h2/proto/streams/flow_control.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
use crate::frame::Reason;
use crate::proto::{WindowSize, MAX_WINDOW_SIZE};
use std::fmt;
// We don't want to send WINDOW_UPDATE frames for tiny changes, but instead
// aggregate them when the changes are significant. Many implementations do
// this by keeping a "ratio" of the update version the allowed window size.
//
// While some may wish to represent this ratio as percentage, using a f32,
// we skip having to deal with float math and stick to integers. To do so,
// the "ratio" is represented by 2 i32s, split into the numerator and
// denominator. For example, a 50% ratio is simply represented as 1/2.
//
// An example applying this ratio: If a stream has an allowed window size of
// 100 bytes, WINDOW_UPDATE frames are scheduled when the unclaimed change
// becomes greater than 1/2, or 50 bytes.
const UNCLAIMED_NUMERATOR: i32 = 1;
const UNCLAIMED_DENOMINATOR: i32 = 2;
#[test]
#[allow(clippy::assertions_on_constants)]
fn sanity_unclaimed_ratio() {
assert!(UNCLAIMED_NUMERATOR < UNCLAIMED_DENOMINATOR);
assert!(UNCLAIMED_NUMERATOR >= 0);
assert!(UNCLAIMED_DENOMINATOR > 0);
}
#[derive(Copy, Clone, Debug)]
pub struct FlowControl {
/// Window the peer knows about.
///
/// This can go negative if a SETTINGS_INITIAL_WINDOW_SIZE is received.
///
/// For example, say the peer sends a request and uses 32kb of the window.
/// We send a SETTINGS_INITIAL_WINDOW_SIZE of 16kb. The peer has to adjust
/// its understanding of the capacity of the window, and that would be:
///
/// ```notrust
/// default (64kb) - used (32kb) - settings_diff (64kb - 16kb): -16kb
/// ```
window_size: Window,
/// Window that we know about.
///
/// This can go negative if a user declares a smaller target window than
/// the peer knows about.
available: Window,
}
impl FlowControl {
pub fn new() -> FlowControl {
FlowControl {
window_size: Window(0),
available: Window(0),
}
}
/// Returns the window size as known by the peer
pub fn window_size(&self) -> WindowSize {
self.window_size.as_size()
}
/// Returns the window size available to the consumer
pub fn available(&self) -> Window {
self.available
}
/// Returns true if there is unavailable window capacity
pub fn has_unavailable(&self) -> bool {
if self.window_size < 0 {
return false;
}
self.window_size > self.available
}
pub fn claim_capacity(&mut self, capacity: WindowSize) -> Result<(), Reason> {
self.available.decrease_by(capacity)
}
pub fn assign_capacity(&mut self, capacity: WindowSize) -> Result<(), Reason> {
self.available.increase_by(capacity)
}
/// If a WINDOW_UPDATE frame should be sent, returns a positive number
/// representing the increment to be used.
///
/// If there is no available bytes to be reclaimed, or the number of
/// available bytes does not reach the threshold, this returns `None`.
///
/// This represents pending outbound WINDOW_UPDATE frames.
pub fn unclaimed_capacity(&self) -> Option<WindowSize> {
let available = self.available;
if self.window_size >= available {
return None;
}
let unclaimed = available.0 - self.window_size.0;
let threshold = self.window_size.0 / UNCLAIMED_DENOMINATOR * UNCLAIMED_NUMERATOR;
if unclaimed < threshold {
None
} else {
Some(unclaimed as WindowSize)
}
}
/// Increase the window size.
///
/// This is called after receiving a WINDOW_UPDATE frame
pub fn inc_window(&mut self, sz: WindowSize) -> Result<(), Reason> {
let (val, overflow) = self.window_size.0.overflowing_add(sz as i32);
if overflow {
return Err(Reason::FLOW_CONTROL_ERROR);
}
if val > MAX_WINDOW_SIZE as i32 {
return Err(Reason::FLOW_CONTROL_ERROR);
}
tracing::trace!(
"inc_window; sz={}; old={}; new={}",
sz,
self.window_size,
val
);
self.window_size = Window(val);
Ok(())
}
/// Decrement the send-side window size.
///
/// This is called after receiving a SETTINGS frame with a lower
/// INITIAL_WINDOW_SIZE value.
pub fn dec_send_window(&mut self, sz: WindowSize) -> Result<(), Reason> {
tracing::trace!(
"dec_window; sz={}; window={}, available={}",
sz,
self.window_size,
self.available
);
// ~~This should not be able to overflow `window_size` from the bottom.~~ wrong. it can.
self.window_size.decrease_by(sz)?;
Ok(())
}
/// Decrement the recv-side window size.
///
/// This is called after receiving a SETTINGS ACK frame with a lower
/// INITIAL_WINDOW_SIZE value.
pub fn dec_recv_window(&mut self, sz: WindowSize) -> Result<(), Reason> {
tracing::trace!(
"dec_recv_window; sz={}; window={}, available={}",
sz,
self.window_size,
self.available
);
// This should not be able to overflow `window_size` from the bottom.
self.window_size.decrease_by(sz)?;
self.available.decrease_by(sz)?;
Ok(())
}
/// Decrements the window reflecting data has actually been sent. The caller
/// must ensure that the window has capacity.
pub fn send_data(&mut self, sz: WindowSize) -> Result<(), Reason> {
tracing::trace!(
"send_data; sz={}; window={}; available={}",
sz,
self.window_size,
self.available
);
// If send size is zero it's meaningless to update flow control window
if sz > 0 {
// Ensure that the argument is correct
assert!(self.window_size.0 >= sz as i32);
// Update values
self.window_size.decrease_by(sz)?;
self.available.decrease_by(sz)?;
}
Ok(())
}
}
/// The current capacity of a flow-controlled Window.
///
/// This number can go negative when either side has used a certain amount
/// of capacity when the other side advertises a reduction in size.
///
/// This type tries to centralize the knowledge of addition and subtraction
/// to this capacity, instead of having integer casts throughout the source.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd)]
pub struct Window(i32);
impl Window {
pub fn as_size(&self) -> WindowSize {
if self.0 < 0 {
0
} else {
self.0 as WindowSize
}
}
pub fn checked_size(&self) -> WindowSize {
assert!(self.0 >= 0, "negative Window");
self.0 as WindowSize
}
pub fn decrease_by(&mut self, other: WindowSize) -> Result<(), Reason> {
if let Some(v) = self.0.checked_sub(other as i32) {
self.0 = v;
Ok(())
} else {
Err(Reason::FLOW_CONTROL_ERROR)
}
}
pub fn increase_by(&mut self, other: WindowSize) -> Result<(), Reason> {
let other = self.add(other)?;
self.0 = other.0;
Ok(())
}
pub fn add(&self, other: WindowSize) -> Result<Self, Reason> {
if let Some(v) = self.0.checked_add(other as i32) {
Ok(Self(v))
} else {
Err(Reason::FLOW_CONTROL_ERROR)
}
}
}
impl PartialEq<usize> for Window {
fn eq(&self, other: &usize) -> bool {
if self.0 < 0 {
false
} else {
(self.0 as usize).eq(other)
}
}
}
impl PartialOrd<usize> for Window {
fn partial_cmp(&self, other: &usize) -> Option<::std::cmp::Ordering> {
if self.0 < 0 {
Some(::std::cmp::Ordering::Less)
} else {
(self.0 as usize).partial_cmp(other)
}
}
}
impl fmt::Display for Window {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.0, f)
}
}
impl From<Window> for isize {
fn from(w: Window) -> isize {
w.0 as isize
}
}