1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Statistics utilities.

/// A standard range of buckets for timing data, measured in seconds.
/// Individual histograms may only need a subset of this range, in which case,
/// see `histogram_seconds_buckets` below.
///
/// Note that any changes to this range may modify buckets for existing metrics.
const HISTOGRAM_SECOND_BUCKETS: [f64; 19] = [
    0.000_128, 0.000_256, 0.000_512, 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256,
    0.512, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0,
];

/// Returns a `Vec` of time buckets that are both present in our standard
/// buckets above and within the provided inclusive range. (This makes it
/// more meaningful to compare latency percentiles across histograms if needed,
/// without requiring all metrics to use exactly the same buckets.)
pub fn histogram_seconds_buckets(from: f64, to: f64) -> Vec<f64> {
    let mut vec = Vec::with_capacity(HISTOGRAM_SECOND_BUCKETS.len());
    vec.extend(
        HISTOGRAM_SECOND_BUCKETS
            .iter()
            .copied()
            .filter(|&b| b >= from && b <= to),
    );
    vec
}

/// A standard range of buckets for timing data, measured in seconds.
/// Individual histograms may only need a subset of this range, in which case,
/// see `histogram_seconds_buckets` below.
///
/// Note that any changes to this range may modify buckets for existing metrics.
const HISTOGRAM_MILLISECOND_BUCKETS: [f64; 19] = [
    0.128, 0.256, 0.512, 1., 2., 4., 8., 16., 32., 64., 128., 256., 512., 1000., 2000., 4000.,
    8000., 16000., 32000.,
];

/// Returns a `Vec` of time buckets that are both present in our standard
/// buckets above and within the provided inclusive range. (This makes it
/// more meaningful to compare latency percentiles across histograms if needed,
/// without requiring all metrics to use exactly the same buckets.)
pub fn histogram_milliseconds_buckets(from_ms: f64, to_ms: f64) -> Vec<f64> {
    let mut vec = Vec::with_capacity(HISTOGRAM_MILLISECOND_BUCKETS.len());
    vec.extend(
        HISTOGRAM_MILLISECOND_BUCKETS
            .iter()
            .copied()
            .filter(|&b| b >= from_ms && b <= to_ms),
    );
    vec
}

/// Buckets that capture sizes of 64 bytes up to a gigabyte
pub const HISTOGRAM_BYTE_BUCKETS: [f64; 7] = [
    64.0,
    1024.0,
    16384.0,
    262144.0,
    4194304.0,
    67108864.0,
    1073741824.0,
];

/// Keeps track of the minimum and maximum value over a fixed-size sliding window of samples.
///
/// Inspired by the [`moving_min_max`] crate, see that crate's documentation for a description of
/// the high-level algorithm used here.
///
/// There are two major differences to [`moving_min_max`]:
///  * `SlidingMinMax` tracks both the minimum and the maximum value at the same time.
///  * `SlidingMinMax` assumes a fixed-size window. Pushing new samples automatically pops old ones
///    and there is no support for manually popping samples.
///
/// The memory required for a `SlidingMinMax` value is `size_of::<T> * 3 * window_size`, plus a
/// small constant overhead.
///
/// [`moving_min_max`]: https://crates.io/crates/moving_min_max
#[derive(Debug)]
pub struct SlidingMinMax<T> {
    /// The push stack and the pop stack, merged into one allocation to optimize memory usage.
    ///
    /// The push stack is the first `push_stack_len` items, the pop stack is the rest.
    /// The push stack grows to the right, the pop stack grows to the left.
    ///
    /// +--------------------------------+
    /// | push stack --> | <-- pop stack |
    /// +----------------^---------------^
    ///           push_stack_len
    ///
    ///  New samples are pushed to the push stack, together with the current minimum and maximum
    ///  values. If the pop stack is not empty, each push implicitly pops an element from the pop
    ///  stack, by increasing `push_stack_len`. Once the push stack has reached the window size
    ///  (i.e. the capacity of `stacks`), we "flip" the stacks by converting the push stack into a
    ///  full pop stack with an inverted order of samples and min/max values. After the flip,
    ///  `push_stack_len` is zero again, and new samples can be pushed to the push stack.
    stacks: Vec<(T, T, T)>,
    /// The length of the push stack.
    ///
    /// The top of the push stack is `stacks[push_stack_len - 1]`.
    /// The top of the pop stack is `stacks[push_stack_len]`.
    push_stack_len: usize,
}

impl<T> SlidingMinMax<T>
where
    T: Clone + PartialOrd,
{
    /// Creates a new `SlidingMinMax` for the given window size.
    pub fn new(window_size: usize) -> Self {
        Self {
            stacks: Vec::with_capacity(window_size),
            push_stack_len: 0,
        }
    }

    /// Returns a reference to the item at the top of the push stack.
    fn top_of_push_stack(&self) -> Option<&(T, T, T)> {
        self.push_stack_len.checked_sub(1).map(|i| &self.stacks[i])
    }

    /// Returns a reference to the item at the top of the pop stack.
    fn top_of_pop_stack(&self) -> Option<&(T, T, T)> {
        self.stacks.get(self.push_stack_len)
    }

    /// Adds the given sample.
    pub fn add_sample(&mut self, sample: T) {
        if self.push_stack_len == self.stacks.capacity() {
            self.flip_stacks();
        }

        let (min, max) = match self.top_of_push_stack() {
            Some((_, min, max)) => {
                let min = po_min(min, &sample).clone();
                let max = po_max(max, &sample).clone();
                (min, max)
            }
            None => (sample.clone(), sample.clone()),
        };

        if self.stacks.len() <= self.push_stack_len {
            self.stacks.push((sample, min, max));
        } else {
            self.stacks[self.push_stack_len] = (sample, min, max);
        }
        self.push_stack_len += 1;
    }

    /// Drains the push stack into the pop stack.
    fn flip_stacks(&mut self) {
        let Some((sample, _, _)) = self.top_of_push_stack().cloned() else {
            return;
        };

        self.push_stack_len -= 1;
        self.stacks[self.push_stack_len] = (sample.clone(), sample.clone(), sample);

        while let Some((sample, _, _)) = self.top_of_push_stack() {
            let (_, min, max) = self.top_of_pop_stack().expect("pop stack not empty");
            let sample = sample.clone();
            let min = po_min(min, &sample).clone();
            let max = po_max(max, &sample).clone();

            self.push_stack_len -= 1;
            self.stacks[self.push_stack_len] = (sample, min, max);
        }
    }

    /// Returns the current minimum and maximum values.
    pub fn get(&self) -> Option<(&T, &T)> {
        match (self.top_of_push_stack(), self.top_of_pop_stack()) {
            (None, None) => None,
            (None, Some((_, min, max))) | (Some((_, min, max)), None) => Some((min, max)),
            (Some((_, min1, max1)), Some((_, min2, max2))) => {
                Some((po_min(min1, min2), po_max(max1, max2)))
            }
        }
    }
}

/// Like `std::cmp::min`, but works with `PartialOrd` values.
///
/// If `a` and `b` are not comparable, `b` is returned.
fn po_min<T: PartialOrd>(a: T, b: T) -> T {
    if a < b {
        a
    } else {
        b
    }
}

/// Like `std::cmp::max`, but works with `PartialOrd` values.
///
/// If `a` and `b` are not comparable, `b` is returned.
fn po_max<T: PartialOrd>(a: T, b: T) -> T {
    if a > b {
        a
    } else {
        b
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[mz_ore::test]
    fn minmax() {
        let mut minmax = SlidingMinMax::new(5);

        assert_eq!(minmax.get(), None);

        let mut push_and_check = |x, expected| {
            minmax.add_sample(x);
            let actual = minmax.get().map(|(min, max)| (*min, *max));
            assert_eq!(actual, Some(expected), "{minmax:?}");
        };

        push_and_check(5, (5, 5));
        push_and_check(1, (1, 5));
        push_and_check(10, (1, 10));
        push_and_check(2, (1, 10));
        push_and_check(9, (1, 10));
        push_and_check(3, (1, 10));
        push_and_check(8, (2, 10));
        push_and_check(5, (2, 9));
        push_and_check(5, (3, 9));
        push_and_check(5, (3, 8));
        push_and_check(5, (5, 8));
        push_and_check(5, (5, 5));
    }
}