lexical_write_integer/
jeaiii.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
//! Optimized integer-to-string conversion routines for decimal values.

//! This algorihm is described in [`Faster Integer Formatting`], which uses
//! binary search trees for highly optimized digit writing. For large numbers,
//! the increased branching can destroy performance, but for 32-bit or smaller
//! integers it is always faster and can be optimized in 64-bit cases.
//!
//! This is based off of the work by James Anhalt (jeaiii) and Junekey Jeon
//! (jk-jeon). This has a few advantages, one is that indexing can be done
//! without bounds checking, without any major performance hits, which minimizes
//! the unchecked indexing and therefore potential unsoundness.
//!
//! This has some additional changes for performance enhancements, most notably,
//! it flattens out most of the comparisons and uses larger first, which
//! paradoxically seems to improve performance, potentially due to less
//! branching.
//!
//! See [Algorithm.md](/docs/Algorithm.md) for a more detailed description of
//! the algorithm choice here. See [Benchmarks.md](/docs/Benchmarks.md) for
//! recent benchmark data.
//!
//! [`Faster Integer Formatting`]: https://jk-jeon.github.io/posts/2022/02/jeaiii-algorithm/

#![cfg(not(feature = "compact"))]
#![doc(hidden)]

use lexical_util::digit::digit_to_char_const;
use lexical_util::div128::fast_u128_divrem;

use crate::table::DIGIT_TO_BASE10_SQUARED;

// Mask to extract the lower half.
const LO32: u64 = u32::MAX as u64;

/// Get the next 2 digits from the input.
#[inline(always)]
fn next2(prod: &mut u64) -> u32 {
    *prod = (*prod & LO32) * 100;
    (*prod >> 32) as u32
}

/// Quickly calculate `n / 1e10` and `n % 1e10`.
#[inline(always)]
fn u128_divrem_10_10pow10(n: u128) -> (u128, u64) {
    fast_u128_divrem(
        n,
        10000000000,
        18889465931478580854784,
        10,
        73075081866545145910184241635814150983,
        31,
    )
}

/// Quickly calculate `n / 1e10` and `n % 1e10`.
///
/// We use this for quickly breaking our integer into
/// chunks of 10 digits for fast u128 formatting.
#[inline(always)]
fn div128_rem_1e10(n: u128) -> (u128, u64) {
    u128_divrem_10_10pow10(n)
}

// Index a value from a buffer without bounds checking.
macro_rules! i {
    ($array:ident[$index:expr]) => {
        // SAFETY: Safe if `array.len() > index`.
        unsafe { *$array.get_unchecked($index) }
    };
}

// Write N digits to our buffer.
macro_rules! write_n {
    (@1 $buffer:ident, $index:expr, $n:expr) => {{
        let index = $index;
        let digit = digit_to_char_const($n as u32, 10);
        $buffer[index] = digit;
        index + 1
    }};

    (@2 $buffer:ident, $index:expr, $r:expr) => {{
        let index = $index;
        let r = $r as usize;
        // NOTE: This always should be true due to how we calculate our bounds.
        // `r` is always a single digit, so `2 * r` must be smaller than our
        // square table.
        debug_assert!(r < DIGIT_TO_BASE10_SQUARED.len());
        $buffer[index] = i!(DIGIT_TO_BASE10_SQUARED[r]);
        $buffer[index + 1] = i!(DIGIT_TO_BASE10_SQUARED[r + 1]);
        index + 2
    }};

    // Identical to `@2` except it's writing from the end, not front.
    // This is for our Alexandrescu-popularized algorithm.
    (@2sub $buffer:ident, $index:ident, $r:expr) => {{
        $index -= 2;
        _ = write_n!(@2 $buffer, $index, $r);
    }};

    // This writes 4 digits, using 2sub twice after getting the high and low.
    (@4sub $buffer:ident, $index:ident, $value:ident) => {{
        let r = $value % 10000;
        $value /= 10000;
        let r1 = 2 * (r / 100);
        let r2 = 2 * (r % 100);
        write_n!(@2sub $buffer, $index, r2);
        write_n!(@2sub $buffer, $index, r1);
    }};
}

// Print the next 2 digits, using `next2`.
macro_rules! print_n {
    (@2 $buffer:ident, $index:ident, $prod:ident) => {
        $index = write_n!(@2 $buffer, $index, next2(&mut $prod) * 2);
    };

    (@n $buffer:ident, $index:ident, $n:ident, $magic:expr, $shift:expr, $remaining:expr) => {{
        let mut prod = ($n as u64) * $magic;
        prod >>= $shift;
        let two = (prod >> 32) as u32;
        if two < 10 {
            $index = write_n!(@1 $buffer, $index, two);
            for _ in 0..$remaining {
                print_n!(@2 $buffer, $index, prod);
            }
        } else {
            $index = write_n!(@2 $buffer, $index, two * 2);
            for _ in 0..$remaining {
                print_n!(@2 $buffer, $index, prod);
            }
        }
        $index
    }};
}

// Optimized digit writers for the number of digits for each.
// This avoids code duplication while keeping our flat logic.
macro_rules! write_digits {
    (@1 $buffer:ident, $n:ident) => {
        write_n!(@1 $buffer, 0, $n)
    };

    (@2 $buffer:ident, $n:ident) => {
        write_n!(@2 $buffer, 0, $n * 2)
    };

    // NOTE: This is only used for u8
    (@3 $buffer:ident, $n:ident) => {{
        // `42949673 = ceil(2^32 / 10^2)`
        let mut y = $n as u64 * 42949673u64;
        _ = write_n!(@1 $buffer, 0, y >> 32);
        write_n!(@2 $buffer, 1, next2(&mut y) * 2)
    }};

    (@3-4 $buffer:ident, $n:ident) => {{
        // `42949673 = ceil(2^32 / 10^2)`
        let mut index = 0;
        print_n!(@n $buffer, index, $n, 42949673u64, 0, 1)
    }};

    (@5 $buffer:ident, $n:ident) => {{
        // `429497 == ceil(2^32 / 10^4)`
        let mut y = $n as u64 * 429497u64;
        _ = write_n!(@1 $buffer, 0, y >> 32);
        _ = write_n!(@2 $buffer, 1, next2(&mut y) * 2);
        write_n!(@2 $buffer, 3, next2(&mut y) * 2)
    }};

    (@5-6 $buffer:ident, $n:ident) => {{
        // `429497 == ceil(2^32 / 10^4)`
        let mut index = 0;
        print_n!(@n $buffer, index, $n, 429497u64, 0, 2)
    }};

    (@7-8 $buffer:ident, $n:ident) => {{
        // `281474978 == ceil(2^48 / 10^6) + 1`
        let mut index = 0;
        print_n!(@n $buffer, index, $n, 281474978u64, 16, 3)
    }};

    (@9 $buffer:ident, $n:ident) => {{
        // 1441151882 = ceil(2^57 / 10^8) + 1
        let mut y = ($n as u64) * 1441151882u64;
        y >>= 25;
        _ = write_n!(@1 $buffer, 0, y >> 32);
        _ = write_n!(@2 $buffer, 1, next2(&mut y) * 2);
        _ = write_n!(@2 $buffer, 3, next2(&mut y) * 2);
        _ = write_n!(@2 $buffer, 5, next2(&mut y) * 2);
        write_n!(@2 $buffer, 7, next2(&mut y) * 2)
    }};

    (@10 $buffer:ident, $n:ident) => {{
        // `1441151881 = ceil(2^57 / 10^8)`
        let mut y = ($n as u64) * 1441151881u64;
        y >>= 25;
        _ = write_n!(@2 $buffer, 0, (y >> 32) * 2);
        _ = write_n!(@2 $buffer, 2, next2(&mut y) * 2);
        _ = write_n!(@2 $buffer, 4, next2(&mut y) * 2);
        _ = write_n!(@2 $buffer, 6, next2(&mut y) * 2);
        write_n!(@2 $buffer, 8, next2(&mut y) * 2)
    }};

    (@10u64 $buffer:ident, $n:ident) => {{
        // Unfortunately, there is no good way without using 128 bits,
        // since the smallest interval overflows a 64-bit integer at
        // ~>= 5.5e9. This requires the value to be in `[1e9, 1e10)`,
        // since there's no lower bound for the calculation and so it
        // will not work with smaller values.
        // D = 32, k = 8, L = 28
        // `11529215047 = ceil(2^60 / 10^8)`
        let prod = ($n as u128) * 11529215047u128;
        let mut y = (prod >> 28) as u64;
        _ = write_n!(@2 $buffer, 0, (y >> 32) * 2);
        _ = write_n!(@2 $buffer, 2, next2(&mut y) * 2);
        _ = write_n!(@2 $buffer, 4, next2(&mut y) * 2);
        _ = write_n!(@2 $buffer, 6, next2(&mut y) * 2);
        write_n!(@2 $buffer, 8, next2(&mut y) * 2)
    }};

    (@10alex $buffer:ident, $n:ident, $offset:ident) => {{
        // This always writes 10 digits for any value `[0, 1e10)`,
        // but it uses a slower algorithm to do so. Since we don't
        // have to worry about
        let mut value = $n;
        let mut index = 10 + $offset;
        write_n!(@4sub $buffer, index, value);
        write_n!(@4sub $buffer, index, value);
        write_n!(@2sub $buffer, index, value * 2);
        10 + $offset
    }};
}

/// Optimized jeaiii algorithm for u8.
#[inline(always)]
pub fn from_u8(n: u8, buffer: &mut [u8]) -> usize {
    // NOTE: For some reason, doing the large comparisons **FIRST**
    // seems to be faster than the inverse, for both large and small
    // values, which seems to make little sense. But, the benchmarks
    // tell us reality.
    let buffer = &mut buffer[..3];
    if n >= 100 {
        write_digits!(@3 buffer, n)
    } else if n >= 10 {
        write_digits!(@2 buffer, n)
    } else {
        write_digits!(@1 buffer, n)
    }
}

/// Optimized jeaiii algorithm for u16.
#[inline(always)]
pub fn from_u16(n: u16, buffer: &mut [u8]) -> usize {
    // NOTE: Like before, this optimizes better for large and small
    // values if there's a flat comparison with larger values first.
    let buffer = &mut buffer[..5];
    if n >= 1_0000 {
        write_digits!(@5 buffer, n)
    } else if n >= 100 {
        write_digits!(@3-4 buffer, n)
    } else if n >= 10 {
        write_digits!(@2 buffer, n)
    } else {
        write_digits!(@1 buffer, n)
    }
}

/// Optimized jeaiii algorithm for u32.
#[inline(always)]
#[allow(clippy::collapsible_else_if)] // reason = "branching is fine-tuned for performance"
pub fn from_u32(n: u32, buffer: &mut [u8]) -> usize {
    // NOTE: Like before, this optimizes better for large and small
    // values if there's a flat comparison with larger values first.
    let buffer = &mut buffer[..10];
    if n < 1_0000 {
        if n >= 100 {
            write_digits!(@3-4 buffer, n)
        } else if n >= 10 {
            write_digits!(@2 buffer, n)
        } else {
            write_digits!(@1 buffer, n)
        }
    } else if n < 1_0000_0000 {
        if n >= 100_0000 {
            write_digits!(@7-8 buffer, n)
        } else {
            write_digits!(@5-6 buffer, n)
        }
    } else {
        if n >= 10_0000_0000 {
            write_digits!(@10 buffer, n)
        } else {
            write_digits!(@9 buffer, n)
        }
    }
}

/// Optimized jeaiii algorithm for u64.
#[inline(always)]
#[allow(clippy::collapsible_else_if)] // reason = "branching is fine-tuned for performance"
fn from_u64_impl(n: u64, buffer: &mut [u8], is_signed: bool) -> usize {
    // NOTE: Like before, this optimizes better for large and small
    // values if there's a flat comparison with larger values first.
    const FACTOR: u64 = 100_0000_0000;
    // NOTE `i64` takes a max of 19 digits, while `u64` takes a max of 20.
    let buffer = if is_signed {
        &mut buffer[..19]
    } else {
        &mut buffer[..20]
    };
    if n < 1_0000 {
        // 1 to 4 digits
        if n >= 100 {
            write_digits!(@3-4 buffer, n)
        } else if n >= 10 {
            write_digits!(@2 buffer, n)
        } else {
            write_digits!(@1 buffer, n)
        }
    } else if n < FACTOR {
        // 5 to 10 digits
        if n >= 10_0000_0000 {
            // NOTE: We DO NOT know if this is >= u32::MAX,
            // and the `write_digits!(@10)` is only accurate
            // if `n <= 5.5e9`, which we cannot guarantee.
            write_digits!(@10u64 buffer, n)
        } else if n >= 1_0000_0000 {
            write_digits!(@9 buffer, n)
        } else if n >= 100_0000 {
            write_digits!(@7-8 buffer, n)
        } else {
            write_digits!(@5-6 buffer, n)
        }
    } else {
        // 11-20 digits, can do in 2 steps (11-19 if is signed).
        // NOTE: `hi` has to be in `[0, 2^31)`, while `lo` is in `[0, 10^11)`
        // So, we can use our `from_u64_small` for hi. For our `lo`, we always
        // need to write 10 digits. However, the `jeaiii` algorithm is too
        // slow, so we use a modified variant of our 2-digit unfolding for
        // exactly 10 digits to read our values. We can optimize this in
        // 2x 4 digits and 1x 2 digits.
        let hi = (n / FACTOR) as u32;
        let lo = n % FACTOR;
        let offset = from_u32(hi, buffer);
        write_digits!(@10alex buffer, lo, offset)
    }
}

/// Optimized jeaiii algorithm for u64.
#[inline(always)]
pub fn from_u64(n: u64, buffer: &mut [u8]) -> usize {
    from_u64_impl(n, buffer, false)
}

/// Optimized jeaiii algorithm for i64, which must be positive.
///
/// This value **MUST** have originally been from an `i64`, since it
/// uses `19` for the bounds checked, so this will panic if `>= 10^19`
/// is passed to the function.
#[inline(always)]
pub fn from_i64(n: u64, buffer: &mut [u8]) -> usize {
    debug_assert!(n <= 1000_0000_0000_0000_0000u64);
    from_u64_impl(n, buffer, true)
}

/// Optimized jeaiii algorithm for u128.
#[inline(always)]
#[allow(clippy::collapsible_else_if)] // reason = "branching is fine-tuned for performance"
pub fn from_u128(n: u128, buffer: &mut [u8]) -> usize {
    // NOTE: Like before, this optimizes better for large and small
    // values if there's a flat comparison with larger values first.
    let buffer = &mut buffer[..39];
    if n < 1_0000 {
        // 1 to 4 digits
        if n >= 100 {
            write_digits!(@3-4 buffer, n)
        } else if n >= 10 {
            write_digits!(@2 buffer, n)
        } else {
            write_digits!(@1 buffer, n)
        }
    } else if n < 100_0000_0000 {
        // 5 to 10 digits
        if n >= 10_0000_0000 {
            // NOTE: We DO NOT know if this is >= u32::MAX,
            // and the `write_digits!(@10)` is only accurate
            // if `n <= 5.5e9`, which we cannot guarantee.
            write_digits!(@10u64 buffer, n)
        } else if n >= 1_0000_0000 {
            write_digits!(@9 buffer, n)
        } else if n >= 100_0000 {
            write_digits!(@7-8 buffer, n)
        } else {
            write_digits!(@5-6 buffer, n)
        }
    } else {
        // 11-39 digits, can do in 2-4 steps

        // NOTE: We need to use fast division (`u128_divrem`) for this, which
        // we can do in 2-4 steps (`2^128 - 1 == ~3.4e38`). So, we need to
        // calculate the number of digits to avoid shifting into place, then
        // once we do, we can write 1-3 `lo` digits and the `hi` digits (which
        // must be in the range `[0, 2^29)`). Our `jeaiii` algorithm is too
        // slow, so we use a modified variant of our 2-digit unfolding for
        // exactly 10 digits to read our values. We can optimize this in
        // 2x 4 digits and 1x 2 digits.
        if n >= 100_0000_0000_0000_0000_0000_0000_0000 {
            // 4 steps
            let (mid, d) = div128_rem_1e10(n);
            let (mid, c) = div128_rem_1e10(mid);
            let (hi, b) = div128_rem_1e10(mid);
            // NOTE: `2^128 == ~3.4e38`, so `a` must be in the
            // range `[0, 2^29)`)
            let a = hi as u32;
            let mut offset = from_u32(a, buffer);
            offset = write_digits!(@10alex buffer, b, offset);
            offset = write_digits!(@10alex buffer, c, offset);
            write_digits!(@10alex buffer, d, offset)
        } else if n >= 1_0000_0000_0000_0000_0000 {
            // 3 steps
            let (mid, lo) = div128_rem_1e10(n);
            let (hi, mid) = div128_rem_1e10(mid);
            let hi = hi as u64;
            let mut offset = from_u64(hi, buffer);
            offset = write_digits!(@10alex buffer, mid, offset);
            write_digits!(@10alex buffer, lo, offset)
        } else {
            // 2 steps
            let (hi, lo) = div128_rem_1e10(n);
            let hi = hi as u64;
            let offset = from_u64(hi, buffer);
            write_digits!(@10alex buffer, lo, offset)
        }
    }
}