asynchronous_codec/framed.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
use super::framed_read::{framed_read_2, FramedRead2};
use super::framed_write::{framed_write_2, FramedWrite2};
use super::fuse::Fuse;
use super::{Decoder, Encoder};
use bytes::BytesMut;
use futures_sink::Sink;
use futures_util::io::{AsyncRead, AsyncWrite};
use futures_util::stream::{Stream, TryStreamExt};
use pin_project_lite::pin_project;
use std::marker::Unpin;
use std::ops::{Deref, DerefMut};
use std::pin::Pin;
use std::task::{Context, Poll};
pin_project! {
/// A unified `Stream` and `Sink` interface to an underlying I/O object,
/// using the `Encoder` and `Decoder` traits to encode and decode frames.
///
/// # Example
/// ```
/// use bytes::Bytes;
/// use futures::{SinkExt, TryStreamExt};
/// use futures::io::Cursor;
/// use asynchronous_codec::{BytesCodec, Framed};
///
/// # futures::executor::block_on(async move {
/// let cur = Cursor::new(vec![0u8; 12]);
/// let mut framed = Framed::new(cur, BytesCodec {});
///
/// // Send bytes to `buf` through the `BytesCodec`
/// let bytes = Bytes::from("Hello world!");
/// framed.send(bytes).await?;
///
/// // Drop down to the underlying I/O stream.
/// let cur = framed.into_inner();
/// assert_eq!(cur.get_ref(), b"Hello world!");
/// # Ok::<_, std::io::Error>(())
/// # }).unwrap();
/// ```
#[derive(Debug)]
pub struct Framed<T, U> {
#[pin]
inner: FramedRead2<FramedWrite2<Fuse<T, U>>>,
}
}
impl<T, U> Deref for Framed<T, U> {
type Target = T;
fn deref(&self) -> &T {
&self.inner
}
}
impl<T, U> DerefMut for Framed<T, U> {
fn deref_mut(&mut self) -> &mut T {
&mut self.inner
}
}
impl<T, U> Framed<T, U>
where
T: AsyncRead + AsyncWrite,
U: Decoder + Encoder,
{
/// Creates a new `Framed` transport with the given codec.
/// A codec is a type which implements `Decoder` and `Encoder`.
pub fn new(inner: T, codec: U) -> Self {
Self {
inner: framed_read_2(framed_write_2(Fuse::new(inner, codec), None), None),
}
}
/// Creates a new `Framed` from [`FramedParts`].
///
/// See also [`Framed::into_parts`].
pub fn from_parts(
FramedParts {
io,
codec,
write_buffer,
read_buffer,
..
}: FramedParts<T, U>,
) -> Self {
let framed_write = framed_write_2(Fuse::new(io, codec), Some(write_buffer));
let framed_read = framed_read_2(framed_write, Some(read_buffer));
Self { inner: framed_read }
}
/// Consumes the `Framed`, returning its parts, such that a new
/// `Framed` may be constructed, possibly with a different codec.
///
/// See also [`Framed::from_parts`].
pub fn into_parts(self) -> FramedParts<T, U> {
let (framed_write, read_buffer) = self.inner.into_parts();
let (fuse, write_buffer) = framed_write.into_parts();
FramedParts {
io: fuse.t,
codec: fuse.u,
read_buffer,
write_buffer,
_priv: (),
}
}
/// Consumes the `Framed`, returning its underlying I/O stream.
///
/// Note that data that has already been read or written but not yet
/// consumed by the decoder or flushed, respectively, is dropped.
/// To retain any such potentially buffered data, use [`Framed::into_parts()`].
pub fn into_inner(self) -> T {
self.into_parts().io
}
/// Returns a reference to the underlying codec wrapped by
/// `Framed`.
///
/// Note that care should be taken to not tamper with the underlying codec
/// as it may corrupt the stream of frames otherwise being worked with.
pub fn codec(&self) -> &U {
&self.inner.u
}
/// Returns a mutable reference to the underlying codec wrapped by
/// `Framed`.
///
/// Note that care should be taken to not tamper with the underlying codec
/// as it may corrupt the stream of frames otherwise being worked with.
pub fn codec_mut(&mut self) -> &mut U {
&mut self.inner.u
}
/// Returns a reference to the read buffer.
pub fn read_buffer(&self) -> &BytesMut {
self.inner.buffer()
}
}
impl<T, U> Stream for Framed<T, U>
where
T: AsyncRead + Unpin,
U: Decoder,
{
type Item = Result<U::Item, U::Error>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
self.inner.try_poll_next_unpin(cx)
}
}
impl<T, U> Sink<U::Item> for Framed<T, U>
where
T: AsyncWrite + Unpin,
U: Encoder,
{
type Error = U::Error;
fn poll_ready(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), Self::Error>> {
self.project().inner.poll_ready(cx)
}
fn start_send(self: Pin<&mut Self>, item: U::Item) -> Result<(), Self::Error> {
self.project().inner.start_send(item)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), Self::Error>> {
self.project().inner.poll_flush(cx)
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), Self::Error>> {
self.project().inner.poll_close(cx)
}
}
/// The parts obtained from [`Framed::into_parts`].
pub struct FramedParts<T, U> {
/// The underlying I/O stream.
pub io: T,
/// The codec used for encoding and decoding frames.
pub codec: U,
/// The remaining read buffer, containing data that has been
/// read from `io` but not yet consumed by the codec's decoder.
pub read_buffer: BytesMut,
/// The remaining write buffer, containing framed data that has been
/// buffered but not yet flushed to `io`.
pub write_buffer: BytesMut,
/// Keep the constructor private.
_priv: (),
}
impl<T, U> FramedParts<T, U> {
/// Changes the codec used in this `FramedParts`.
pub fn map_codec<V, F>(self, f: F) -> FramedParts<T, V>
where
V: Encoder + Decoder,
F: FnOnce(U) -> V,
{
FramedParts {
io: self.io,
codec: f(self.codec),
read_buffer: self.read_buffer,
write_buffer: self.write_buffer,
_priv: (),
}
}
}