tokio_util/time/wheel/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
mod level;
pub(crate) use self::level::Expiration;
use self::level::Level;
mod stack;
pub(crate) use self::stack::Stack;
use std::borrow::Borrow;
use std::fmt::Debug;
use std::usize;
/// Timing wheel implementation.
///
/// This type provides the hashed timing wheel implementation that backs `Timer`
/// and `DelayQueue`.
///
/// The structure is generic over `T: Stack`. This allows handling timeout data
/// being stored on the heap or in a slab. In order to support the latter case,
/// the slab must be passed into each function allowing the implementation to
/// lookup timer entries.
///
/// See `Timer` documentation for some implementation notes.
#[derive(Debug)]
pub(crate) struct Wheel<T> {
/// The number of milliseconds elapsed since the wheel started.
elapsed: u64,
/// Timer wheel.
///
/// Levels:
///
/// * 1 ms slots / 64 ms range
/// * 64 ms slots / ~ 4 sec range
/// * ~ 4 sec slots / ~ 4 min range
/// * ~ 4 min slots / ~ 4 hr range
/// * ~ 4 hr slots / ~ 12 day range
/// * ~ 12 day slots / ~ 2 yr range
levels: Vec<Level<T>>,
}
/// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots
/// each, the timer is able to track time up to 2 years into the future with a
/// precision of 1 millisecond.
const NUM_LEVELS: usize = 6;
/// The maximum duration of a delay
const MAX_DURATION: u64 = (1 << (6 * NUM_LEVELS)) - 1;
#[derive(Debug)]
pub(crate) enum InsertError {
Elapsed,
Invalid,
}
impl<T> Wheel<T>
where
T: Stack,
{
/// Create a new timing wheel
pub(crate) fn new() -> Wheel<T> {
let levels = (0..NUM_LEVELS).map(Level::new).collect();
Wheel { elapsed: 0, levels }
}
/// Return the number of milliseconds that have elapsed since the timing
/// wheel's creation.
pub(crate) fn elapsed(&self) -> u64 {
self.elapsed
}
/// Insert an entry into the timing wheel.
///
/// # Arguments
///
/// * `when`: is the instant at which the entry should be fired. It is
/// represented as the number of milliseconds since the creation
/// of the timing wheel.
///
/// * `item`: The item to insert into the wheel.
///
/// * `store`: The slab or `()` when using heap storage.
///
/// # Return
///
/// Returns `Ok` when the item is successfully inserted, `Err` otherwise.
///
/// `Err(Elapsed)` indicates that `when` represents an instant that has
/// already passed. In this case, the caller should fire the timeout
/// immediately.
///
/// `Err(Invalid)` indicates an invalid `when` argument as been supplied.
pub(crate) fn insert(
&mut self,
when: u64,
item: T::Owned,
store: &mut T::Store,
) -> Result<(), (T::Owned, InsertError)> {
if when <= self.elapsed {
return Err((item, InsertError::Elapsed));
} else if when - self.elapsed > MAX_DURATION {
return Err((item, InsertError::Invalid));
}
// Get the level at which the entry should be stored
let level = self.level_for(when);
self.levels[level].add_entry(when, item, store);
debug_assert!({
self.levels[level]
.next_expiration(self.elapsed)
.map(|e| e.deadline >= self.elapsed)
.unwrap_or(true)
});
Ok(())
}
/// Remove `item` from the timing wheel.
#[track_caller]
pub(crate) fn remove(&mut self, item: &T::Borrowed, store: &mut T::Store) {
let when = T::when(item, store);
assert!(
self.elapsed <= when,
"elapsed={}; when={}",
self.elapsed,
when
);
let level = self.level_for(when);
self.levels[level].remove_entry(when, item, store);
}
/// Instant at which to poll
pub(crate) fn poll_at(&self) -> Option<u64> {
self.next_expiration().map(|expiration| expiration.deadline)
}
/// Advances the timer up to the instant represented by `now`.
pub(crate) fn poll(&mut self, now: u64, store: &mut T::Store) -> Option<T::Owned> {
loop {
let expiration = self.next_expiration().and_then(|expiration| {
if expiration.deadline > now {
None
} else {
Some(expiration)
}
});
match expiration {
Some(ref expiration) => {
if let Some(item) = self.poll_expiration(expiration, store) {
return Some(item);
}
self.set_elapsed(expiration.deadline);
}
None => {
// in this case the poll did not indicate an expiration
// _and_ we were not able to find a next expiration in
// the current list of timers. advance to the poll's
// current time and do nothing else.
self.set_elapsed(now);
return None;
}
}
}
}
/// Returns the instant at which the next timeout expires.
fn next_expiration(&self) -> Option<Expiration> {
// Check all levels
for level in 0..NUM_LEVELS {
if let Some(expiration) = self.levels[level].next_expiration(self.elapsed) {
// There cannot be any expirations at a higher level that happen
// before this one.
debug_assert!(self.no_expirations_before(level + 1, expiration.deadline));
return Some(expiration);
}
}
None
}
/// Used for debug assertions
fn no_expirations_before(&self, start_level: usize, before: u64) -> bool {
let mut res = true;
for l2 in start_level..NUM_LEVELS {
if let Some(e2) = self.levels[l2].next_expiration(self.elapsed) {
if e2.deadline < before {
res = false;
}
}
}
res
}
/// iteratively find entries that are between the wheel's current
/// time and the expiration time. for each in that population either
/// return it for notification (in the case of the last level) or tier
/// it down to the next level (in all other cases).
pub(crate) fn poll_expiration(
&mut self,
expiration: &Expiration,
store: &mut T::Store,
) -> Option<T::Owned> {
while let Some(item) = self.pop_entry(expiration, store) {
if expiration.level == 0 {
debug_assert_eq!(T::when(item.borrow(), store), expiration.deadline);
return Some(item);
} else {
let when = T::when(item.borrow(), store);
let next_level = expiration.level - 1;
self.levels[next_level].add_entry(when, item, store);
}
}
None
}
fn set_elapsed(&mut self, when: u64) {
assert!(
self.elapsed <= when,
"elapsed={:?}; when={:?}",
self.elapsed,
when
);
if when > self.elapsed {
self.elapsed = when;
}
}
fn pop_entry(&mut self, expiration: &Expiration, store: &mut T::Store) -> Option<T::Owned> {
self.levels[expiration.level].pop_entry_slot(expiration.slot, store)
}
fn level_for(&self, when: u64) -> usize {
level_for(self.elapsed, when)
}
}
fn level_for(elapsed: u64, when: u64) -> usize {
const SLOT_MASK: u64 = (1 << 6) - 1;
// Mask in the trailing bits ignored by the level calculation in order to cap
// the possible leading zeros
let masked = elapsed ^ when | SLOT_MASK;
let leading_zeros = masked.leading_zeros() as usize;
let significant = 63 - leading_zeros;
significant / 6
}
#[cfg(all(test, not(loom)))]
mod test {
use super::*;
#[test]
fn test_level_for() {
for pos in 0..64 {
assert_eq!(
0,
level_for(0, pos),
"level_for({}) -- binary = {:b}",
pos,
pos
);
}
for level in 1..5 {
for pos in level..64 {
let a = pos * 64_usize.pow(level as u32);
assert_eq!(
level,
level_for(0, a as u64),
"level_for({}) -- binary = {:b}",
a,
a
);
if pos > level {
let a = a - 1;
assert_eq!(
level,
level_for(0, a as u64),
"level_for({}) -- binary = {:b}",
a,
a
);
}
if pos < 64 {
let a = a + 1;
assert_eq!(
level,
level_for(0, a as u64),
"level_for({}) -- binary = {:b}",
a,
a
);
}
}
}
}
}