h2/proto/streams/
prioritize.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
use super::store::Resolve;
use super::*;

use crate::frame::Reason;

use crate::codec::UserError;
use crate::codec::UserError::*;

use bytes::buf::Take;
use std::{
    cmp::{self, Ordering},
    fmt, io, mem,
    task::{Context, Poll, Waker},
};

/// # Warning
///
/// Queued streams are ordered by stream ID, as we need to ensure that
/// lower-numbered streams are sent headers before higher-numbered ones.
/// This is because "idle" stream IDs – those which have been initiated but
/// have yet to receive frames – will be implicitly closed on receipt of a
/// frame on a higher stream ID. If these queues was not ordered by stream
/// IDs, some mechanism would be necessary to ensure that the lowest-numbered]
/// idle stream is opened first.
#[derive(Debug)]
pub(super) struct Prioritize {
    /// Queue of streams waiting for socket capacity to send a frame.
    pending_send: store::Queue<stream::NextSend>,

    /// Queue of streams waiting for window capacity to produce data.
    pending_capacity: store::Queue<stream::NextSendCapacity>,

    /// Streams waiting for capacity due to max concurrency
    ///
    /// The `SendRequest` handle is `Clone`. This enables initiating requests
    /// from many tasks. However, offering this capability while supporting
    /// backpressure at some level is tricky. If there are many `SendRequest`
    /// handles and a single stream becomes available, which handle gets
    /// assigned that stream? Maybe that handle is no longer ready to send a
    /// request.
    ///
    /// The strategy used is to allow each `SendRequest` handle one buffered
    /// request. A `SendRequest` handle is ready to send a request if it has no
    /// associated buffered requests. This is the same strategy as `mpsc` in the
    /// futures library.
    pending_open: store::Queue<stream::NextOpen>,

    /// Connection level flow control governing sent data
    flow: FlowControl,

    /// Stream ID of the last stream opened.
    last_opened_id: StreamId,

    /// What `DATA` frame is currently being sent in the codec.
    in_flight_data_frame: InFlightData,

    /// The maximum amount of bytes a stream should buffer.
    max_buffer_size: usize,
}

#[derive(Debug, Eq, PartialEq)]
enum InFlightData {
    /// There is no `DATA` frame in flight.
    Nothing,
    /// There is a `DATA` frame in flight belonging to the given stream.
    DataFrame(store::Key),
    /// There was a `DATA` frame, but the stream's queue was since cleared.
    Drop,
}

pub(crate) struct Prioritized<B> {
    // The buffer
    inner: Take<B>,

    end_of_stream: bool,

    // The stream that this is associated with
    stream: store::Key,
}

// ===== impl Prioritize =====

impl Prioritize {
    pub fn new(config: &Config) -> Prioritize {
        let mut flow = FlowControl::new();

        flow.inc_window(config.remote_init_window_sz)
            .expect("invalid initial window size");

        // TODO: proper error handling
        let _res = flow.assign_capacity(config.remote_init_window_sz);
        debug_assert!(_res.is_ok());

        tracing::trace!("Prioritize::new; flow={:?}", flow);

        Prioritize {
            pending_send: store::Queue::new(),
            pending_capacity: store::Queue::new(),
            pending_open: store::Queue::new(),
            flow,
            last_opened_id: StreamId::ZERO,
            in_flight_data_frame: InFlightData::Nothing,
            max_buffer_size: config.local_max_buffer_size,
        }
    }

    pub(crate) fn max_buffer_size(&self) -> usize {
        self.max_buffer_size
    }

    /// Queue a frame to be sent to the remote
    pub fn queue_frame<B>(
        &mut self,
        frame: Frame<B>,
        buffer: &mut Buffer<Frame<B>>,
        stream: &mut store::Ptr,
        task: &mut Option<Waker>,
    ) {
        let span = tracing::trace_span!("Prioritize::queue_frame", ?stream.id);
        let _e = span.enter();
        // Queue the frame in the buffer
        stream.pending_send.push_back(buffer, frame);
        self.schedule_send(stream, task);
    }

    pub fn schedule_send(&mut self, stream: &mut store::Ptr, task: &mut Option<Waker>) {
        // If the stream is waiting to be opened, nothing more to do.
        if stream.is_send_ready() {
            tracing::trace!(?stream.id, "schedule_send");
            // Queue the stream
            self.pending_send.push(stream);

            // Notify the connection.
            if let Some(task) = task.take() {
                task.wake();
            }
        }
    }

    pub fn queue_open(&mut self, stream: &mut store::Ptr) {
        self.pending_open.push(stream);
    }

    /// Send a data frame
    pub fn send_data<B>(
        &mut self,
        frame: frame::Data<B>,
        buffer: &mut Buffer<Frame<B>>,
        stream: &mut store::Ptr,
        counts: &mut Counts,
        task: &mut Option<Waker>,
    ) -> Result<(), UserError>
    where
        B: Buf,
    {
        let sz = frame.payload().remaining();

        if sz > MAX_WINDOW_SIZE as usize {
            return Err(UserError::PayloadTooBig);
        }

        let sz = sz as WindowSize;

        if !stream.state.is_send_streaming() {
            if stream.state.is_closed() {
                return Err(InactiveStreamId);
            } else {
                return Err(UnexpectedFrameType);
            }
        }

        // Update the buffered data counter
        stream.buffered_send_data += sz as usize;

        let span =
            tracing::trace_span!("send_data", sz, requested = stream.requested_send_capacity);
        let _e = span.enter();
        tracing::trace!(buffered = stream.buffered_send_data);

        // Implicitly request more send capacity if not enough has been
        // requested yet.
        if (stream.requested_send_capacity as usize) < stream.buffered_send_data {
            // Update the target requested capacity
            stream.requested_send_capacity =
                cmp::min(stream.buffered_send_data, WindowSize::MAX as usize) as WindowSize;

            // `try_assign_capacity` will queue the stream to `pending_capacity` if the capcaity
            // cannot be assigned at the time it is called.
            //
            // Streams over the max concurrent count will still call `send_data` so we should be
            // careful not to put it into `pending_capacity` as it will starve the connection
            // capacity for other streams
            if !stream.is_pending_open {
                self.try_assign_capacity(stream);
            }
        }

        if frame.is_end_stream() {
            stream.state.send_close();
            self.reserve_capacity(0, stream, counts);
        }

        tracing::trace!(
            available = %stream.send_flow.available(),
            buffered = stream.buffered_send_data,
        );

        // The `stream.buffered_send_data == 0` check is here so that, if a zero
        // length data frame is queued to the front (there is no previously
        // queued data), it gets sent out immediately even if there is no
        // available send window.
        //
        // Sending out zero length data frames can be done to signal
        // end-of-stream.
        //
        if stream.send_flow.available() > 0 || stream.buffered_send_data == 0 {
            // The stream currently has capacity to send the data frame, so
            // queue it up and notify the connection task.
            self.queue_frame(frame.into(), buffer, stream, task);
        } else {
            // The stream has no capacity to send the frame now, save it but
            // don't notify the connection task. Once additional capacity
            // becomes available, the frame will be flushed.
            stream.pending_send.push_back(buffer, frame.into());
        }

        Ok(())
    }

    /// Request capacity to send data
    pub fn reserve_capacity(
        &mut self,
        capacity: WindowSize,
        stream: &mut store::Ptr,
        counts: &mut Counts,
    ) {
        let span = tracing::trace_span!(
            "reserve_capacity",
            ?stream.id,
            requested = capacity,
            effective = (capacity as usize) + stream.buffered_send_data,
            curr = stream.requested_send_capacity
        );
        let _e = span.enter();

        // Actual capacity is `capacity` + the current amount of buffered data.
        // If it were less, then we could never send out the buffered data.
        let capacity = (capacity as usize) + stream.buffered_send_data;

        match capacity.cmp(&(stream.requested_send_capacity as usize)) {
            Ordering::Equal => {
                // Nothing to do
            }
            Ordering::Less => {
                // Update the target requested capacity
                stream.requested_send_capacity = capacity as WindowSize;

                // Currently available capacity assigned to the stream
                let available = stream.send_flow.available().as_size();

                // If the stream has more assigned capacity than requested, reclaim
                // some for the connection
                if available as usize > capacity {
                    let diff = available - capacity as WindowSize;

                    // TODO: proper error handling
                    let _res = stream.send_flow.claim_capacity(diff);
                    debug_assert!(_res.is_ok());

                    self.assign_connection_capacity(diff, stream, counts);
                }
            }
            Ordering::Greater => {
                // If trying to *add* capacity, but the stream send side is closed,
                // there's nothing to be done.
                if stream.state.is_send_closed() {
                    return;
                }

                // Update the target requested capacity
                stream.requested_send_capacity =
                    cmp::min(capacity, WindowSize::MAX as usize) as WindowSize;

                // Try to assign additional capacity to the stream. If none is
                // currently available, the stream will be queued to receive some
                // when more becomes available.
                self.try_assign_capacity(stream);
            }
        }
    }

    pub fn recv_stream_window_update(
        &mut self,
        inc: WindowSize,
        stream: &mut store::Ptr,
    ) -> Result<(), Reason> {
        let span = tracing::trace_span!(
            "recv_stream_window_update",
            ?stream.id,
            ?stream.state,
            inc,
            flow = ?stream.send_flow
        );
        let _e = span.enter();

        if stream.state.is_send_closed() && stream.buffered_send_data == 0 {
            // We can't send any data, so don't bother doing anything else.
            return Ok(());
        }

        // Update the stream level flow control.
        stream.send_flow.inc_window(inc)?;

        // If the stream is waiting on additional capacity, then this will
        // assign it (if available on the connection) and notify the producer
        self.try_assign_capacity(stream);

        Ok(())
    }

    pub fn recv_connection_window_update(
        &mut self,
        inc: WindowSize,
        store: &mut Store,
        counts: &mut Counts,
    ) -> Result<(), Reason> {
        // Update the connection's window
        self.flow.inc_window(inc)?;

        self.assign_connection_capacity(inc, store, counts);
        Ok(())
    }

    /// Reclaim all capacity assigned to the stream and re-assign it to the
    /// connection
    pub fn reclaim_all_capacity(&mut self, stream: &mut store::Ptr, counts: &mut Counts) {
        let available = stream.send_flow.available().as_size();
        if available > 0 {
            // TODO: proper error handling
            let _res = stream.send_flow.claim_capacity(available);
            debug_assert!(_res.is_ok());
            // Re-assign all capacity to the connection
            self.assign_connection_capacity(available, stream, counts);
        }
    }

    /// Reclaim just reserved capacity, not buffered capacity, and re-assign
    /// it to the connection
    pub fn reclaim_reserved_capacity(&mut self, stream: &mut store::Ptr, counts: &mut Counts) {
        // only reclaim requested capacity that isn't already buffered
        if stream.requested_send_capacity as usize > stream.buffered_send_data {
            let reserved = stream.requested_send_capacity - stream.buffered_send_data as WindowSize;

            // TODO: proper error handling
            let _res = stream.send_flow.claim_capacity(reserved);
            debug_assert!(_res.is_ok());
            self.assign_connection_capacity(reserved, stream, counts);
        }
    }

    pub fn clear_pending_capacity(&mut self, store: &mut Store, counts: &mut Counts) {
        let span = tracing::trace_span!("clear_pending_capacity");
        let _e = span.enter();
        while let Some(stream) = self.pending_capacity.pop(store) {
            counts.transition(stream, |_, stream| {
                tracing::trace!(?stream.id, "clear_pending_capacity");
            })
        }
    }

    pub fn assign_connection_capacity<R>(
        &mut self,
        inc: WindowSize,
        store: &mut R,
        counts: &mut Counts,
    ) where
        R: Resolve,
    {
        let span = tracing::trace_span!("assign_connection_capacity", inc);
        let _e = span.enter();

        // TODO: proper error handling
        let _res = self.flow.assign_capacity(inc);
        debug_assert!(_res.is_ok());

        // Assign newly acquired capacity to streams pending capacity.
        while self.flow.available() > 0 {
            let stream = match self.pending_capacity.pop(store) {
                Some(stream) => stream,
                None => return,
            };

            // Streams pending capacity may have been reset before capacity
            // became available. In that case, the stream won't want any
            // capacity, and so we shouldn't "transition" on it, but just evict
            // it and continue the loop.
            if !(stream.state.is_send_streaming() || stream.buffered_send_data > 0) {
                continue;
            }

            counts.transition(stream, |_, stream| {
                // Try to assign capacity to the stream. This will also re-queue the
                // stream if there isn't enough connection level capacity to fulfill
                // the capacity request.
                self.try_assign_capacity(stream);
            })
        }
    }

    /// Request capacity to send data
    fn try_assign_capacity(&mut self, stream: &mut store::Ptr) {
        let total_requested = stream.requested_send_capacity;

        // Total requested should never go below actual assigned
        // (Note: the window size can go lower than assigned)
        debug_assert!(stream.send_flow.available() <= total_requested as usize);

        // The amount of additional capacity that the stream requests.
        // Don't assign more than the window has available!
        let additional = cmp::min(
            total_requested - stream.send_flow.available().as_size(),
            // Can't assign more than what is available
            stream.send_flow.window_size() - stream.send_flow.available().as_size(),
        );
        let span = tracing::trace_span!("try_assign_capacity", ?stream.id);
        let _e = span.enter();
        tracing::trace!(
            requested = total_requested,
            additional,
            buffered = stream.buffered_send_data,
            window = stream.send_flow.window_size(),
            conn = %self.flow.available()
        );

        if additional == 0 {
            // Nothing more to do
            return;
        }

        // If the stream has requested capacity, then it must be in the
        // streaming state (more data could be sent) or there is buffered data
        // waiting to be sent.
        debug_assert!(
            stream.state.is_send_streaming() || stream.buffered_send_data > 0,
            "state={:?}",
            stream.state
        );

        // The amount of currently available capacity on the connection
        let conn_available = self.flow.available().as_size();

        // First check if capacity is immediately available
        if conn_available > 0 {
            // The amount of capacity to assign to the stream
            // TODO: Should prioritization factor into this?
            let assign = cmp::min(conn_available, additional);

            tracing::trace!(capacity = assign, "assigning");

            // Assign the capacity to the stream
            stream.assign_capacity(assign, self.max_buffer_size);

            // Claim the capacity from the connection
            // TODO: proper error handling
            let _res = self.flow.claim_capacity(assign);
            debug_assert!(_res.is_ok());
        }

        tracing::trace!(
            available = %stream.send_flow.available(),
            requested = stream.requested_send_capacity,
            buffered = stream.buffered_send_data,
            has_unavailable = %stream.send_flow.has_unavailable()
        );

        if stream.send_flow.available() < stream.requested_send_capacity as usize
            && stream.send_flow.has_unavailable()
        {
            // The stream requires additional capacity and the stream's
            // window has available capacity, but the connection window
            // does not.
            //
            // In this case, the stream needs to be queued up for when the
            // connection has more capacity.
            self.pending_capacity.push(stream);
        }

        // If data is buffered and the stream is send ready, then
        // schedule the stream for execution
        if stream.buffered_send_data > 0 && stream.is_send_ready() {
            // TODO: This assertion isn't *exactly* correct. There can still be
            // buffered send data while the stream's pending send queue is
            // empty. This can happen when a large data frame is in the process
            // of being **partially** sent. Once the window has been sent, the
            // data frame will be returned to the prioritization layer to be
            // re-scheduled.
            //
            // That said, it would be nice to figure out how to make this
            // assertion correctly.
            //
            // debug_assert!(!stream.pending_send.is_empty());

            self.pending_send.push(stream);
        }
    }

    pub fn poll_complete<T, B>(
        &mut self,
        cx: &mut Context,
        buffer: &mut Buffer<Frame<B>>,
        store: &mut Store,
        counts: &mut Counts,
        dst: &mut Codec<T, Prioritized<B>>,
    ) -> Poll<io::Result<()>>
    where
        T: AsyncWrite + Unpin,
        B: Buf,
    {
        // Ensure codec is ready
        ready!(dst.poll_ready(cx))?;

        // Reclaim any frame that has previously been written
        self.reclaim_frame(buffer, store, dst);

        // The max frame length
        let max_frame_len = dst.max_send_frame_size();

        tracing::trace!("poll_complete");

        loop {
            if let Some(mut stream) = self.pop_pending_open(store, counts) {
                self.pending_send.push_front(&mut stream);
                self.try_assign_capacity(&mut stream);
            }

            match self.pop_frame(buffer, store, max_frame_len, counts) {
                Some(frame) => {
                    tracing::trace!(?frame, "writing");

                    debug_assert_eq!(self.in_flight_data_frame, InFlightData::Nothing);
                    if let Frame::Data(ref frame) = frame {
                        self.in_flight_data_frame = InFlightData::DataFrame(frame.payload().stream);
                    }
                    dst.buffer(frame).expect("invalid frame");

                    // Ensure the codec is ready to try the loop again.
                    ready!(dst.poll_ready(cx))?;

                    // Because, always try to reclaim...
                    self.reclaim_frame(buffer, store, dst);
                }
                None => {
                    // Try to flush the codec.
                    ready!(dst.flush(cx))?;

                    // This might release a data frame...
                    if !self.reclaim_frame(buffer, store, dst) {
                        return Poll::Ready(Ok(()));
                    }

                    // No need to poll ready as poll_complete() does this for
                    // us...
                }
            }
        }
    }

    /// Tries to reclaim a pending data frame from the codec.
    ///
    /// Returns true if a frame was reclaimed.
    ///
    /// When a data frame is written to the codec, it may not be written in its
    /// entirety (large chunks are split up into potentially many data frames).
    /// In this case, the stream needs to be reprioritized.
    fn reclaim_frame<T, B>(
        &mut self,
        buffer: &mut Buffer<Frame<B>>,
        store: &mut Store,
        dst: &mut Codec<T, Prioritized<B>>,
    ) -> bool
    where
        B: Buf,
    {
        let span = tracing::trace_span!("try_reclaim_frame");
        let _e = span.enter();

        // First check if there are any data chunks to take back
        if let Some(frame) = dst.take_last_data_frame() {
            self.reclaim_frame_inner(buffer, store, frame)
        } else {
            false
        }
    }

    fn reclaim_frame_inner<B>(
        &mut self,
        buffer: &mut Buffer<Frame<B>>,
        store: &mut Store,
        frame: frame::Data<Prioritized<B>>,
    ) -> bool
    where
        B: Buf,
    {
        tracing::trace!(
            ?frame,
            sz = frame.payload().inner.get_ref().remaining(),
            "reclaimed"
        );

        let mut eos = false;
        let key = frame.payload().stream;

        match mem::replace(&mut self.in_flight_data_frame, InFlightData::Nothing) {
            InFlightData::Nothing => panic!("wasn't expecting a frame to reclaim"),
            InFlightData::Drop => {
                tracing::trace!("not reclaiming frame for cancelled stream");
                return false;
            }
            InFlightData::DataFrame(k) => {
                debug_assert_eq!(k, key);
            }
        }

        let mut frame = frame.map(|prioritized| {
            // TODO: Ensure fully written
            eos = prioritized.end_of_stream;
            prioritized.inner.into_inner()
        });

        if frame.payload().has_remaining() {
            let mut stream = store.resolve(key);

            if eos {
                frame.set_end_stream(true);
            }

            self.push_back_frame(frame.into(), buffer, &mut stream);

            return true;
        }

        false
    }

    /// Push the frame to the front of the stream's deque, scheduling the
    /// stream if needed.
    fn push_back_frame<B>(
        &mut self,
        frame: Frame<B>,
        buffer: &mut Buffer<Frame<B>>,
        stream: &mut store::Ptr,
    ) {
        // Push the frame to the front of the stream's deque
        stream.pending_send.push_front(buffer, frame);

        // If needed, schedule the sender
        if stream.send_flow.available() > 0 {
            debug_assert!(!stream.pending_send.is_empty());
            self.pending_send.push(stream);
        }
    }

    pub fn clear_queue<B>(&mut self, buffer: &mut Buffer<Frame<B>>, stream: &mut store::Ptr) {
        let span = tracing::trace_span!("clear_queue", ?stream.id);
        let _e = span.enter();

        // TODO: make this more efficient?
        while let Some(frame) = stream.pending_send.pop_front(buffer) {
            tracing::trace!(?frame, "dropping");
        }

        stream.buffered_send_data = 0;
        stream.requested_send_capacity = 0;
        if let InFlightData::DataFrame(key) = self.in_flight_data_frame {
            if stream.key() == key {
                // This stream could get cleaned up now - don't allow the buffered frame to get reclaimed.
                self.in_flight_data_frame = InFlightData::Drop;
            }
        }
    }

    pub fn clear_pending_send(&mut self, store: &mut Store, counts: &mut Counts) {
        while let Some(stream) = self.pending_send.pop(store) {
            let is_pending_reset = stream.is_pending_reset_expiration();
            counts.transition_after(stream, is_pending_reset);
        }
    }

    pub fn clear_pending_open(&mut self, store: &mut Store, counts: &mut Counts) {
        while let Some(stream) = self.pending_open.pop(store) {
            let is_pending_reset = stream.is_pending_reset_expiration();
            counts.transition_after(stream, is_pending_reset);
        }
    }

    fn pop_frame<B>(
        &mut self,
        buffer: &mut Buffer<Frame<B>>,
        store: &mut Store,
        max_len: usize,
        counts: &mut Counts,
    ) -> Option<Frame<Prioritized<B>>>
    where
        B: Buf,
    {
        let span = tracing::trace_span!("pop_frame");
        let _e = span.enter();

        loop {
            match self.pending_send.pop(store) {
                Some(mut stream) => {
                    let span = tracing::trace_span!("popped", ?stream.id, ?stream.state);
                    let _e = span.enter();

                    // It's possible that this stream, besides having data to send,
                    // is also queued to send a reset, and thus is already in the queue
                    // to wait for "some time" after a reset.
                    //
                    // To be safe, we just always ask the stream.
                    let is_pending_reset = stream.is_pending_reset_expiration();

                    tracing::trace!(is_pending_reset);

                    let frame = match stream.pending_send.pop_front(buffer) {
                        Some(Frame::Data(mut frame)) => {
                            // Get the amount of capacity remaining for stream's
                            // window.
                            let stream_capacity = stream.send_flow.available();
                            let sz = frame.payload().remaining();

                            tracing::trace!(
                                sz,
                                eos = frame.is_end_stream(),
                                window = %stream_capacity,
                                available = %stream.send_flow.available(),
                                requested = stream.requested_send_capacity,
                                buffered = stream.buffered_send_data,
                                "data frame"
                            );

                            // Zero length data frames always have capacity to
                            // be sent.
                            if sz > 0 && stream_capacity == 0 {
                                tracing::trace!("stream capacity is 0");

                                // Ensure that the stream is waiting for
                                // connection level capacity
                                //
                                // TODO: uncomment
                                // debug_assert!(stream.is_pending_send_capacity);

                                // The stream has no more capacity, this can
                                // happen if the remote reduced the stream
                                // window. In this case, we need to buffer the
                                // frame and wait for a window update...
                                stream.pending_send.push_front(buffer, frame.into());

                                continue;
                            }

                            // Only send up to the max frame length
                            let len = cmp::min(sz, max_len);

                            // Only send up to the stream's window capacity
                            let len =
                                cmp::min(len, stream_capacity.as_size() as usize) as WindowSize;

                            // There *must* be be enough connection level
                            // capacity at this point.
                            debug_assert!(len <= self.flow.window_size());

                            // Check if the stream level window the peer knows is available. In some
                            // scenarios, maybe the window we know is available but the window which
                            // peer knows is not.
                            if len > 0 && len > stream.send_flow.window_size() {
                                stream.pending_send.push_front(buffer, frame.into());
                                continue;
                            }

                            tracing::trace!(len, "sending data frame");

                            // Update the flow control
                            tracing::trace_span!("updating stream flow").in_scope(|| {
                                stream.send_data(len, self.max_buffer_size);

                                // Assign the capacity back to the connection that
                                // was just consumed from the stream in the previous
                                // line.
                                // TODO: proper error handling
                                let _res = self.flow.assign_capacity(len);
                                debug_assert!(_res.is_ok());
                            });

                            let (eos, len) = tracing::trace_span!("updating connection flow")
                                .in_scope(|| {
                                    // TODO: proper error handling
                                    let _res = self.flow.send_data(len);
                                    debug_assert!(_res.is_ok());

                                    // Wrap the frame's data payload to ensure that the
                                    // correct amount of data gets written.

                                    let eos = frame.is_end_stream();
                                    let len = len as usize;

                                    if frame.payload().remaining() > len {
                                        frame.set_end_stream(false);
                                    }
                                    (eos, len)
                                });

                            Frame::Data(frame.map(|buf| Prioritized {
                                inner: buf.take(len),
                                end_of_stream: eos,
                                stream: stream.key(),
                            }))
                        }
                        Some(Frame::PushPromise(pp)) => {
                            let mut pushed =
                                stream.store_mut().find_mut(&pp.promised_id()).unwrap();
                            pushed.is_pending_push = false;
                            // Transition stream from pending_push to pending_open
                            // if possible
                            if !pushed.pending_send.is_empty() {
                                if counts.can_inc_num_send_streams() {
                                    counts.inc_num_send_streams(&mut pushed);
                                    self.pending_send.push(&mut pushed);
                                } else {
                                    self.queue_open(&mut pushed);
                                }
                            }
                            Frame::PushPromise(pp)
                        }
                        Some(frame) => frame.map(|_| {
                            unreachable!(
                                "Frame::map closure will only be called \
                                 on DATA frames."
                            )
                        }),
                        None => {
                            if let Some(reason) = stream.state.get_scheduled_reset() {
                                let stream_id = stream.id;
                                stream
                                    .state
                                    .set_reset(stream_id, reason, Initiator::Library);

                                let frame = frame::Reset::new(stream.id, reason);
                                Frame::Reset(frame)
                            } else {
                                // If the stream receives a RESET from the peer, it may have
                                // had data buffered to be sent, but all the frames are cleared
                                // in clear_queue(). Instead of doing O(N) traversal through queue
                                // to remove, lets just ignore the stream here.
                                tracing::trace!("removing dangling stream from pending_send");
                                // Since this should only happen as a consequence of `clear_queue`,
                                // we must be in a closed state of some kind.
                                debug_assert!(stream.state.is_closed());
                                counts.transition_after(stream, is_pending_reset);
                                continue;
                            }
                        }
                    };

                    tracing::trace!("pop_frame; frame={:?}", frame);

                    if cfg!(debug_assertions) && stream.state.is_idle() {
                        debug_assert!(stream.id > self.last_opened_id);
                        self.last_opened_id = stream.id;
                    }

                    if !stream.pending_send.is_empty() || stream.state.is_scheduled_reset() {
                        // TODO: Only requeue the sender IF it is ready to send
                        // the next frame. i.e. don't requeue it if the next
                        // frame is a data frame and the stream does not have
                        // any more capacity.
                        self.pending_send.push(&mut stream);
                    }

                    counts.transition_after(stream, is_pending_reset);

                    return Some(frame);
                }
                None => return None,
            }
        }
    }

    fn pop_pending_open<'s>(
        &mut self,
        store: &'s mut Store,
        counts: &mut Counts,
    ) -> Option<store::Ptr<'s>> {
        tracing::trace!("schedule_pending_open");
        // check for any pending open streams
        if counts.can_inc_num_send_streams() {
            if let Some(mut stream) = self.pending_open.pop(store) {
                tracing::trace!("schedule_pending_open; stream={:?}", stream.id);

                counts.inc_num_send_streams(&mut stream);
                stream.notify_send();
                return Some(stream);
            }
        }

        None
    }
}

// ===== impl Prioritized =====

impl<B> Buf for Prioritized<B>
where
    B: Buf,
{
    fn remaining(&self) -> usize {
        self.inner.remaining()
    }

    fn chunk(&self) -> &[u8] {
        self.inner.chunk()
    }

    fn chunks_vectored<'a>(&'a self, dst: &mut [std::io::IoSlice<'a>]) -> usize {
        self.inner.chunks_vectored(dst)
    }

    fn advance(&mut self, cnt: usize) {
        self.inner.advance(cnt)
    }
}

impl<B: Buf> fmt::Debug for Prioritized<B> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_struct("Prioritized")
            .field("remaining", &self.inner.get_ref().remaining())
            .field("end_of_stream", &self.end_of_stream)
            .field("stream", &self.stream)
            .finish()
    }
}