil(2^32 / 10^2)`
let mut y = $n as u64 * 42949673u64;
_ = write_n!(@1 $buffer, 0, y >> 32);
write_n!(@2 $buffer, 1, next2(&mut y) * 2)
}};
(@3-4 $buffer:ident, $n:ident) => {{
// `42949673 = ceil(2^32 / 10^2)`
let mut index = 0;
print_n!(@n $buffer, index, $n, 42949673u64, 0, 1)
}};
(@5 $buffer:ident, $n:ident) => {{
// `429497 == ceil(2^32 / 10^4)`
let mut y = $n as u64 * 429497u64;
_ = write_n!(@1 $buffer, 0, y >> 32);
_ = write_n!(@2 $buffer, 1, next2(&mut y) * 2);
write_n!(@2 $buffer, 3, next2(&mut y) * 2)
}};
(@5-6 $buffer:ident, $n:ident) => {{
// `429497 == ceil(2^32 / 10^4)`
let mut index = 0;
print_n!(@n $buffer, index, $n, 429497u64, 0, 2)
}};
(@7-8 $buffer:ident, $n:ident) => {{
// `281474978 == ceil(2^48 / 10^6) + 1`
let mut index = 0;
print_n!(@n $buffer, index, $n, 281474978u64, 16, 3)
}};
(@9 $buffer:ident, $n:ident) => {{
// 1441151882 = ceil(2^57 / 10^8) + 1
let mut y = ($n as u64) * 1441151882u64;
y >>= 25;
_ = write_n!(@1 $buffer, 0, y >> 32);
_ = write_n!(@2 $buffer, 1, next2(&mut y) * 2);
_ = write_n!(@2 $buffer, 3, next2(&mut y) * 2);
_ = write_n!(@2 $buffer, 5, next2(&mut y) * 2);
write_n!(@2 $buffer, 7, next2(&mut y) * 2)
}};
(@10 $buffer:ident, $n:ident) => {{
// `1441151881 = ceil(2^57 / 10^8)`
let mut y = ($n as u64) * 1441151881u64;
y >>= 25;
_ = write_n!(@2 $buffer, 0, (y >> 32) * 2);
_ = write_n!(@2 $buffer, 2, next2(&mut y) * 2);
_ = write_n!(@2 $buffer, 4, next2(&mut y) * 2);
_ = write_n!(@2 $buffer, 6, next2(&mut y) * 2);
write_n!(@2 $buffer, 8, next2(&mut y) * 2)
}};
(@10u64 $buffer:ident, $n:ident) => {{
// Unfortunately, there is no good way without using 128 bits,
// since the smallest interval overflows a 64-bit integer at
// ~>= 5.5e9. This requires the value to be in `[1e9, 1e10)`,
// since there's no lower bound for the calculation and so it
// will not work with smaller values.
// D = 32, k = 8, L = 28
// `11529215047 = ceil(2^60 / 10^8)`
let prod = ($n as u128) * 11529215047u128;
let mut y = (prod >> 28) as u64;
_ = write_n!(@2 $buffer, 0, (y >> 32) * 2);
_ = write_n!(@2 $buffer, 2, next2(&mut y) * 2);
_ = write_n!(@2 $buffer, 4, next2(&mut y) * 2);
_ = write_n!(@2 $buffer, 6, next2(&mut y) * 2);
write_n!(@2 $buffer, 8, next2(&mut y) * 2)
}};
(@10alex $buffer:ident, $n:ident, $offset:ident) => {{
// This always writes 10 digits for any value `[0, 1e10)`,
// but it uses a slower algorithm to do so. Since we don't
// have to worry about
let mut value = $n;
let mut index = 10 + $offset;
write_n!(@4sub $buffer, index, value);
write_n!(@4sub $buffer, index, value);
write_n!(@2sub $buffer, index, value * 2);
10 + $offset
}};
}
/// Optimized jeaiii algorithm for u8.
#[inline(always)]
pub fn from_u8(n: u8, buffer: &mut [u8]) -> usize {
// NOTE: For some reason, doing the large comparisons **FIRST**
// seems to be faster than the inverse, for both large and small
// values, which seems to make little sense. But, the benchmarks
// tell us reality.
let buffer = &mut buffer[..3];
if n >= 100 {
write_digits!(@3 buffer, n)
} else if n >= 10 {
write_digits!(@2 buffer, n)
} else {
write_digits!(@1 buffer, n)
}
}
/// Optimized jeaiii algorithm for u16.
#[inline(always)]
pub fn from_u16(n: u16, buffer: &mut [u8]) -> usize {
// NOTE: Like before, this optimizes better for large and small
// values if there's a flat comparison with larger values first.
let buffer = &mut buffer[..5];
if n >= 1_0000 {
write_digits!(@5 buffer, n)
} else if n >= 100 {
write_digits!(@3-4 buffer, n)
} else if n >= 10 {
write_digits!(@2 buffer, n)
} else {
write_digits!(@1 buffer, n)
}
}
/// Optimized jeaiii algorithm for u32.
#[inline(always)]
#[allow(clippy::collapsible_else_if)] // reason = "branching is fine-tuned for performance"
pub fn from_u32(n: u32, buffer: &mut [u8]) -> usize {
// NOTE: Like before, this optimizes better for large and small
// values if there's a flat comparison with larger values first.
let buffer = &mut buffer[..10];
if n < 1_0000 {
if n >= 100 {
write_digits!(@3-4 buffer, n)
} else if n >= 10 {
write_digits!(@2 buffer, n)
} else {
write_digits!(@1 buffer, n)
}
} else if n < 1_0000_0000 {
if n >= 100_0000 {
write_digits!(@7-8 buffer, n)
} else {
write_digits!(@5-6 buffer, n)
}
} else {
if n >= 10_0000_0000 {
write_digits!(@10 buffer, n)
} else {
write_digits!(@9 buffer, n)
}
}
}
/// Optimized jeaiii algorithm for u64.
#[inline(always)]
#[allow(clippy::collapsible_else_if)] // reason = "branching is fine-tuned for performance"
fn from_u64_impl(n: u64, buffer: &mut [u8], is_signed: bool) -> usize {
// NOTE: Like before, this optimizes better for large and small
// values if there's a flat comparison with larger values first.
const FACTOR: u64 = 100_0000_0000;
// NOTE `i64` takes a max of 19 digits, while `u64` takes a max of 20.
let buffer = if is_signed {
&mut buffer[..19]
} else {
&mut buffer[..20]
};
if n < 1_0000 {
// 1 to 4 digits
if n >= 100 {
write_digits!(@3-4 buffer, n)
} else if n >= 10 {
write_digits!(@2 buffer, n)
} else {
write_digits!(@1 buffer, n)
}
} else if n < FACTOR {
// 5 to 10 digits
if n >= 10_0000_0000 {
// NOTE: We DO NOT know if this is >= u32::MAX,
// and the `write_digits!(@10)` is only accurate
// if `n <= 5.5e9`, which we cannot guarantee.
write_digits!(@10u64 buffer, n)
} else if n >= 1_0000_0000 {
write_digits!(@9 buffer, n)
} else if n >= 100_0000 {
write_digits!(@7-8 buffer, n)
} else {
write_digits!(@5-6 buffer, n)
}
} else {
// 11-20 digits, can do in 2 steps (11-19 if is signed).
// NOTE: `hi` has to be in `[0, 2^31)`, while `lo` is in `[0, 10^11)`
// So, we can use our `from_u64_small` for hi. For our `lo`, we always
// need to write 10 digits. However, the `jeaiii` algorithm is too
// slow, so we use a modified variant of our 2-digit unfolding for
// exactly 10 digits to read our values. We can optimize this in
// 2x 4 digits and 1x 2 digits.
let hi = (n / FACTOR) as u32;
let lo = n % FACTOR;
let offset = from_u32(hi, buffer);
write_digits!(@10alex buffer, lo, offset)
}
}
/// Optimized jeaiii algorithm for u64.
#[inline(always)]
pub fn from_u64(n: u64, buffer: &mut [u8]) -> usize {
from_u64_impl(n, buffer, false)
}
/// Optimized jeaiii algorithm for i64, which must be positive.
///
/// This value **MUST** have originally been from an `i64`, since it
/// uses `19` for the bounds checked, so this will panic if `>= 10^19`
/// is passed to the function.
#[inline(always)]
pub fn from_i64(n: u64, buffer: &mut [u8]) -> usize {
debug_assert!(n <= 1000_0000_0000_0000_0000u64);
from_u64_impl(n, buffer, true)
}
/// Optimized jeaiii algorithm for u128.
#[inline(always)]
#[allow(clippy::collapsible_else_if)] // reason = "branching is fine-tuned for performance"
pub fn from_u128(n: u128, buffer: &mut [u8]) -> usize {
// NOTE: Like before, this optimizes better for large and small
// values if there's a flat comparison with larger values first.
let buffer = &mut buffer[..39];
if n < 1_0000 {
// 1 to 4 digits
if n >= 100 {
write_digits!(@3-4 buffer, n)
} else if n >= 10 {
write_digits!(@2 buffer, n)
} else {
write_digits!(@1 buffer, n)
}
} else if n < 100_0000_0000 {
// 5 to 10 digits
if n >= 10_0000_0000 {
// NOTE: We DO NOT know if this is >= u32::MAX,
// and the `write_digits!(@10)` is only accurate
// if `n <= 5.5e9`, which we cannot guarantee.
write_digits!(@10u64 buffer, n)
} else if n >= 1_0000_0000 {
write_digits!(@9 buffer, n)
} else if n >= 100_0000 {
write_digits!(@7-8 buffer, n)
} else {
write_digits!(@5-6 buffer, n)
}
} else {
// 11-39 digits, can do in 2-4 steps
// NOTE: We need to use fast division (`u128_divrem`) for this, which
// we can do in 2-4 steps (`2^128 - 1 == ~3.4e38`). So, we need to
// calculate the number of digits to avoid shifting into place, then
// once we do, we can write 1-3 `lo` digits and the `hi` digits (which
// must be in the range `[0, 2^29)`). Our `jeaiii` algorithm is too
// slow, so we use a modified variant of our 2-digit unfolding for
// exactly 10 digits to read our values. We can optimize this in
// 2x 4 digits and 1x 2 digits.
if n >= 100_0000_0000_0000_0000_0000_0000_0000 {
// 4 steps
let (mid, d) = div128_rem_1e10(n);
let (mid, c) = div128_rem_1e10(mid);
let (hi, b) = div128_rem_1e10(mid);
// NOTE: `2^128 == ~3.4e38`, so `a` must be in the
// range `[0, 2^29)`)
let a = hi as u32;
let mut offset = from_u32(a, buffer);
offset = write_digits!(@10alex buffer, b, offset);
offset = write_digits!(@10alex buffer, c, offset);
write_digits!(@10alex buffer, d, offset)
} else if n >= 1_0000_0000_0000_0000_0000 {
// 3 steps
let (mid, lo) = div128_rem_1e10(n);
let (hi, mid) = div128_rem_1e10(mid);
let hi = hi as u64;
let mut offset = from_u64(hi, buffer);
offset = write_digits!(@10alex buffer, mid, offset);
write_digits!(@10alex buffer, lo, offset)
} else {
// 2 steps
let (hi, lo) = div128_rem_1e10(n);
let hi = hi as u64;
let offset = from_u64(hi, buffer);
write_digits!(@10alex buffer, lo, offset)
}
}
}