1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! # State-management for UPSERT.
//!
//! This module and provide structures for use within an UPSERT
//! operator implementation.
//!
//! UPSERT is a effectively a process which transforms a `Stream<(Key, Option<Data>)>`
//! into a differential collection, by indexing the data based on the key.
//!
//! _This module does not implement this transformation, instead exposing APIs designed
//! for use within an UPSERT operator. There is one exception to this: `consolidate_chunk`
//! implements an efficient upsert-like transformation to re-index a collection using the
//! _output collection_ of an upsert transformation. More on this below.
//!
//! ## `UpsertState`
//!
//! Its primary export is `UpsertState`, which wraps an `UpsertStateBackend` and provides 3 APIs:
//!
//! ### `multi_get`
//! `multi_get` returns the current value for a (unique) set of keys. To keep implementations
//! efficient, the set of keys is an iterator, and results are written back into another parallel
//! iterator. In addition to returning the current values, implementations must also return the
//! _size_ of those values _as they are stored within the implementation_. Implementations are
//! required to chunk large iterators if they need to operate over smaller batches.
//!
//! `multi_get` is implemented directly with `UpsertStateBackend::multi_get`.
//!
//! ### `multi_put`
//! Update or delete values for a set of keys. To keep implementations efficient, the set
//! of updates is an iterator. Implementations are also required to return the difference
//! in values and total size after processing the updates. To simplify this (and because
//! in the `upsert` usecase we have this data readily available), the updates are input
//! with the size of the current value (if any) that was returned from a previous `multi_get`.
//! Implementations are required to chunk large iterators if they need to operate over smaller
//! batches.
//!
//! `multi_put` is implemented directly with `UpsertStateBackend::multi_put`.
//!
//! ### `consolidate_chunk`
//!
//! `consolidate_chunk` re-indexes an UPSERT collection based on its _output collection_ (as
//! opposed to its _input `Stream`_. Please see the docs on `consolidate_chunk` and `StateValue`
//! for more information.
//!
//! `consolidate_chunk` is implemented with both `UpsertStateBackend::multi_put` and
//! `UpsertStateBackend::multi_get`
//!
//! ## Order Keys
//!
//! In practice, the input stream for UPSERT collections includes an _order key_. This is used to
//! sort data with the same key occurring in the same timestamp. This module provides support
//! for serializing and deserializing order keys with their associated data. Being able to ingest
//! data on non-frontier boundaries requires this support.
//!
//! A consequence of this is that tombstones with an order key can be stored within the state.
//! There is currently no support for cleaning these tombstones up, as they are considered rare and
//! small enough.
//!
//! Because `consolidate_chunk` handles data that consolidates correctly, it does not handle
//! order keys.
//!
//!
//! ## A note on state size
//!
//! The `UpsertStateBackend` trait requires implementations report _relatively accurate_ information about
//! how the state size changes over time. Note that it does NOT ask the implementations to give
//! accurate information about actual resource consumption (like disk space including space
//! amplification), and instead is just asking about the size of the values, after they have been
//! encoded. For implementations like `RocksDB`, these may be highly accurate (it literally
//! reports the encoded size as written to the RocksDB API, and for others like the
//! `InMemoryHashMap`, they may be rough estimates of actual memory usage. See
//! `StateValue::memory_size` for more information.
//!
//! Note also that after consolidation, additional space may be used if `StateValue` is
//! used.
//!
use std::fmt;
use std::num::Wrapping;
use std::sync::Arc;
use std::time::Instant;
use bincode::Options;
use itertools::Itertools;
use mz_ore::cast::CastFrom;
use mz_ore::error::ErrorExt;
use serde::{de::DeserializeOwned, Serialize};
use super::{UpsertKey, UpsertValue};
use crate::metrics::upsert::{UpsertMetrics, UpsertSharedMetrics};
use crate::statistics::SourceStatistics;
/// The default set of `bincode` options used for consolidating
/// upsert updates (and writing values to RocksDB).
pub type BincodeOpts = bincode::config::DefaultOptions;
/// Build the default `BincodeOpts`.
pub fn upsert_bincode_opts() -> BincodeOpts {
// We don't allow trailing bytes, for now,
// and use varint encoding for space saving.
bincode::DefaultOptions::new()
}
/// The result type for `multi_get`.
/// The value and size are stored in individual `Option`s so callees
/// can reuse this value as they overwrite this value, keeping
/// track of the previous metadata. Additionally, values
/// may be `None` for tombstones.
#[derive(Clone)]
pub struct UpsertValueAndSize<T, O> {
/// The value, if there was one.
pub value: Option<StateValue<T, O>>,
/// The size of original`value` as persisted,
/// Useful for users keeping track of statistics.
pub metadata: Option<ValueMetadata<u64>>,
}
impl<T, O> std::fmt::Debug for UpsertValueAndSize<T, O> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("UpsertValueAndSize")
.field("value", &self.value)
.field("metadata", &self.metadata)
.finish()
}
}
impl<T, O> Default for UpsertValueAndSize<T, O> {
fn default() -> Self {
Self {
value: None,
metadata: None,
}
}
}
/// Metadata about an existing value in the upsert state backend, as returned
/// by `multi_get`.
#[derive(Copy, Clone, Debug)]
pub struct ValueMetadata<S> {
/// The size of the value.
pub size: S,
/// If the value is a tombstone.
pub is_tombstone: bool,
}
/// A value to put in with `multi_put`.
#[derive(Clone, Debug)]
pub struct PutValue<V> {
/// The new value, or a `None` to indicate a delete.
pub value: Option<V>,
/// The value of the previous value for this key, if known.
/// Passed into efficiently calculate statistics.
pub previous_value_metadata: Option<ValueMetadata<i64>>,
}
/// A value to put in with a `multi_merge`.
pub struct MergeValue<V> {
/// The value of the merge operand to write to the backend.
pub value: V,
/// The 'diff' of this merge operand value, used to estimate the the overall size diff
/// of the working set after this merge operand is merged by the backend.
pub diff: i64,
}
/// `UpsertState` has 2 modes:
/// - Normal operation
/// - Consolidation.
///
/// This struct and its substructs are helpers to simplify the logic that
/// individual `UpsertState` implementations need to do to manage these 2 modes.
///
/// Normal operation is simple, we just store an ordinary `UpsertValue`, and allow the implementer
/// to store it any way they want. During consolidation, the logic is more complex.
/// See the docs on `StateValue::merge_update` for more information.
///
/// Note also that this type is designed to support _partial updates_. All values are
/// associated with an _order key_ `O` that can be used to determine if a value existing in the
/// `UpsertStateBackend` occurred before or after a value being considered for insertion.
///
/// `O` typically required to be `: Default`, with the default value sorting below all others.
/// During consolidation, values consolidate correctly (as they are actual
/// differential updates with diffs), so order keys are not required.
#[derive(Clone, serde::Serialize, serde::Deserialize)]
pub enum StateValue<T, O> {
Consolidating(Consolidating),
Value(Value<T, O>),
}
impl<T, O> std::fmt::Debug for StateValue<T, O> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
StateValue::Consolidating(_) => write!(f, "Consolidating"),
StateValue::Value(_) => write!(f, "Value"),
}
}
}
/// A totally consolidated value stored within the `UpsertStateBackend`.
///
/// This type contains support for _tombstones_, that contain an _order key_,
/// and provisional values.
///
/// What is considered finalized and provisional depends on the implementation
/// of the UPSERT operator: it might consider everything that it writes to its
/// state finalized, and assume that what it emits will be written down in the
/// output exactly as presented. Or it might consider everything it writes down
/// provisional, and only consider updates that it _knows_ to be persisted as
/// finalized.
///
/// Provisional values should only be considered while still "working off"
/// updates with the same timestamp at which the provisional update was
/// recorded.
#[derive(Clone, serde::Serialize, serde::Deserialize, Debug)]
pub enum Value<T, O> {
FinalizedValue(UpsertValue, O),
Tombstone(O),
ProvisionalValue {
// We keep the finalized value around, because the provisional value is
// only valid when processing updates at the same timestamp. And at any
// point we might still require access to the finalized value.
finalized_value: Option<Box<(UpsertValue, O)>>,
// A provisional value of `None` is a provisional tombstone.
//
// WIP: We can also box this, to keep the size of StateValue as it was
// previously.
provisional_value: (Option<UpsertValue>, T, O),
},
}
/// A value as produced during consolidation.
#[derive(Clone, Default, serde::Serialize, serde::Deserialize, Debug)]
pub struct Consolidating {
#[serde(with = "serde_bytes")]
value_xor: Vec<u8>,
len_sum: Wrapping<i64>,
checksum_sum: Wrapping<i64>,
diff_sum: Wrapping<i64>,
}
impl fmt::Display for Consolidating {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Consolidating")
.field("len_sum", &self.len_sum)
.field("checksum_sum", &self.checksum_sum)
.field("diff_sum", &self.checksum_sum)
.finish_non_exhaustive()
}
}
impl<T, O> StateValue<T, O> {
/// A finalized, that is (assumed) persistent, value occurring at some order
/// key.
pub fn finalized_value(value: UpsertValue, order: O) -> Self {
Self::Value(Value::FinalizedValue(value, order))
}
#[allow(unused)]
/// A tombstoned value occurring at some order key.
pub fn tombstone(order: O) -> Self {
Self::Value(Value::Tombstone(order))
}
/// Whether the value is a tombstone.
pub fn is_tombstone(&self) -> bool {
match self {
Self::Value(Value::Tombstone(_)) => true,
_ => false,
}
}
/// Pull out the order for the given `Value`, assuming `ensure_decoded` has been called.
pub fn order(&self) -> &O {
match self {
Self::Value(Value::FinalizedValue(_, order)) => order,
Self::Value(Value::ProvisionalValue { .. }) => {
panic!("order() called on provisional value")
}
Self::Value(Value::Tombstone(order)) => order,
_ => panic!("called `order` without calling `ensure_decoded`"),
}
}
/// Pull out the `Value` value for a `StateValue`, after `ensure_decoded` has been called.
pub fn into_decoded(self) -> Value<T, O> {
match self {
Self::Value(value) => value,
_ => panic!("called `into_decoded without calling `ensure_decoded`"),
}
}
/// The size of a `StateValue`, in memory. This is:
/// 1. only used in the `InMemoryHashMap` implementation.
/// 2. An estimate (it only looks at value sizes, and not errors)
///
/// Other implementations may use more accurate accounting.
pub fn memory_size(&self) -> u64 {
match self {
// Similar to `Row::byte_len`, we add the heap size and the size of the value itself.
Self::Consolidating(Consolidating { value_xor, .. }) => {
u64::cast_from(value_xor.len()) + u64::cast_from(std::mem::size_of::<Self>())
}
Self::Value(Value::FinalizedValue(Ok(row), ..)) => {
// `Row::byte_len` includes the size of `Row`, which is also in `Self`, so we
// subtract it.
u64::cast_from(row.byte_len()) - u64::cast_from(std::mem::size_of::<mz_repr::Row>())
// This assumes the size of any `O` instantiation is meaningful (i.e. not a heap
// object).
+ u64::cast_from(std::mem::size_of::<Self>())
}
Self::Value(Value::ProvisionalValue {
finalized_value,
provisional_value,
}) => {
finalized_value.as_ref().map(|v| match v.as_ref() {
(Ok(row), _order) =>
// The finalized value is boxed, so the size of Row is
// not included in the outer size of Self. We therefore
// don't subtract it here like for the other branches.
u64::cast_from(row.byte_len())
// Add the size of the order, because it's also behind
// the box.
+ u64::cast_from(std::mem::size_of::<O>()),
// Assume errors are rare enough to not move the needle.
(Err(_), _order) => 0,
}).unwrap_or(0)
+
provisional_value.0.as_ref().map(|v| match v{
Ok(row) =>
// `Row::byte_len` includes the size of `Row`, which is
// also in `Self`, so we subtract it.
u64::cast_from(row.byte_len()) - u64::cast_from(std::mem::size_of::<mz_repr::Row>()),
// The size of order is already included in the outer
// size of self.
// Assume errors are rare enough to not move the needle.
Err(_) => 0,
}).unwrap_or(0)
// This assumes the size of any `O` instantiation is meaningful (i.e. not a heap
// object).
+ u64::cast_from(std::mem::size_of::<Self>())
}
Self::Value(Value::Tombstone(_)) => {
// This assumes the size of any `O` instantiation is meaningful (i.e. not a heap
// object).
u64::cast_from(std::mem::size_of::<Self>())
}
Self::Value(Value::FinalizedValue(Err(_), ..)) => {
// Assume errors are rare enough to not move the needle.
0
}
}
}
}
impl<T: Eq, O> StateValue<T, O> {
/// Creates a new provisional value, occurring at some order key, observed
/// at the given timestamp.
pub fn new_provisional_value(
provisional_value: UpsertValue,
provisional_ts: T,
order: O,
) -> Self {
Self::Value(Value::ProvisionalValue {
finalized_value: None,
provisional_value: (Some(provisional_value), provisional_ts, order),
})
}
/// Creates a provisional value, that retains the finalized value along with
/// its order in this `StateValue`, if any.
///
/// We record the finalized value, so that we can present it when needed or
/// when trying to read a provisional value at a different timestamp.
pub fn into_provisional_value(
self,
provisional_value: UpsertValue,
provisional_ts: T,
provisional_order: O,
) -> Self {
match self {
StateValue::Value(Value::FinalizedValue(value, order)) => {
StateValue::Value(Value::ProvisionalValue {
finalized_value: Some(Box::new((value, order))),
provisional_value: (Some(provisional_value), provisional_ts, provisional_order),
})
}
StateValue::Value(Value::Tombstone(_)) => {
// This cannot happen with how the new feedback UPSERT uses
// state. There are only ever provisional tombstones, and all
// updates that are merged/consolidated into upsert state come
// from the persist input, which doesn't need tombstones.
//
// Regular, finalized tombstones are only used by the classic
// UPSERT operator when doing partial processing.
panic!("cannot turn a finalized tombstone into a provisional value")
}
StateValue::Value(Value::ProvisionalValue {
finalized_value,
provisional_value: _,
}) => StateValue::Value(Value::ProvisionalValue {
finalized_value,
provisional_value: (Some(provisional_value), provisional_ts, provisional_order),
}),
StateValue::Consolidating(_) => {
panic!("called `into_provisional_value` without calling `ensure_decoded`")
}
}
}
/// Creates a new provisional tombstone occurring at some order key,
/// observed at the given timestamp.
pub fn new_provisional_tombstone(provisional_ts: T, order: O) -> Self {
Self::Value(Value::ProvisionalValue {
finalized_value: None,
provisional_value: (None, provisional_ts, order),
})
}
/// Creates a provisional tombstone, that retains the finalized value along
/// with its order in this `StateValue`, if any.
///
/// We record the current finalized value, so that we can present it when
/// needed or when trying to read a provisional value at a different
/// timestamp.
pub fn into_provisional_tombstone(self, provisional_ts: T, provisional_order: O) -> Self {
match self {
StateValue::Value(Value::FinalizedValue(value, order)) => {
StateValue::Value(Value::ProvisionalValue {
finalized_value: Some(Box::new((value, order))),
provisional_value: (None, provisional_ts, provisional_order),
})
}
StateValue::Value(Value::Tombstone(order)) => {
StateValue::Value(Value::ProvisionalValue {
finalized_value: None,
provisional_value: (None, provisional_ts, order),
})
}
StateValue::Value(Value::ProvisionalValue {
finalized_value,
provisional_value: _,
}) => StateValue::Value(Value::ProvisionalValue {
finalized_value,
provisional_value: (None, provisional_ts, provisional_order),
}),
StateValue::Consolidating(_) => {
panic!("called `into_provisional_tombstone` without calling `ensure_decoded`")
}
}
}
/// Returns the order of a provisional value at the given timestamp. If that
/// doesn't exist, the order of the finalized value.
///
/// Returns `None` if none of the above exist.
pub fn provisional_order(&self, ts: &T) -> Option<&O> {
match self {
Self::Value(Value::FinalizedValue(_, order)) => Some(order),
Self::Value(Value::Tombstone(order)) => Some(order),
Self::Value(Value::ProvisionalValue {
finalized_value: _,
provisional_value: (_, provisional_ts, provisional_order),
}) if provisional_ts == ts => Some(provisional_order),
Self::Value(Value::ProvisionalValue {
finalized_value,
provisional_value: _,
}) => finalized_value.as_ref().map(|v| &v.1),
Self::Consolidating(_) => {
panic!("called `provisional_order` without calling `ensure_decoded`")
}
}
}
// WIP: We don't need these after all, but leave in for review.
///// Returns the order of this value, if a finalized value is present.
//pub fn finalized_order(&self) -> Option<&O> {
// match self {
// Self::Value(Value::FinalizedValue(_, order)) => Some(order),
// Self::Value(Value::Tombstone(order)) => Some(order),
// Self::Value(Value::ProvisionalValue {
// finalized_value,
// provisional_value: _,
// }) => finalized_value.as_ref().map(|v| &v.1),
// Self::Consolidating(_) => {
// panic!("called `finalized_order` without calling `ensure_decoded`")
// }
// }
//}
///// Returns the provisional value, if one is present at the given timestamp.
///// Falls back to the finalized value, or `None` if there is neither.
//pub fn into_provisional_value(self, ts: &T) -> Option<(UpsertValue, O)> {
// match self {
// Self::Value(Value::FinalizedValue(value, order)) => Some((value, order)),
// Self::Value(Value::Tombstone(_)) => None,
// Self::Value(Value::ProvisionalValue {
// finalized_value: _,
// provisional_value: (provisional_value, provisional_ts, provisional_order),
// }) if provisional_ts == *ts => provisional_value.map(|v| (v, provisional_order)),
// Self::Value(Value::ProvisionalValue {
// finalized_value,
// provisional_value: _,
// }) => finalized_value.map(|boxed| *boxed),
// Self::Consolidating(_) => {
// panic!("called `into_provisional_value` without calling `ensure_decoded`")
// }
// }
//}
/// Returns the provisional value, if one is present at the given timestamp.
/// Falls back to the finalized value, or `None` if there is neither.
pub fn provisional_value_ref(&self, ts: &T) -> Option<&UpsertValue> {
match self {
Self::Value(Value::FinalizedValue(value, _order)) => Some(value),
Self::Value(Value::Tombstone(_)) => None,
Self::Value(Value::ProvisionalValue {
finalized_value: _,
provisional_value: (provisional_value, provisional_ts, _provisional_order),
}) if provisional_ts == ts => provisional_value.as_ref(),
Self::Value(Value::ProvisionalValue {
finalized_value,
provisional_value: _,
}) => finalized_value.as_ref().map(|boxed| &boxed.0),
Self::Consolidating(_) => {
panic!("called `provisional_value_ref` without calling `ensure_decoded`")
}
}
}
/// Returns the the finalized value, if one is present.
pub fn into_finalized_value(self) -> Option<(UpsertValue, O)> {
match self {
Self::Value(Value::FinalizedValue(value, order)) => Some((value, order)),
Self::Value(Value::Tombstone(_order)) => None,
Self::Value(Value::ProvisionalValue {
finalized_value,
provisional_value: _,
}) => finalized_value.map(|boxed| *boxed),
_ => panic!("called `order` without calling `ensure_decoded`"),
}
}
}
impl<T: Eq, O: Default> StateValue<T, O> {
/// We use a XOR trick in order to accumulate the values without having to store the full
/// unconsolidated history in memory. For all (value, diff) updates of a key we track:
/// - diff_sum = SUM(diff)
/// - checksum_sum = SUM(checksum(bincode(value)) * diff)
/// - len_sum = SUM(len(bincode(value)) * diff)
/// - value_xor = XOR(bincode(value))
///
/// ## Return value
/// Returns a `bool` indicating whether or not the current merged value is able to be deleted.
///
/// ## Correctness
///
/// The method is correct because a well formed upsert collection at a given
/// timestamp will have for each key:
/// - Zero or one updates of the form (cur_value, +1)
/// - Zero or more pairs of updates of the form (prev_value, +1), (prev_value, -1)
///
/// We are interested in extracting the cur_value of each key and discard all prev_values
/// that might be included in the stream. Since the history of prev_values always comes in
/// pairs, computing the XOR of those is always going to cancel their effects out. Also,
/// since XOR is commutative this property is true independent of the order. The same is
/// true for the summations of the length and checksum since the sum will contain the
/// unrelated values zero times.
///
/// Therefore the accumulators will end up precisely in one of two states:
/// 1. diff == 0, checksum == 0, value == [0..] => the key is not present
/// 2. diff == 1, checksum == checksum(cur_value) value == cur_value => the key is present
///
/// ## Robustness
///
/// In the absense of bugs, accumulating the diff and checksum is not required since we know
/// that a well formed collection always satisfies XOR(bincode(values)) == bincode(cur_value).
/// However bugs may happen and so storing 16 more bytes per key to have a very high
/// guarantee that we're not decoding garbage is more than worth it.
/// The main key->value used to store previous values.
#[allow(clippy::as_conversions)]
pub fn merge_update(
&mut self,
value: UpsertValue,
diff: mz_repr::Diff,
bincode_opts: BincodeOpts,
bincode_buffer: &mut Vec<u8>,
) -> bool {
match self {
Self::Consolidating(Consolidating {
value_xor,
len_sum,
checksum_sum,
diff_sum,
}) => {
bincode_buffer.clear();
bincode_opts
.serialize_into(&mut *bincode_buffer, &value)
.unwrap();
let len = i64::try_from(bincode_buffer.len()).unwrap();
*diff_sum += diff;
*len_sum += len.wrapping_mul(diff);
// Truncation is fine (using `as`) as this is just a checksum
*checksum_sum += (seahash::hash(&*bincode_buffer) as i64).wrapping_mul(diff);
// XOR of even diffs cancel out, so we only do it if diff is odd
if diff.abs() % 2 == 1 {
if value_xor.len() < bincode_buffer.len() {
value_xor.resize(bincode_buffer.len(), 0);
}
// Note that if the new value is _smaller_ than the `value_xor`, and
// the values at the end are zeroed out, we can shrink the buffer. This
// is extremely sensitive code, so we don't (yet) do that.
for (acc, val) in value_xor.iter_mut().zip(bincode_buffer.drain(..)) {
*acc ^= val;
}
}
// Returns whether or not the value can be deleted. This allows
// us to delete values in `UpsertState::consolidate_chunk` (even
// if they come back later), to minimize space usage.
diff_sum.0 == 0 && checksum_sum.0 == 0 && value_xor.iter().all(|&x| x == 0)
}
StateValue::Value(_value) => {
// We can turn a Value back into a Consolidating state:
// `std::mem::take` will leave behind a default value, which
// happens to be a default `Consolidating` `StateValue`.
let this = std::mem::take(self);
let finalized_value = this.into_finalized_value();
if let Some((finalized_value, _order)) = finalized_value {
// If we had a value before, merge it into the
// now-consolidating state first.
let _ = self.merge_update(finalized_value, 1, bincode_opts, bincode_buffer);
// Then merge the new value in.
self.merge_update(value, diff, bincode_opts, bincode_buffer)
} else {
// We didn't have a value before, might have been a
// tombstone. So just merge in the new value.
self.merge_update(value, diff, bincode_opts, bincode_buffer)
}
}
}
}
/// Merge an existing StateValue into this one, using the same method described in `merge_update`.
/// See the docstring above for more information on correctness and robustness.
pub fn merge_update_state(&mut self, other: &Self) {
match (self, other) {
(
Self::Consolidating(Consolidating {
value_xor,
len_sum,
checksum_sum,
diff_sum,
}),
Self::Consolidating(other_consolidating),
) => {
*diff_sum += other_consolidating.diff_sum;
*len_sum += other_consolidating.len_sum;
*checksum_sum += other_consolidating.checksum_sum;
if other_consolidating.value_xor.len() > value_xor.len() {
value_xor.resize(other_consolidating.value_xor.len(), 0);
}
for (acc, val) in value_xor
.iter_mut()
.zip(other_consolidating.value_xor.iter())
{
*acc ^= val;
}
}
_ => panic!("`merge_update_state` called with non-consolidating state"),
}
}
/// During and after consolidation, we assume that values in the `UpsertStateBackend` implementation
/// can be `Self::Consolidating`, with a `diff_sum` of 1 (or 0, if they have been deleted).
/// Afterwards, if we need to retract one of these values, we need to assert that its in this correct state,
/// then mutate it to its `Value` state, so the `upsert` operator can use it.
#[allow(clippy::as_conversions)]
pub fn ensure_decoded(&mut self, bincode_opts: BincodeOpts) {
match self {
StateValue::Consolidating(consolidating) => {
match consolidating.diff_sum.0 {
1 => {
let len = usize::try_from(consolidating.len_sum.0)
.map_err(|_| {
format!(
"len_sum can't be made into a usize, state: {}",
consolidating
)
})
.expect("invalid upsert state");
let value = &consolidating
.value_xor
.get(..len)
.ok_or_else(|| {
format!(
"value_xor is not the same length ({}) as len ({}), state: {}",
consolidating.value_xor.len(),
len,
consolidating
)
})
.expect("invalid upsert state");
// Truncation is fine (using `as`) as this is just a checksum
assert_eq!(
consolidating.checksum_sum.0,
// Hash the value, not the full buffer, which may have extra 0's
seahash::hash(value) as i64,
"invalid upsert state: checksum_sum does not match, state: {}",
consolidating
);
*self = Self::Value(Value::FinalizedValue(
bincode_opts.deserialize(value).unwrap(),
Default::default(),
));
}
0 => {
assert_eq!(
consolidating.len_sum.0, 0,
"invalid upsert state: len_sum is non-0, state: {}",
consolidating
);
assert_eq!(
consolidating.checksum_sum.0, 0,
"invalid upsert state: checksum_sum is non-0, state: {}",
consolidating
);
assert!(
consolidating.value_xor.iter().all(|&x| x == 0),
"invalid upsert state: value_xor not all 0s with 0 diff. \
Non-zero positions: {:?}, state: {}",
consolidating
.value_xor
.iter()
.positions(|&x| x != 0)
.collect::<Vec<_>>(),
consolidating
);
*self = Self::Value(Value::Tombstone(Default::default()));
}
other => panic!(
"invalid upsert state: non 0/1 diff_sum: {}, state: {}",
other, consolidating
),
}
}
_ => {}
}
}
}
impl<T, O> Default for StateValue<T, O> {
fn default() -> Self {
Self::Consolidating(Consolidating::default())
}
}
/// Statistics for a single call to `consolidate_chunk`.
#[derive(Clone, Default, Debug)]
pub struct SnapshotStats {
/// The number of updates processed.
pub updates: u64,
/// The aggregated number of values inserted or deleted into `state`.
pub values_diff: i64,
/// The total aggregated size of values inserted, deleted, or updated in `state`.
/// If the current call to `consolidate_chunk` deletes a lot of values,
/// or updates values to smaller ones, this can be negative!
pub size_diff: i64,
/// The number of inserts i.e. +1 diff
pub inserts: u64,
/// The number of deletes i.e. -1 diffs
pub deletes: u64,
}
impl std::ops::AddAssign for SnapshotStats {
fn add_assign(&mut self, rhs: Self) {
self.updates += rhs.updates;
self.values_diff += rhs.values_diff;
self.size_diff += rhs.size_diff;
self.inserts += rhs.inserts;
self.deletes += rhs.deletes;
}
}
/// Statistics for a single call to `multi_merge`.
#[derive(Clone, Default, Debug)]
pub struct MergeStats {
/// The number of updates written as merge operands to the backend, for the backend
/// to process async in the `consolidating_merge_function`.
/// Should be equal to number of inserts + deletes
pub written_merge_operands: u64,
/// The total size of values provided to `multi_merge`. The backend will write these
/// down and then later merge them in the `consolidating_merge_function`.
pub size_written: u64,
/// The estimated diff of the total size of the working set after the merge operands
/// are merged by the backend. This is an estimate since it can't account for the
/// size overhead of `StateValue` for values that consolidate to 0 (tombstoned-values).
pub size_diff: i64,
}
/// Statistics for a single call to `multi_put`.
#[derive(Clone, Default, Debug)]
pub struct PutStats {
/// The number of puts/deletes processed
/// Should be equal to number of inserts + updates + deletes
pub processed_puts: u64,
/// The aggregated number of non-tombstone values inserted or deleted into `state`.
pub values_diff: i64,
/// The aggregated number of tombstones inserted or deleted into `state`
pub tombstones_diff: i64,
/// The total aggregated size of values inserted, deleted, or updated in `state`.
/// If the current call to `multi_put` deletes a lot of values,
/// or updates values to smaller ones, this can be negative!
pub size_diff: i64,
/// The number of inserts
pub inserts: u64,
/// The number of updates
pub updates: u64,
/// The number of deletes
pub deletes: u64,
}
impl PutStats {
/// Adjust the `PutStats` based on the new value and the previous metadata.
///
/// The size parameter is separate as its value is backend-dependent. Its optional
/// as some backends increase the total size after an entire batch is processed.
///
/// This method is provided for implementors of `UpsertStateBackend::multi_put`.
pub fn adjust<T, O>(
&mut self,
new_value: Option<&StateValue<T, O>>,
new_size: Option<i64>,
previous_metdata: &Option<ValueMetadata<i64>>,
) {
self.adjust_size(new_value, new_size, previous_metdata);
self.adjust_values(new_value, previous_metdata);
self.adjust_tombstone(new_value, previous_metdata);
}
fn adjust_size<T, O>(
&mut self,
new_value: Option<&StateValue<T, O>>,
new_size: Option<i64>,
previous_metdata: &Option<ValueMetadata<i64>>,
) {
match (&new_value, previous_metdata.as_ref()) {
(Some(_), Some(ps)) => {
self.size_diff -= ps.size;
if let Some(new_size) = new_size {
self.size_diff += new_size;
}
}
(None, Some(ps)) => {
self.size_diff -= ps.size;
}
(Some(_), None) => {
if let Some(new_size) = new_size {
self.size_diff += new_size;
}
}
(None, None) => {}
}
}
fn adjust_values<T, O>(
&mut self,
new_value: Option<&StateValue<T, O>>,
previous_metdata: &Option<ValueMetadata<i64>>,
) {
let truly_new_value = new_value.map_or(false, |v| !v.is_tombstone());
let truly_old_value = previous_metdata.map_or(false, |v| !v.is_tombstone);
match (truly_new_value, truly_old_value) {
(false, true) => {
self.values_diff -= 1;
}
(true, false) => {
self.values_diff += 1;
}
_ => {}
}
}
fn adjust_tombstone<T, O>(
&mut self,
new_value: Option<&StateValue<T, O>>,
previous_metdata: &Option<ValueMetadata<i64>>,
) {
let new_tombstone = new_value.map_or(false, |v| v.is_tombstone());
let old_tombstone = previous_metdata.map_or(false, |v| v.is_tombstone);
match (new_tombstone, old_tombstone) {
(false, true) => {
self.tombstones_diff -= 1;
}
(true, false) => {
self.tombstones_diff += 1;
}
_ => {}
}
}
}
/// Statistics for a single call to `multi_get`.
#[derive(Clone, Default, Debug)]
pub struct GetStats {
/// The number of gets processed
pub processed_gets: u64,
/// The total size in bytes returned
pub processed_gets_size: u64,
/// The number of non-empty records returned
pub returned_gets: u64,
}
/// A trait that defines the fundamental primitives required by a state-backing of
/// `UpsertState`.
///
/// Implementors of this trait are blind maps that associate keys and values. They need
/// not understand the semantics of `StateValue`, tombstones, or anything else related
/// to a correct `upsert` implementation. The singular exception to this is that they
/// **must** produce accurate `PutStats` and `GetStats`. The reasoning for this is two-fold:
/// - efficiency: this avoids additional buffer allocation.
/// - value sizes: only the backend implementation understands the size of values as recorded
///
/// This **must** is not a correctness requirement (we won't panic when emitting statistics), but
/// rather a requirement to ensure the upsert operator is introspectable.
#[async_trait::async_trait(?Send)]
pub trait UpsertStateBackend<T, O>
where
T: 'static,
O: 'static,
{
/// Whether this backend supports the `multi_merge` operation.
fn supports_merge(&self) -> bool;
/// Insert or delete for all `puts` keys, prioritizing the last value for
/// repeated keys.
///
/// The `PutValue` is _guaranteed_ to have an accurate and up-to-date
/// record of the metadata for existing value for the given key (if one existed),
/// as reported by a previous call to `multi_get`.
///
/// `PutStats` **must** be populated correctly, according to these semantics:
/// - `values_diff` must record the difference in number of new non-tombstone values being
/// inserted into the backend.
/// - `tombstones_diff` must record the difference in number of tombstone values being
/// inserted into the backend.
/// - `size_diff` must record the change in size for the values being inserted/deleted/updated
/// in the backend, regardless of whether the values are tombstones or not.
async fn multi_put<P>(&mut self, puts: P) -> Result<PutStats, anyhow::Error>
where
P: IntoIterator<Item = (UpsertKey, PutValue<StateValue<T, O>>)>;
/// Get the `gets` keys, which must be unique, placing the results in `results_out`.
///
/// Panics if `gets` and `results_out` are not the same length.
async fn multi_get<'r, G, R>(
&mut self,
gets: G,
results_out: R,
) -> Result<GetStats, anyhow::Error>
where
G: IntoIterator<Item = UpsertKey>,
R: IntoIterator<Item = &'r mut UpsertValueAndSize<T, O>>;
/// For each key in `merges` writes a 'merge operand' to the backend. The backend stores these
/// merge operands and periodically calls the `consolidating_merge_function` to merge them into
/// any existing value for each key. The backend will merge the merge operands in the order
/// they are provided, and the merge function will always be run for a given key when a `get`
/// operation is performed on that key, or when the backend decides to run the merge based
/// on its own internal logic.
/// This allows avoiding the read-modify-write method of updating many values to
/// improve performance.
///
/// The `MergeValue` should include a `diff` field that represents the update diff for the
/// value. This is used to estimate the overall size diff of the working set
/// after the merge operands are merged by the backend `sum[merges: m](m.diff * m.size)`.
///
/// `MergeStats` **must** be populated correctly, according to these semantics:
/// - `written_merge_operands` must record the number of merge operands written to the backend.
/// - `size_written` must record the total size of values written to the backend.
/// Note that the size of the post-merge values are not known, so this is the size of the
/// values written to the backend as merge operands.
/// - `size_diff` must record the estimated diff of the total size of the working set after the
/// merge operands are merged by the backend.
async fn multi_merge<P>(&mut self, merges: P) -> Result<MergeStats, anyhow::Error>
where
P: IntoIterator<Item = (UpsertKey, MergeValue<StateValue<T, O>>)>;
}
/// A function that merges a set of updates for a key into the existing value
/// for the key. This is called by the backend implementation when it has
/// accumulated a set of updates for a key, and needs to merge them into the
/// existing value for the key.
///
/// The function is called with the following arguments:
/// - The key for which the merge is being performed.
/// - An iterator over any current value and merge operands queued for the key.
///
/// The function should return the new value for the key after merging all the updates.
pub(crate) fn consolidating_merge_function<T, O>(
_key: UpsertKey,
updates: impl Iterator<Item = StateValue<T, O>>,
) -> StateValue<T, O>
where
O: Default,
T: std::cmp::Eq,
{
let mut current: StateValue<T, O> = Default::default();
let mut bincode_buf = Vec::new();
for update in updates {
match update {
StateValue::Consolidating(_) => {
current.merge_update_state(&update);
}
StateValue::Value(_) => {
// This branch is more expensive, but we hopefully rarely hit
// it.
if let Some((finalized_value, _order)) = update.into_finalized_value() {
let mut update = StateValue::default();
update.merge_update(
finalized_value,
1,
upsert_bincode_opts(),
&mut bincode_buf,
);
current.merge_update_state(&update);
}
}
}
}
current
}
/// An `UpsertStateBackend` wrapper that supports consolidating merging, and
/// reports basic metrics about the usage of the `UpsertStateBackend`.
pub struct UpsertState<'metrics, S, T, O> {
inner: S,
// The status, start time, and stats about calls to `consolidate_chunk`.
pub snapshot_start: Instant,
snapshot_stats: SnapshotStats,
snapshot_completed: bool,
// Metrics shared across all workers running the `upsert` operator.
metrics: Arc<UpsertSharedMetrics>,
// Metrics for a specific worker.
worker_metrics: &'metrics UpsertMetrics,
// User-facing statistics.
stats: SourceStatistics,
// Bincode options and buffer used in `consolidate_chunk`.
bincode_opts: BincodeOpts,
bincode_buffer: Vec<u8>,
// We need to iterate over `updates` in `consolidate_chunk` twice, so we
// have a scratch vector for this.
consolidate_scratch: Vec<(UpsertKey, UpsertValue, mz_repr::Diff)>,
// "mini-upsert" map used in `consolidate_chunk`
consolidate_upsert_scratch: indexmap::IndexMap<UpsertKey, UpsertValueAndSize<T, O>>,
// a scratch vector for calling `multi_get`
multi_get_scratch: Vec<UpsertKey>,
shrink_upsert_unused_buffers_by_ratio: usize,
}
impl<'metrics, S, T, O> UpsertState<'metrics, S, T, O> {
pub(crate) fn new(
inner: S,
metrics: Arc<UpsertSharedMetrics>,
worker_metrics: &'metrics UpsertMetrics,
stats: SourceStatistics,
shrink_upsert_unused_buffers_by_ratio: usize,
) -> Self {
Self {
inner,
snapshot_start: Instant::now(),
snapshot_stats: SnapshotStats::default(),
snapshot_completed: false,
metrics,
worker_metrics,
stats,
bincode_opts: upsert_bincode_opts(),
bincode_buffer: Vec::new(),
consolidate_scratch: Vec::new(),
consolidate_upsert_scratch: indexmap::IndexMap::new(),
multi_get_scratch: Vec::new(),
shrink_upsert_unused_buffers_by_ratio,
}
}
}
impl<S, T, O> UpsertState<'_, S, T, O>
where
S: UpsertStateBackend<T, O>,
T: Eq + Clone + Send + Sync + Serialize + 'static,
O: Default + Clone + Send + Sync + Serialize + DeserializeOwned + 'static,
{
/// Consolidate the following differential updates into the state. Updates
/// provided to this method can be assumed to consolidate into a single
/// value per-key, after all chunks of updates for a given timestamp have
/// been processed,
///
/// Therefore, after all updates of a given timestamp have been
/// `consolidated`, all values must be in the correct state (as determined
/// by `StateValue::ensure_decoded`).
///
/// The `completed` boolean communicates whether or not this is the final
/// chunk of updates for the initial "snapshot" from persist.
///
/// If the backend supports it, this method will use `multi_merge` to
/// consolidate the updates to avoid having to read the existing value for
/// each key first. On some backends (like RocksDB), this can be
/// significantly faster than the read-then-write consolidation strategy.
///
/// Also note that we use `self.inner.multi_*`, not `self.multi_*`. This is
/// to avoid erroneously changing metric and stats values.
pub async fn consolidate_chunk<U>(
&mut self,
updates: U,
completed: bool,
) -> Result<(), anyhow::Error>
where
U: IntoIterator<Item = (UpsertKey, UpsertValue, mz_repr::Diff)> + ExactSizeIterator,
{
fail::fail_point!("fail_consolidate_chunk", |_| {
Err(anyhow::anyhow!("Error consolidating values"))
});
if completed && self.snapshot_completed {
panic!("attempted completion of already completed upsert snapshot")
}
let now = Instant::now();
let batch_size = updates.len();
self.consolidate_scratch.clear();
self.consolidate_upsert_scratch.clear();
self.multi_get_scratch.clear();
// Shrinking the scratch vectors if the capacity is significantly more than batch size
if self.shrink_upsert_unused_buffers_by_ratio > 0 {
let reduced_capacity =
self.consolidate_scratch.capacity() / self.shrink_upsert_unused_buffers_by_ratio;
if reduced_capacity > batch_size {
// These vectors have already been cleared above and should be empty here
self.consolidate_scratch.shrink_to(reduced_capacity);
self.consolidate_upsert_scratch.shrink_to(reduced_capacity);
self.multi_get_scratch.shrink_to(reduced_capacity);
}
}
// Depending on if the backend supports multi_merge, call the appropriate method.
// This can change during the lifetime of the `UpsertState` instance (e.g.
// the Autospill backend will switch from in-memory to rocksdb after a certain
// number of updates have been processed and begin supporting multi_merge).
let stats = if self.inner.supports_merge() {
self.consolidate_merge_inner(updates).await?
} else {
self.consolidate_read_write_inner(updates).await?
};
// NOTE: These metrics use the term `merge` to refer to the consolidation of values.
// This is because they were introduced before we the `multi_merge` operation was added.
self.metrics
.merge_snapshot_latency
.observe(now.elapsed().as_secs_f64());
self.worker_metrics
.merge_snapshot_updates
.inc_by(stats.updates);
self.worker_metrics
.merge_snapshot_inserts
.inc_by(stats.inserts);
self.worker_metrics
.merge_snapshot_deletes
.inc_by(stats.deletes);
self.stats.update_bytes_indexed_by(stats.size_diff);
self.stats.update_records_indexed_by(stats.values_diff);
self.snapshot_stats += stats;
if !self.snapshot_completed {
// Updating the metrics
self.worker_metrics.rehydration_total.set(
self.snapshot_stats.values_diff.try_into().unwrap_or_else(
|e: std::num::TryFromIntError| {
tracing::warn!(
"rehydration_total metric overflowed or is negative \
and is innacurate: {}. Defaulting to 0",
e.display_with_causes(),
);
0
},
),
);
self.worker_metrics
.rehydration_updates
.set(self.snapshot_stats.updates);
}
if completed {
if self.shrink_upsert_unused_buffers_by_ratio > 0 {
// After rehydration is done, these scratch buffers should now be empty
// shrinking them entirely
self.consolidate_scratch.shrink_to_fit();
self.consolidate_upsert_scratch.shrink_to_fit();
self.multi_get_scratch.shrink_to_fit();
}
self.worker_metrics
.rehydration_latency
.set(self.snapshot_start.elapsed().as_secs_f64());
self.snapshot_completed = true;
}
Ok(())
}
/// Consolidate the updates into the state. This method requires the backend
/// has support for the `multi_merge` operation, and will panic if
/// `self.inner.supports_merge()` was not checked before calling this
/// method. `multi_merge` will write the updates as 'merge operands' to the
/// backend, and then the backend will consolidate those updates with any
/// existing state using the `consolidating_merge_function`.
///
/// This method can have significant performance benefits over the
/// read-then-write method of `consolidate_read_write_inner`.
async fn consolidate_merge_inner<U>(
&mut self,
updates: U,
) -> Result<SnapshotStats, anyhow::Error>
where
U: IntoIterator<Item = (UpsertKey, UpsertValue, mz_repr::Diff)> + ExactSizeIterator,
{
let mut updates = updates.into_iter().peekable();
let mut stats = SnapshotStats::default();
if updates.peek().is_some() {
let m_stats = self
.inner
.multi_merge(updates.map(|(k, v, diff)| {
// Transform into a `StateValue<O>` that can be used by the
// `consolidating_merge_function` to merge with any existing
// value for the key.
let mut val: StateValue<T, O> = Default::default();
val.merge_update(v, diff, self.bincode_opts, &mut self.bincode_buffer);
stats.updates += 1;
if diff > 0 {
stats.inserts += 1;
} else if diff < 0 {
stats.deletes += 1;
}
// To keep track of the overall `values_diff` we can use the sum of diffs which
// should be equal to the number of non-tombstoned values in the backend.
// This is a bit misleading as this represents the eventual state after the
// `consolidating_merge_function` has been called to merge all the updates,
// and not the state after this `multi_merge` call.
//
// This does not accurately report values that have been consolidated to diff == 0, as tracking that
// per-key is extremely difficult.
stats.values_diff += diff;
(k, MergeValue { value: val, diff })
}))
.await?;
stats.size_diff = m_stats.size_diff;
}
Ok(stats)
}
/// Consolidates the updates into the state. This method reads the existing
/// values for each key, consolidates the updates, and writes the new values
/// back to the state.
async fn consolidate_read_write_inner<U>(
&mut self,
updates: U,
) -> Result<SnapshotStats, anyhow::Error>
where
U: IntoIterator<Item = (UpsertKey, UpsertValue, mz_repr::Diff)> + ExactSizeIterator,
{
let mut updates = updates.into_iter().peekable();
let mut stats = SnapshotStats::default();
if updates.peek().is_some() {
self.consolidate_scratch.extend(updates);
self.consolidate_upsert_scratch.extend(
self.consolidate_scratch
.iter()
.map(|(k, _, _)| (*k, UpsertValueAndSize::default())),
);
self.multi_get_scratch
.extend(self.consolidate_upsert_scratch.iter().map(|(k, _)| *k));
self.inner
.multi_get(
self.multi_get_scratch.drain(..),
self.consolidate_upsert_scratch.iter_mut().map(|(_, v)| v),
)
.await?;
for (key, value, diff) in self.consolidate_scratch.drain(..) {
stats.updates += 1;
if diff > 0 {
stats.inserts += 1;
} else if diff < 0 {
stats.deletes += 1;
}
// We rely on the diffs in our input instead of the result of
// multi_put below. This makes sure we report the same stats as
// `consolidate_merge_inner`, regardless of what values
// there were in state before.
stats.values_diff += diff;
let entry = self.consolidate_upsert_scratch.get_mut(&key).unwrap();
let val = entry.value.get_or_insert_with(Default::default);
if val.merge_update(value, diff, self.bincode_opts, &mut self.bincode_buffer) {
entry.value = None;
}
}
// Note we do 1 `multi_get` and 1 `multi_put` while processing a _batch of updates_.
// Within the batch, we effectively consolidate each key, before persisting that
// consolidated value. Easy!!
let p_stats = self
.inner
.multi_put(self.consolidate_upsert_scratch.drain(..).map(|(k, v)| {
(
k,
PutValue {
value: v.value,
previous_value_metadata: v.metadata.map(|v| ValueMetadata {
size: v.size.try_into().expect("less than i64 size"),
is_tombstone: v.is_tombstone,
}),
},
)
}))
.await?;
stats.size_diff = p_stats.size_diff;
}
Ok(stats)
}
/// Insert or delete for all `puts` keys, prioritizing the last value for
/// repeated keys.
pub async fn multi_put<P>(
&mut self,
update_per_record_stats: bool,
puts: P,
) -> Result<(), anyhow::Error>
where
P: IntoIterator<Item = (UpsertKey, PutValue<Value<T, O>>)>,
{
fail::fail_point!("fail_state_multi_put", |_| {
Err(anyhow::anyhow!("Error putting values into state"))
});
let now = Instant::now();
let stats = self
.inner
.multi_put(puts.into_iter().map(|(k, pv)| {
(
k,
PutValue {
value: pv.value.map(StateValue::Value),
previous_value_metadata: pv.previous_value_metadata,
},
)
}))
.await?;
self.metrics
.multi_put_latency
.observe(now.elapsed().as_secs_f64());
self.worker_metrics
.multi_put_size
.inc_by(stats.processed_puts);
if update_per_record_stats {
self.worker_metrics.upsert_inserts.inc_by(stats.inserts);
self.worker_metrics.upsert_updates.inc_by(stats.updates);
self.worker_metrics.upsert_deletes.inc_by(stats.deletes);
self.stats.update_bytes_indexed_by(stats.size_diff);
self.stats.update_records_indexed_by(stats.values_diff);
self.stats
.update_envelope_state_tombstones_by(stats.tombstones_diff);
}
Ok(())
}
/// Get the `gets` keys, which must be unique, placing the results in `results_out`.
///
/// Panics if `gets` and `results_out` are not the same length.
pub async fn multi_get<'r, G, R>(
&mut self,
gets: G,
results_out: R,
) -> Result<(), anyhow::Error>
where
G: IntoIterator<Item = UpsertKey>,
R: IntoIterator<Item = &'r mut UpsertValueAndSize<T, O>>,
O: 'r,
{
fail::fail_point!("fail_state_multi_get", |_| {
Err(anyhow::anyhow!("Error getting values from state"))
});
let now = Instant::now();
let stats = self.inner.multi_get(gets, results_out).await?;
self.metrics
.multi_get_latency
.observe(now.elapsed().as_secs_f64());
self.worker_metrics
.multi_get_size
.inc_by(stats.processed_gets);
self.worker_metrics
.multi_get_result_count
.inc_by(stats.returned_gets);
self.worker_metrics
.multi_get_result_bytes
.inc_by(stats.processed_gets_size);
Ok(())
}
}
#[cfg(test)]
mod tests {
use mz_repr::Row;
use super::*;
#[mz_ore::test]
fn test_merge_update() {
let mut buf = Vec::new();
let opts = upsert_bincode_opts();
let mut s = StateValue::<(), ()>::Consolidating(Consolidating::default());
let small_row = Ok(mz_repr::Row::default());
let longer_row = Ok(mz_repr::Row::pack([mz_repr::Datum::Null]));
s.merge_update(small_row, 1, opts, &mut buf);
s.merge_update(longer_row.clone(), -1, opts, &mut buf);
// This clears the retraction of the `longer_row`, but the
// `value_xor` is the length of the `longer_row`. This tests
// that we are tracking checksums correctly.
s.merge_update(longer_row, 1, opts, &mut buf);
// Assert that the `Consolidating` value is fully merged.
s.ensure_decoded(opts);
}
// We guard some of our assumptions. Increasing in-memory size of StateValue
// has a direct impact on memory usage of in-memory UPSERT sources.
#[mz_ore::test]
fn test_memory_size() {
let finalized_value: StateValue<(), ()> =
StateValue::finalized_value(Ok(Row::default()), ());
assert!(
finalized_value.memory_size() <= 88,
"memory size is {}",
finalized_value.memory_size(),
);
let provisional_value_with_finalized_value: StateValue<(), ()> =
finalized_value.into_provisional_value(Ok(Row::default()), (), ());
assert!(
provisional_value_with_finalized_value.memory_size() <= 112,
"memory size is {}",
provisional_value_with_finalized_value.memory_size(),
);
let provisional_value_without_finalized_value: StateValue<(), ()> =
StateValue::new_provisional_value(Ok(Row::default()), (), ());
assert!(
provisional_value_without_finalized_value.memory_size() <= 88,
"memory size is {}",
provisional_value_without_finalized_value.memory_size(),
);
let mut consolidating_value: StateValue<(), ()> = StateValue::default();
consolidating_value.merge_update(
Ok(Row::default()),
1,
upsert_bincode_opts(),
&mut Vec::new(),
);
assert!(
consolidating_value.memory_size() <= 90,
"memory size is {}",
consolidating_value.memory_size(),
);
}
#[mz_ore::test]
#[should_panic(
expected = "invalid upsert state: len_sum is non-0, state: Consolidating { len_sum: 1"
)]
fn test_merge_update_len_0_assert() {
let mut buf = Vec::new();
let opts = upsert_bincode_opts();
let mut s = StateValue::<(), ()>::Consolidating(Consolidating::default());
let small_row = Ok(mz_repr::Row::default());
let longer_row = Ok(mz_repr::Row::pack([mz_repr::Datum::Null]));
s.merge_update(longer_row.clone(), 1, opts, &mut buf);
s.merge_update(small_row.clone(), -1, opts, &mut buf);
s.ensure_decoded(opts);
}
#[mz_ore::test]
#[should_panic(
expected = "invalid upsert state: \"value_xor is not the same length (3) as len (4), state: Consolidating { len_sum: 4"
)]
fn test_merge_update_len_to_long_assert() {
let mut buf = Vec::new();
let opts = upsert_bincode_opts();
let mut s = StateValue::<(), ()>::Consolidating(Consolidating::default());
let small_row = Ok(mz_repr::Row::default());
let longer_row = Ok(mz_repr::Row::pack([mz_repr::Datum::Null]));
s.merge_update(longer_row.clone(), 1, opts, &mut buf);
s.merge_update(small_row.clone(), -1, opts, &mut buf);
s.merge_update(longer_row.clone(), 1, opts, &mut buf);
s.ensure_decoded(opts);
}
#[mz_ore::test]
#[should_panic(expected = "invalid upsert state: checksum_sum does not match")]
fn test_merge_update_checksum_doesnt_match() {
let mut buf = Vec::new();
let opts = upsert_bincode_opts();
let mut s = StateValue::<(), ()>::Consolidating(Consolidating::default());
let small_row = Ok(mz_repr::Row::pack([mz_repr::Datum::Int64(2)]));
let longer_row = Ok(mz_repr::Row::pack([mz_repr::Datum::Int64(1)]));
s.merge_update(longer_row.clone(), 1, opts, &mut buf);
s.merge_update(small_row.clone(), -1, opts, &mut buf);
s.merge_update(longer_row.clone(), 1, opts, &mut buf);
s.ensure_decoded(opts);
}
}