asynchronous_codec/
framed.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
use super::framed_read::{framed_read_2, FramedRead2};
use super::framed_write::{framed_write_2, FramedWrite2};
use super::fuse::Fuse;
use super::{Decoder, Encoder};
use bytes::BytesMut;
use futures_sink::Sink;
use futures_util::io::{AsyncRead, AsyncWrite};
use futures_util::stream::{Stream, TryStreamExt};
use pin_project_lite::pin_project;
use std::marker::Unpin;
use std::ops::{Deref, DerefMut};
use std::pin::Pin;
use std::task::{Context, Poll};

pin_project! {
    /// A unified `Stream` and `Sink` interface to an underlying I/O object,
    /// using the `Encoder` and `Decoder` traits to encode and decode frames.
    ///
    /// # Example
    /// ```
    /// use bytes::Bytes;
    /// use futures::{SinkExt, TryStreamExt};
    /// use futures::io::Cursor;
    /// use asynchronous_codec::{BytesCodec, Framed};
    ///
    /// # futures::executor::block_on(async move {
    /// let cur = Cursor::new(vec![0u8; 12]);
    /// let mut framed = Framed::new(cur, BytesCodec {});
    ///
    /// // Send bytes to `buf` through the `BytesCodec`
    /// let bytes = Bytes::from("Hello world!");
    /// framed.send(bytes).await?;
    ///
    /// // Drop down to the underlying I/O stream.
    /// let cur = framed.into_inner();
    /// assert_eq!(cur.get_ref(), b"Hello world!");
    /// # Ok::<_, std::io::Error>(())
    /// # }).unwrap();
    /// ```
    #[derive(Debug)]
    pub struct Framed<T, U> {
        #[pin]
        inner: FramedRead2<FramedWrite2<Fuse<T, U>>>,
    }
}

impl<T, U> Deref for Framed<T, U> {
    type Target = T;

    fn deref(&self) -> &T {
        &self.inner
    }
}

impl<T, U> DerefMut for Framed<T, U> {
    fn deref_mut(&mut self) -> &mut T {
        &mut self.inner
    }
}

impl<T, U> Framed<T, U>
where
    T: AsyncRead + AsyncWrite,
    U: Decoder + Encoder,
{
    /// Creates a new `Framed` transport with the given codec.
    /// A codec is a type which implements `Decoder` and `Encoder`.
    pub fn new(inner: T, codec: U) -> Self {
        Self {
            inner: framed_read_2(framed_write_2(Fuse::new(inner, codec), None), None),
        }
    }

    /// Creates a new `Framed` from [`FramedParts`].
    ///
    /// See also [`Framed::into_parts`].
    pub fn from_parts(
        FramedParts {
            io,
            codec,
            write_buffer,
            read_buffer,
            ..
        }: FramedParts<T, U>,
    ) -> Self {
        let framed_write = framed_write_2(Fuse::new(io, codec), Some(write_buffer));
        let framed_read = framed_read_2(framed_write, Some(read_buffer));
        Self { inner: framed_read }
    }

    /// Consumes the `Framed`, returning its parts, such that a new
    /// `Framed` may be constructed, possibly with a different codec.
    ///
    /// See also [`Framed::from_parts`].
    pub fn into_parts(self) -> FramedParts<T, U> {
        let (framed_write, read_buffer) = self.inner.into_parts();
        let (fuse, write_buffer) = framed_write.into_parts();
        FramedParts {
            io: fuse.t,
            codec: fuse.u,
            read_buffer,
            write_buffer,
            _priv: (),
        }
    }

    /// Consumes the `Framed`, returning its underlying I/O stream.
    ///
    /// Note that data that has already been read or written but not yet
    /// consumed by the decoder or flushed, respectively, is dropped.
    /// To retain any such potentially buffered data, use [`Framed::into_parts()`].
    pub fn into_inner(self) -> T {
        self.into_parts().io
    }

    /// Returns a reference to the underlying codec wrapped by
    /// `Framed`.
    ///
    /// Note that care should be taken to not tamper with the underlying codec
    /// as it may corrupt the stream of frames otherwise being worked with.
    pub fn codec(&self) -> &U {
        &self.inner.u
    }

    /// Returns a mutable reference to the underlying codec wrapped by
    /// `Framed`.
    ///
    /// Note that care should be taken to not tamper with the underlying codec
    /// as it may corrupt the stream of frames otherwise being worked with.
    pub fn codec_mut(&mut self) -> &mut U {
        &mut self.inner.u
    }

    /// Returns a reference to the read buffer.
    pub fn read_buffer(&self) -> &BytesMut {
        self.inner.buffer()
    }
}

impl<T, U> Stream for Framed<T, U>
where
    T: AsyncRead + Unpin,
    U: Decoder,
{
    type Item = Result<U::Item, U::Error>;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        self.inner.try_poll_next_unpin(cx)
    }
}

impl<T, U> Sink<U::Item> for Framed<T, U>
where
    T: AsyncWrite + Unpin,
    U: Encoder,
{
    type Error = U::Error;

    fn poll_ready(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), Self::Error>> {
        self.project().inner.poll_ready(cx)
    }
    fn start_send(self: Pin<&mut Self>, item: U::Item) -> Result<(), Self::Error> {
        self.project().inner.start_send(item)
    }
    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), Self::Error>> {
        self.project().inner.poll_flush(cx)
    }
    fn poll_close(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), Self::Error>> {
        self.project().inner.poll_close(cx)
    }
}

/// The parts obtained from [`Framed::into_parts`].
pub struct FramedParts<T, U> {
    /// The underlying I/O stream.
    pub io: T,
    /// The codec used for encoding and decoding frames.
    pub codec: U,
    /// The remaining read buffer, containing data that has been
    /// read from `io` but not yet consumed by the codec's decoder.
    pub read_buffer: BytesMut,
    /// The remaining write buffer, containing framed data that has been
    /// buffered but not yet flushed to `io`.
    pub write_buffer: BytesMut,
    /// Keep the constructor private.
    _priv: (),
}

impl<T, U> FramedParts<T, U> {
    /// Changes the codec used in this `FramedParts`.
    pub fn map_codec<V, F>(self, f: F) -> FramedParts<T, V>
    where
        V: Encoder + Decoder,
        F: FnOnce(U) -> V,
    {
        FramedParts {
            io: self.io,
            codec: f(self.codec),
            read_buffer: self.read_buffer,
            write_buffer: self.write_buffer,
            _priv: (),
        }
    }
}