mappings/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Linux-specific process introspection.

//! Utility crate to extract information about the running process.
//!
//! Currently only works on Linux.
use std::path::PathBuf;

use once_cell::sync::Lazy;
use tracing::error;

use util::{BuildId, Mapping};

#[cfg(target_os = "linux")]
mod enabled {
    use std::ffi::{CStr, OsStr};
    use std::os::unix::ffi::OsStrExt;
    use std::path::PathBuf;
    use std::str::FromStr;

    use anyhow::Context;
    use libc::{
        c_int, c_void, dl_iterate_phdr, dl_phdr_info, size_t, Elf64_Word, PT_LOAD, PT_NOTE,
    };

    use util::{BuildId, CastFrom};

    use crate::LoadedSegment;

    use super::SharedObject;

    /// Collects information about all shared objects loaded into the current
    /// process, including the main program binary as well as all dynamically loaded
    /// libraries. Intended to be useful for profilers, who can use this information
    /// to symbolize stack traces offline.
    ///
    /// Uses `dl_iterate_phdr` to walk all shared objects and extract the wanted
    /// information from their program headers.
    ///
    /// SAFETY: This function is written in a hilariously unsafe way: it involves
    /// following pointers to random parts of memory, and then assuming that
    /// particular structures can be found there. However, it was written by
    /// carefully reading `man dl_iterate_phdr` and `man elf`, and is thus intended
    /// to be relatively safe for callers to use. Assuming I haven't written any
    /// bugs (and that the documentation is correct), the only known safety
    /// requirements are:
    ///
    /// (1) The running binary must be in ELF format and running on Linux.
    pub unsafe fn collect_shared_objects() -> Result<Vec<SharedObject>, anyhow::Error> {
        let mut state = CallbackState {
            result: Ok(Vec::new()),
        };
        let state_ptr = std::ptr::addr_of_mut!(state).cast();

        // SAFETY: `dl_iterate_phdr` has no documented restrictions on when
        // it can be called.
        unsafe { dl_iterate_phdr(Some(iterate_cb), state_ptr) };

        state.result
    }

    struct CallbackState {
        result: Result<Vec<SharedObject>, anyhow::Error>,
    }

    impl CallbackState {
        fn is_first(&self) -> bool {
            match &self.result {
                Ok(v) => v.is_empty(),
                Err(_) => false,
            }
        }
    }

    const CB_RESULT_OK: c_int = 0;
    const CB_RESULT_ERROR: c_int = -1;

    unsafe extern "C" fn iterate_cb(
        info: *mut dl_phdr_info,
        _size: size_t,
        data: *mut c_void,
    ) -> c_int {
        let state: *mut CallbackState = data.cast();

        // SAFETY: `data` is a pointer to a `CallbackState`, and no mutable reference
        // aliases with it in Rust. Furthermore, `dl_iterate_phdr` doesn't do anything
        // with `data` other than pass it to this callback, so nothing will be mutating
        // the object it points to while we're inside here.
        assert_pointer_valid(state);
        let state = unsafe { state.as_mut() }.expect("pointer is valid");

        // SAFETY: similarly, `dl_iterate_phdr` isn't mutating `info`
        // while we're here.
        assert_pointer_valid(info);
        let info = unsafe { info.as_ref() }.expect("pointer is valid");

        let base_address = usize::cast_from(info.dlpi_addr);

        let path_name = if state.is_first() {
            // From `man dl_iterate_phdr`:
            // "The first object visited by callback is the main program.  For the main
            // program, the dlpi_name field will be an empty string."
            match current_exe().context("failed to read the name of the current executable") {
                Ok(pb) => pb,
                Err(e) => {
                    // Profiles will be of dubious usefulness
                    // if we can't get the build ID for the main executable,
                    // so just bail here.
                    state.result = Err(e);
                    return CB_RESULT_ERROR;
                }
            }
        } else if info.dlpi_name.is_null() {
            // This would be unexpected, but let's handle this case gracefully by skipping this object.
            return CB_RESULT_OK;
        } else {
            // SAFETY: `dl_iterate_phdr` documents this as being a null-terminated string.
            assert_pointer_valid(info.dlpi_name);
            let name = unsafe { CStr::from_ptr(info.dlpi_name) };

            OsStr::from_bytes(name.to_bytes()).into()
        };

        // Walk the headers of this image, looking for `PT_LOAD` and `PT_NOTE` segments.
        let mut loaded_segments = Vec::new();
        let mut build_id = None;

        // SAFETY: `dl_iterate_phdr` is documented as setting `dlpi_phnum` to the
        // length of the array pointed to by `dlpi_phdr`.
        assert_pointer_valid(info.dlpi_phdr);
        let program_headers =
            unsafe { std::slice::from_raw_parts(info.dlpi_phdr, info.dlpi_phnum.into()) };

        for ph in program_headers {
            if ph.p_type == PT_LOAD {
                loaded_segments.push(LoadedSegment {
                    file_offset: u64::cast_from(ph.p_offset),
                    memory_offset: usize::cast_from(ph.p_vaddr),
                    memory_size: usize::cast_from(ph.p_memsz),
                });
            } else if ph.p_type == PT_NOTE {
                // From `man elf`:
                // typedef struct {
                //   Elf64_Word n_namesz;
                //   Elf64_Word n_descsz;
                //   Elf64_Word n_type;
                // } Elf64_Nhdr;
                #[repr(C)]
                struct NoteHeader {
                    n_namesz: Elf64_Word,
                    n_descsz: Elf64_Word,
                    n_type: Elf64_Word,
                }
                // This is how `man dl_iterate_phdr` says to find the
                // segment headers in memory.
                //
                // Note - it seems on some old
                // versions of Linux (I observed it on CentOS 7),
                // `p_vaddr` can be negative, so we use wrapping add here
                let mut offset = usize::cast_from(ph.p_vaddr.wrapping_add(info.dlpi_addr));
                let orig_offset = offset;

                const NT_GNU_BUILD_ID: Elf64_Word = 3;
                const GNU_NOTE_NAME: &[u8; 4] = b"GNU\0";
                const ELF_NOTE_STRING_ALIGN: usize = 4;

                while offset + std::mem::size_of::<NoteHeader>() + GNU_NOTE_NAME.len()
                    <= orig_offset + usize::cast_from(ph.p_memsz)
                {
                    // Justification: Our logic for walking this header
                    // follows exactly the code snippet in the
                    // `Notes (Nhdr)` section of `man elf`,
                    // so `offset` will always point to a `NoteHeader`
                    // (called `Elf64_Nhdr` in that document)
                    #[allow(clippy::as_conversions)]
                    let nh_ptr = offset as *const NoteHeader;

                    // SAFETY: Iterating according to the `Notes (Nhdr)`
                    // section of `man elf` ensures that this pointer is
                    // aligned. The offset check above ensures that it
                    // is in-bounds.
                    assert_pointer_valid(nh_ptr);
                    let nh = unsafe { nh_ptr.as_ref() }.expect("pointer is valid");

                    // from elf.h
                    if nh.n_type == NT_GNU_BUILD_ID
                        && nh.n_descsz != 0
                        && usize::cast_from(nh.n_namesz) == GNU_NOTE_NAME.len()
                    {
                        // Justification: since `n_namesz` is 4, the name is a four-byte value.
                        #[allow(clippy::as_conversions)]
                        let p_name = (offset + std::mem::size_of::<NoteHeader>()) as *const [u8; 4];

                        // SAFETY: since `n_namesz` is 4, the name is a four-byte value.
                        assert_pointer_valid(p_name);
                        let name = unsafe { p_name.as_ref() }.expect("pointer is valid");

                        if name == GNU_NOTE_NAME {
                            // We found what we're looking for!
                            // Justification: simple pointer arithmetic
                            #[allow(clippy::as_conversions)]
                            let p_desc = (p_name as usize + 4) as *const u8;

                            // SAFETY: This is the documented meaning of `n_descsz`.
                            assert_pointer_valid(p_desc);
                            let desc = unsafe {
                                std::slice::from_raw_parts(p_desc, usize::cast_from(nh.n_descsz))
                            };

                            build_id = Some(BuildId(desc.to_vec()));
                            break;
                        }
                    }
                    offset = offset
                        + std::mem::size_of::<NoteHeader>()
                        + align_up::<ELF_NOTE_STRING_ALIGN>(usize::cast_from(nh.n_namesz))
                        + align_up::<ELF_NOTE_STRING_ALIGN>(usize::cast_from(nh.n_descsz));
                }
            }
        }

        let objects = state.result.as_mut().expect("we return early on errors");
        objects.push(SharedObject {
            base_address,
            path_name,
            build_id,
            loaded_segments,
        });

        CB_RESULT_OK
    }

    /// Increases `p` as little as possible (including possibly 0)
    /// such that it becomes a multiple of `N`.
    pub const fn align_up<const N: usize>(p: usize) -> usize {
        if p % N == 0 {
            p
        } else {
            p + (N - (p % N))
        }
    }

    /// Asserts that the given pointer is valid.
    ///
    /// # Panics
    ///
    /// Panics if the given pointer:
    ///  * is a null pointer
    ///  * is not properly aligned for `T`
    fn assert_pointer_valid<T>(ptr: *const T) {
        // No other known way to convert a pointer to `usize`.
        #[allow(clippy::as_conversions)]
        let address = ptr as usize;
        let align = std::mem::align_of::<T>();

        assert!(!ptr.is_null());
        assert!(address % align == 0, "unaligned pointer");
    }

    fn current_exe_from_dladdr() -> Result<PathBuf, anyhow::Error> {
        let progname = unsafe {
            let mut dlinfo = std::mem::MaybeUninit::uninit();

            // This should set the filepath of the current executable
            // because it must contain the function pointer of itself.
            let ret = libc::dladdr(
                current_exe_from_dladdr as *const libc::c_void,
                dlinfo.as_mut_ptr(),
            );
            if ret == 0 {
                anyhow::bail!("dladdr failed");
            }
            CStr::from_ptr(dlinfo.assume_init().dli_fname).to_str()?
        };

        Ok(PathBuf::from_str(progname)?)
    }

    /// Get the name of the current executable by dladdr and fall back to std::env::current_exe
    /// if it fails. Try dladdr first because it returns the actual exe even when it's invoked
    /// by ld.so.
    fn current_exe() -> Result<PathBuf, anyhow::Error> {
        match current_exe_from_dladdr() {
            Ok(path) => Ok(path),
            Err(e) => {
                // when failed to get current exe from dladdr, fall back to the conventional way
                std::env::current_exe().context(e)
            }
        }
    }
}

/// Mappings of the processes' executable and shared libraries.
#[cfg(target_os = "linux")]
pub static MAPPINGS: Lazy<Option<Vec<Mapping>>> = Lazy::new(|| {
    /// Build a list of mappings for the passed shared objects.
    fn build_mappings(objects: &[SharedObject]) -> Vec<Mapping> {
        let mut mappings = Vec::new();
        for object in objects {
            for segment in &object.loaded_segments {
                // I have observed that `memory_offset` can be negative on some very old
                // versions of Linux (e.g. CentOS 7), so use wrapping add here.
                let memory_start = object.base_address.wrapping_add(segment.memory_offset);
                mappings.push(Mapping {
                    memory_start,
                    memory_end: memory_start + segment.memory_size,
                    memory_offset: segment.memory_offset,
                    file_offset: segment.file_offset,
                    pathname: object.path_name.clone(),
                    build_id: object.build_id.clone(),
                });
            }
        }
        mappings
    }

    // SAFETY: We are on Linux
    match unsafe { enabled::collect_shared_objects() } {
        Ok(objects) => Some(build_mappings(&objects)),
        Err(err) => {
            error!("build ID fetching failed: {err}");
            None
        }
    }
});

#[cfg(not(target_os = "linux"))]
pub static MAPPINGS: Lazy<Option<Vec<Mapping>>> = Lazy::new(|| {
    error!("build ID fetching is only supported on Linux");
    None
});

/// Information about a shared object loaded into the current process.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct SharedObject {
    /// The address at which the object is loaded.
    pub base_address: usize,
    /// The path of that file the object was loaded from.
    pub path_name: PathBuf,
    /// The build ID of the object, if found.
    pub build_id: Option<BuildId>,
    /// Loaded segments of the object.
    pub loaded_segments: Vec<LoadedSegment>,
}

/// A segment of a shared object that's loaded into memory.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct LoadedSegment {
    /// Offset of the segment in the source file.
    pub file_offset: u64,
    /// Offset to the `SharedObject`'s `base_address`.
    pub memory_offset: usize,
    /// Size of the segment in memory.
    pub memory_size: usize,
}