tokio_util/time/wheel/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
mod level;
pub(crate) use self::level::Expiration;
use self::level::Level;

mod stack;
pub(crate) use self::stack::Stack;

use std::borrow::Borrow;
use std::fmt::Debug;
use std::usize;

/// Timing wheel implementation.
///
/// This type provides the hashed timing wheel implementation that backs `Timer`
/// and `DelayQueue`.
///
/// The structure is generic over `T: Stack`. This allows handling timeout data
/// being stored on the heap or in a slab. In order to support the latter case,
/// the slab must be passed into each function allowing the implementation to
/// lookup timer entries.
///
/// See `Timer` documentation for some implementation notes.
#[derive(Debug)]
pub(crate) struct Wheel<T> {
    /// The number of milliseconds elapsed since the wheel started.
    elapsed: u64,

    /// Timer wheel.
    ///
    /// Levels:
    ///
    /// * 1 ms slots / 64 ms range
    /// * 64 ms slots / ~ 4 sec range
    /// * ~ 4 sec slots / ~ 4 min range
    /// * ~ 4 min slots / ~ 4 hr range
    /// * ~ 4 hr slots / ~ 12 day range
    /// * ~ 12 day slots / ~ 2 yr range
    levels: Vec<Level<T>>,
}

/// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots
/// each, the timer is able to track time up to 2 years into the future with a
/// precision of 1 millisecond.
const NUM_LEVELS: usize = 6;

/// The maximum duration of a delay
const MAX_DURATION: u64 = (1 << (6 * NUM_LEVELS)) - 1;

#[derive(Debug)]
pub(crate) enum InsertError {
    Elapsed,
    Invalid,
}

impl<T> Wheel<T>
where
    T: Stack,
{
    /// Create a new timing wheel
    pub(crate) fn new() -> Wheel<T> {
        let levels = (0..NUM_LEVELS).map(Level::new).collect();

        Wheel { elapsed: 0, levels }
    }

    /// Return the number of milliseconds that have elapsed since the timing
    /// wheel's creation.
    pub(crate) fn elapsed(&self) -> u64 {
        self.elapsed
    }

    /// Insert an entry into the timing wheel.
    ///
    /// # Arguments
    ///
    /// * `when`: is the instant at which the entry should be fired. It is
    ///           represented as the number of milliseconds since the creation
    ///           of the timing wheel.
    ///
    /// * `item`: The item to insert into the wheel.
    ///
    /// * `store`: The slab or `()` when using heap storage.
    ///
    /// # Return
    ///
    /// Returns `Ok` when the item is successfully inserted, `Err` otherwise.
    ///
    /// `Err(Elapsed)` indicates that `when` represents an instant that has
    /// already passed. In this case, the caller should fire the timeout
    /// immediately.
    ///
    /// `Err(Invalid)` indicates an invalid `when` argument as been supplied.
    pub(crate) fn insert(
        &mut self,
        when: u64,
        item: T::Owned,
        store: &mut T::Store,
    ) -> Result<(), (T::Owned, InsertError)> {
        if when <= self.elapsed {
            return Err((item, InsertError::Elapsed));
        } else if when - self.elapsed > MAX_DURATION {
            return Err((item, InsertError::Invalid));
        }

        // Get the level at which the entry should be stored
        let level = self.level_for(when);

        self.levels[level].add_entry(when, item, store);

        debug_assert!({
            self.levels[level]
                .next_expiration(self.elapsed)
                .map(|e| e.deadline >= self.elapsed)
                .unwrap_or(true)
        });

        Ok(())
    }

    /// Remove `item` from the timing wheel.
    #[track_caller]
    pub(crate) fn remove(&mut self, item: &T::Borrowed, store: &mut T::Store) {
        let when = T::when(item, store);

        assert!(
            self.elapsed <= when,
            "elapsed={}; when={}",
            self.elapsed,
            when
        );

        let level = self.level_for(when);

        self.levels[level].remove_entry(when, item, store);
    }

    /// Instant at which to poll
    pub(crate) fn poll_at(&self) -> Option<u64> {
        self.next_expiration().map(|expiration| expiration.deadline)
    }

    /// Advances the timer up to the instant represented by `now`.
    pub(crate) fn poll(&mut self, now: u64, store: &mut T::Store) -> Option<T::Owned> {
        loop {
            let expiration = self.next_expiration().and_then(|expiration| {
                if expiration.deadline > now {
                    None
                } else {
                    Some(expiration)
                }
            });

            match expiration {
                Some(ref expiration) => {
                    if let Some(item) = self.poll_expiration(expiration, store) {
                        return Some(item);
                    }

                    self.set_elapsed(expiration.deadline);
                }
                None => {
                    // in this case the poll did not indicate an expiration
                    // _and_ we were not able to find a next expiration in
                    // the current list of timers.  advance to the poll's
                    // current time and do nothing else.
                    self.set_elapsed(now);
                    return None;
                }
            }
        }
    }

    /// Returns the instant at which the next timeout expires.
    fn next_expiration(&self) -> Option<Expiration> {
        // Check all levels
        for level in 0..NUM_LEVELS {
            if let Some(expiration) = self.levels[level].next_expiration(self.elapsed) {
                // There cannot be any expirations at a higher level that happen
                // before this one.
                debug_assert!(self.no_expirations_before(level + 1, expiration.deadline));

                return Some(expiration);
            }
        }

        None
    }

    /// Used for debug assertions
    fn no_expirations_before(&self, start_level: usize, before: u64) -> bool {
        let mut res = true;

        for l2 in start_level..NUM_LEVELS {
            if let Some(e2) = self.levels[l2].next_expiration(self.elapsed) {
                if e2.deadline < before {
                    res = false;
                }
            }
        }

        res
    }

    /// iteratively find entries that are between the wheel's current
    /// time and the expiration time.  for each in that population either
    /// return it for notification (in the case of the last level) or tier
    /// it down to the next level (in all other cases).
    pub(crate) fn poll_expiration(
        &mut self,
        expiration: &Expiration,
        store: &mut T::Store,
    ) -> Option<T::Owned> {
        while let Some(item) = self.pop_entry(expiration, store) {
            if expiration.level == 0 {
                debug_assert_eq!(T::when(item.borrow(), store), expiration.deadline);

                return Some(item);
            } else {
                let when = T::when(item.borrow(), store);

                let next_level = expiration.level - 1;

                self.levels[next_level].add_entry(when, item, store);
            }
        }

        None
    }

    fn set_elapsed(&mut self, when: u64) {
        assert!(
            self.elapsed <= when,
            "elapsed={:?}; when={:?}",
            self.elapsed,
            when
        );

        if when > self.elapsed {
            self.elapsed = when;
        }
    }

    fn pop_entry(&mut self, expiration: &Expiration, store: &mut T::Store) -> Option<T::Owned> {
        self.levels[expiration.level].pop_entry_slot(expiration.slot, store)
    }

    fn level_for(&self, when: u64) -> usize {
        level_for(self.elapsed, when)
    }
}

fn level_for(elapsed: u64, when: u64) -> usize {
    const SLOT_MASK: u64 = (1 << 6) - 1;

    // Mask in the trailing bits ignored by the level calculation in order to cap
    // the possible leading zeros
    let masked = elapsed ^ when | SLOT_MASK;

    let leading_zeros = masked.leading_zeros() as usize;
    let significant = 63 - leading_zeros;
    significant / 6
}

#[cfg(all(test, not(loom)))]
mod test {
    use super::*;

    #[test]
    fn test_level_for() {
        for pos in 0..64 {
            assert_eq!(
                0,
                level_for(0, pos),
                "level_for({}) -- binary = {:b}",
                pos,
                pos
            );
        }

        for level in 1..5 {
            for pos in level..64 {
                let a = pos * 64_usize.pow(level as u32);
                assert_eq!(
                    level,
                    level_for(0, a as u64),
                    "level_for({}) -- binary = {:b}",
                    a,
                    a
                );

                if pos > level {
                    let a = a - 1;
                    assert_eq!(
                        level,
                        level_for(0, a as u64),
                        "level_for({}) -- binary = {:b}",
                        a,
                        a
                    );
                }

                if pos < 64 {
                    let a = a + 1;
                    assert_eq!(
                        level,
                        level_for(0, a as u64),
                        "level_for({}) -- binary = {:b}",
                        a,
                        a
                    );
                }
            }
        }
    }
}