h2/proto/streams/prioritize.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
use super::store::Resolve;
use super::*;
use crate::frame::Reason;
use crate::codec::UserError;
use crate::codec::UserError::*;
use bytes::buf::Take;
use std::{
cmp::{self, Ordering},
fmt, io, mem,
task::{Context, Poll, Waker},
};
/// # Warning
///
/// Queued streams are ordered by stream ID, as we need to ensure that
/// lower-numbered streams are sent headers before higher-numbered ones.
/// This is because "idle" stream IDs – those which have been initiated but
/// have yet to receive frames – will be implicitly closed on receipt of a
/// frame on a higher stream ID. If these queues was not ordered by stream
/// IDs, some mechanism would be necessary to ensure that the lowest-numbered]
/// idle stream is opened first.
#[derive(Debug)]
pub(super) struct Prioritize {
/// Queue of streams waiting for socket capacity to send a frame.
pending_send: store::Queue<stream::NextSend>,
/// Queue of streams waiting for window capacity to produce data.
pending_capacity: store::Queue<stream::NextSendCapacity>,
/// Streams waiting for capacity due to max concurrency
///
/// The `SendRequest` handle is `Clone`. This enables initiating requests
/// from many tasks. However, offering this capability while supporting
/// backpressure at some level is tricky. If there are many `SendRequest`
/// handles and a single stream becomes available, which handle gets
/// assigned that stream? Maybe that handle is no longer ready to send a
/// request.
///
/// The strategy used is to allow each `SendRequest` handle one buffered
/// request. A `SendRequest` handle is ready to send a request if it has no
/// associated buffered requests. This is the same strategy as `mpsc` in the
/// futures library.
pending_open: store::Queue<stream::NextOpen>,
/// Connection level flow control governing sent data
flow: FlowControl,
/// Stream ID of the last stream opened.
last_opened_id: StreamId,
/// What `DATA` frame is currently being sent in the codec.
in_flight_data_frame: InFlightData,
/// The maximum amount of bytes a stream should buffer.
max_buffer_size: usize,
}
#[derive(Debug, Eq, PartialEq)]
enum InFlightData {
/// There is no `DATA` frame in flight.
Nothing,
/// There is a `DATA` frame in flight belonging to the given stream.
DataFrame(store::Key),
/// There was a `DATA` frame, but the stream's queue was since cleared.
Drop,
}
pub(crate) struct Prioritized<B> {
// The buffer
inner: Take<B>,
end_of_stream: bool,
// The stream that this is associated with
stream: store::Key,
}
// ===== impl Prioritize =====
impl Prioritize {
pub fn new(config: &Config) -> Prioritize {
let mut flow = FlowControl::new();
flow.inc_window(config.remote_init_window_sz)
.expect("invalid initial window size");
// TODO: proper error handling
let _res = flow.assign_capacity(config.remote_init_window_sz);
debug_assert!(_res.is_ok());
tracing::trace!("Prioritize::new; flow={:?}", flow);
Prioritize {
pending_send: store::Queue::new(),
pending_capacity: store::Queue::new(),
pending_open: store::Queue::new(),
flow,
last_opened_id: StreamId::ZERO,
in_flight_data_frame: InFlightData::Nothing,
max_buffer_size: config.local_max_buffer_size,
}
}
pub(crate) fn max_buffer_size(&self) -> usize {
self.max_buffer_size
}
/// Queue a frame to be sent to the remote
pub fn queue_frame<B>(
&mut self,
frame: Frame<B>,
buffer: &mut Buffer<Frame<B>>,
stream: &mut store::Ptr,
task: &mut Option<Waker>,
) {
let span = tracing::trace_span!("Prioritize::queue_frame", ?stream.id);
let _e = span.enter();
// Queue the frame in the buffer
stream.pending_send.push_back(buffer, frame);
self.schedule_send(stream, task);
}
pub fn schedule_send(&mut self, stream: &mut store::Ptr, task: &mut Option<Waker>) {
// If the stream is waiting to be opened, nothing more to do.
if stream.is_send_ready() {
tracing::trace!(?stream.id, "schedule_send");
// Queue the stream
self.pending_send.push(stream);
// Notify the connection.
if let Some(task) = task.take() {
task.wake();
}
}
}
pub fn queue_open(&mut self, stream: &mut store::Ptr) {
self.pending_open.push(stream);
}
/// Send a data frame
pub fn send_data<B>(
&mut self,
frame: frame::Data<B>,
buffer: &mut Buffer<Frame<B>>,
stream: &mut store::Ptr,
counts: &mut Counts,
task: &mut Option<Waker>,
) -> Result<(), UserError>
where
B: Buf,
{
let sz = frame.payload().remaining();
if sz > MAX_WINDOW_SIZE as usize {
return Err(UserError::PayloadTooBig);
}
let sz = sz as WindowSize;
if !stream.state.is_send_streaming() {
if stream.state.is_closed() {
return Err(InactiveStreamId);
} else {
return Err(UnexpectedFrameType);
}
}
// Update the buffered data counter
stream.buffered_send_data += sz as usize;
let span =
tracing::trace_span!("send_data", sz, requested = stream.requested_send_capacity);
let _e = span.enter();
tracing::trace!(buffered = stream.buffered_send_data);
// Implicitly request more send capacity if not enough has been
// requested yet.
if (stream.requested_send_capacity as usize) < stream.buffered_send_data {
// Update the target requested capacity
stream.requested_send_capacity =
cmp::min(stream.buffered_send_data, WindowSize::MAX as usize) as WindowSize;
// `try_assign_capacity` will queue the stream to `pending_capacity` if the capcaity
// cannot be assigned at the time it is called.
//
// Streams over the max concurrent count will still call `send_data` so we should be
// careful not to put it into `pending_capacity` as it will starve the connection
// capacity for other streams
if !stream.is_pending_open {
self.try_assign_capacity(stream);
}
}
if frame.is_end_stream() {
stream.state.send_close();
self.reserve_capacity(0, stream, counts);
}
tracing::trace!(
available = %stream.send_flow.available(),
buffered = stream.buffered_send_data,
);
// The `stream.buffered_send_data == 0` check is here so that, if a zero
// length data frame is queued to the front (there is no previously
// queued data), it gets sent out immediately even if there is no
// available send window.
//
// Sending out zero length data frames can be done to signal
// end-of-stream.
//
if stream.send_flow.available() > 0 || stream.buffered_send_data == 0 {
// The stream currently has capacity to send the data frame, so
// queue it up and notify the connection task.
self.queue_frame(frame.into(), buffer, stream, task);
} else {
// The stream has no capacity to send the frame now, save it but
// don't notify the connection task. Once additional capacity
// becomes available, the frame will be flushed.
stream.pending_send.push_back(buffer, frame.into());
}
Ok(())
}
/// Request capacity to send data
pub fn reserve_capacity(
&mut self,
capacity: WindowSize,
stream: &mut store::Ptr,
counts: &mut Counts,
) {
let span = tracing::trace_span!(
"reserve_capacity",
?stream.id,
requested = capacity,
effective = (capacity as usize) + stream.buffered_send_data,
curr = stream.requested_send_capacity
);
let _e = span.enter();
// Actual capacity is `capacity` + the current amount of buffered data.
// If it were less, then we could never send out the buffered data.
let capacity = (capacity as usize) + stream.buffered_send_data;
match capacity.cmp(&(stream.requested_send_capacity as usize)) {
Ordering::Equal => {
// Nothing to do
}
Ordering::Less => {
// Update the target requested capacity
stream.requested_send_capacity = capacity as WindowSize;
// Currently available capacity assigned to the stream
let available = stream.send_flow.available().as_size();
// If the stream has more assigned capacity than requested, reclaim
// some for the connection
if available as usize > capacity {
let diff = available - capacity as WindowSize;
// TODO: proper error handling
let _res = stream.send_flow.claim_capacity(diff);
debug_assert!(_res.is_ok());
self.assign_connection_capacity(diff, stream, counts);
}
}
Ordering::Greater => {
// If trying to *add* capacity, but the stream send side is closed,
// there's nothing to be done.
if stream.state.is_send_closed() {
return;
}
// Update the target requested capacity
stream.requested_send_capacity =
cmp::min(capacity, WindowSize::MAX as usize) as WindowSize;
// Try to assign additional capacity to the stream. If none is
// currently available, the stream will be queued to receive some
// when more becomes available.
self.try_assign_capacity(stream);
}
}
}
pub fn recv_stream_window_update(
&mut self,
inc: WindowSize,
stream: &mut store::Ptr,
) -> Result<(), Reason> {
let span = tracing::trace_span!(
"recv_stream_window_update",
?stream.id,
?stream.state,
inc,
flow = ?stream.send_flow
);
let _e = span.enter();
if stream.state.is_send_closed() && stream.buffered_send_data == 0 {
// We can't send any data, so don't bother doing anything else.
return Ok(());
}
// Update the stream level flow control.
stream.send_flow.inc_window(inc)?;
// If the stream is waiting on additional capacity, then this will
// assign it (if available on the connection) and notify the producer
self.try_assign_capacity(stream);
Ok(())
}
pub fn recv_connection_window_update(
&mut self,
inc: WindowSize,
store: &mut Store,
counts: &mut Counts,
) -> Result<(), Reason> {
// Update the connection's window
self.flow.inc_window(inc)?;
self.assign_connection_capacity(inc, store, counts);
Ok(())
}
/// Reclaim all capacity assigned to the stream and re-assign it to the
/// connection
pub fn reclaim_all_capacity(&mut self, stream: &mut store::Ptr, counts: &mut Counts) {
let available = stream.send_flow.available().as_size();
if available > 0 {
// TODO: proper error handling
let _res = stream.send_flow.claim_capacity(available);
debug_assert!(_res.is_ok());
// Re-assign all capacity to the connection
self.assign_connection_capacity(available, stream, counts);
}
}
/// Reclaim just reserved capacity, not buffered capacity, and re-assign
/// it to the connection
pub fn reclaim_reserved_capacity(&mut self, stream: &mut store::Ptr, counts: &mut Counts) {
// only reclaim requested capacity that isn't already buffered
if stream.requested_send_capacity as usize > stream.buffered_send_data {
let reserved = stream.requested_send_capacity - stream.buffered_send_data as WindowSize;
// TODO: proper error handling
let _res = stream.send_flow.claim_capacity(reserved);
debug_assert!(_res.is_ok());
self.assign_connection_capacity(reserved, stream, counts);
}
}
pub fn clear_pending_capacity(&mut self, store: &mut Store, counts: &mut Counts) {
let span = tracing::trace_span!("clear_pending_capacity");
let _e = span.enter();
while let Some(stream) = self.pending_capacity.pop(store) {
counts.transition(stream, |_, stream| {
tracing::trace!(?stream.id, "clear_pending_capacity");
})
}
}
pub fn assign_connection_capacity<R>(
&mut self,
inc: WindowSize,
store: &mut R,
counts: &mut Counts,
) where
R: Resolve,
{
let span = tracing::trace_span!("assign_connection_capacity", inc);
let _e = span.enter();
// TODO: proper error handling
let _res = self.flow.assign_capacity(inc);
debug_assert!(_res.is_ok());
// Assign newly acquired capacity to streams pending capacity.
while self.flow.available() > 0 {
let stream = match self.pending_capacity.pop(store) {
Some(stream) => stream,
None => return,
};
// Streams pending capacity may have been reset before capacity
// became available. In that case, the stream won't want any
// capacity, and so we shouldn't "transition" on it, but just evict
// it and continue the loop.
if !(stream.state.is_send_streaming() || stream.buffered_send_data > 0) {
continue;
}
counts.transition(stream, |_, stream| {
// Try to assign capacity to the stream. This will also re-queue the
// stream if there isn't enough connection level capacity to fulfill
// the capacity request.
self.try_assign_capacity(stream);
})
}
}
/// Request capacity to send data
fn try_assign_capacity(&mut self, stream: &mut store::Ptr) {
let total_requested = stream.requested_send_capacity;
// Total requested should never go below actual assigned
// (Note: the window size can go lower than assigned)
debug_assert!(stream.send_flow.available() <= total_requested as usize);
// The amount of additional capacity that the stream requests.
// Don't assign more than the window has available!
let additional = cmp::min(
total_requested - stream.send_flow.available().as_size(),
// Can't assign more than what is available
stream.send_flow.window_size() - stream.send_flow.available().as_size(),
);
let span = tracing::trace_span!("try_assign_capacity", ?stream.id);
let _e = span.enter();
tracing::trace!(
requested = total_requested,
additional,
buffered = stream.buffered_send_data,
window = stream.send_flow.window_size(),
conn = %self.flow.available()
);
if additional == 0 {
// Nothing more to do
return;
}
// If the stream has requested capacity, then it must be in the
// streaming state (more data could be sent) or there is buffered data
// waiting to be sent.
debug_assert!(
stream.state.is_send_streaming() || stream.buffered_send_data > 0,
"state={:?}",
stream.state
);
// The amount of currently available capacity on the connection
let conn_available = self.flow.available().as_size();
// First check if capacity is immediately available
if conn_available > 0 {
// The amount of capacity to assign to the stream
// TODO: Should prioritization factor into this?
let assign = cmp::min(conn_available, additional);
tracing::trace!(capacity = assign, "assigning");
// Assign the capacity to the stream
stream.assign_capacity(assign, self.max_buffer_size);
// Claim the capacity from the connection
// TODO: proper error handling
let _res = self.flow.claim_capacity(assign);
debug_assert!(_res.is_ok());
}
tracing::trace!(
available = %stream.send_flow.available(),
requested = stream.requested_send_capacity,
buffered = stream.buffered_send_data,
has_unavailable = %stream.send_flow.has_unavailable()
);
if stream.send_flow.available() < stream.requested_send_capacity as usize
&& stream.send_flow.has_unavailable()
{
// The stream requires additional capacity and the stream's
// window has available capacity, but the connection window
// does not.
//
// In this case, the stream needs to be queued up for when the
// connection has more capacity.
self.pending_capacity.push(stream);
}
// If data is buffered and the stream is send ready, then
// schedule the stream for execution
if stream.buffered_send_data > 0 && stream.is_send_ready() {
// TODO: This assertion isn't *exactly* correct. There can still be
// buffered send data while the stream's pending send queue is
// empty. This can happen when a large data frame is in the process
// of being **partially** sent. Once the window has been sent, the
// data frame will be returned to the prioritization layer to be
// re-scheduled.
//
// That said, it would be nice to figure out how to make this
// assertion correctly.
//
// debug_assert!(!stream.pending_send.is_empty());
self.pending_send.push(stream);
}
}
pub fn poll_complete<T, B>(
&mut self,
cx: &mut Context,
buffer: &mut Buffer<Frame<B>>,
store: &mut Store,
counts: &mut Counts,
dst: &mut Codec<T, Prioritized<B>>,
) -> Poll<io::Result<()>>
where
T: AsyncWrite + Unpin,
B: Buf,
{
// Ensure codec is ready
ready!(dst.poll_ready(cx))?;
// Reclaim any frame that has previously been written
self.reclaim_frame(buffer, store, dst);
// The max frame length
let max_frame_len = dst.max_send_frame_size();
tracing::trace!("poll_complete");
loop {
if let Some(mut stream) = self.pop_pending_open(store, counts) {
self.pending_send.push_front(&mut stream);
self.try_assign_capacity(&mut stream);
}
match self.pop_frame(buffer, store, max_frame_len, counts) {
Some(frame) => {
tracing::trace!(?frame, "writing");
debug_assert_eq!(self.in_flight_data_frame, InFlightData::Nothing);
if let Frame::Data(ref frame) = frame {
self.in_flight_data_frame = InFlightData::DataFrame(frame.payload().stream);
}
dst.buffer(frame).expect("invalid frame");
// Ensure the codec is ready to try the loop again.
ready!(dst.poll_ready(cx))?;
// Because, always try to reclaim...
self.reclaim_frame(buffer, store, dst);
}
None => {
// Try to flush the codec.
ready!(dst.flush(cx))?;
// This might release a data frame...
if !self.reclaim_frame(buffer, store, dst) {
return Poll::Ready(Ok(()));
}
// No need to poll ready as poll_complete() does this for
// us...
}
}
}
}
/// Tries to reclaim a pending data frame from the codec.
///
/// Returns true if a frame was reclaimed.
///
/// When a data frame is written to the codec, it may not be written in its
/// entirety (large chunks are split up into potentially many data frames).
/// In this case, the stream needs to be reprioritized.
fn reclaim_frame<T, B>(
&mut self,
buffer: &mut Buffer<Frame<B>>,
store: &mut Store,
dst: &mut Codec<T, Prioritized<B>>,
) -> bool
where
B: Buf,
{
let span = tracing::trace_span!("try_reclaim_frame");
let _e = span.enter();
// First check if there are any data chunks to take back
if let Some(frame) = dst.take_last_data_frame() {
self.reclaim_frame_inner(buffer, store, frame)
} else {
false
}
}
fn reclaim_frame_inner<B>(
&mut self,
buffer: &mut Buffer<Frame<B>>,
store: &mut Store,
frame: frame::Data<Prioritized<B>>,
) -> bool
where
B: Buf,
{
tracing::trace!(
?frame,
sz = frame.payload().inner.get_ref().remaining(),
"reclaimed"
);
let mut eos = false;
let key = frame.payload().stream;
match mem::replace(&mut self.in_flight_data_frame, InFlightData::Nothing) {
InFlightData::Nothing => panic!("wasn't expecting a frame to reclaim"),
InFlightData::Drop => {
tracing::trace!("not reclaiming frame for cancelled stream");
return false;
}
InFlightData::DataFrame(k) => {
debug_assert_eq!(k, key);
}
}
let mut frame = frame.map(|prioritized| {
// TODO: Ensure fully written
eos = prioritized.end_of_stream;
prioritized.inner.into_inner()
});
if frame.payload().has_remaining() {
let mut stream = store.resolve(key);
if eos {
frame.set_end_stream(true);
}
self.push_back_frame(frame.into(), buffer, &mut stream);
return true;
}
false
}
/// Push the frame to the front of the stream's deque, scheduling the
/// stream if needed.
fn push_back_frame<B>(
&mut self,
frame: Frame<B>,
buffer: &mut Buffer<Frame<B>>,
stream: &mut store::Ptr,
) {
// Push the frame to the front of the stream's deque
stream.pending_send.push_front(buffer, frame);
// If needed, schedule the sender
if stream.send_flow.available() > 0 {
debug_assert!(!stream.pending_send.is_empty());
self.pending_send.push(stream);
}
}
pub fn clear_queue<B>(&mut self, buffer: &mut Buffer<Frame<B>>, stream: &mut store::Ptr) {
let span = tracing::trace_span!("clear_queue", ?stream.id);
let _e = span.enter();
// TODO: make this more efficient?
while let Some(frame) = stream.pending_send.pop_front(buffer) {
tracing::trace!(?frame, "dropping");
}
stream.buffered_send_data = 0;
stream.requested_send_capacity = 0;
if let InFlightData::DataFrame(key) = self.in_flight_data_frame {
if stream.key() == key {
// This stream could get cleaned up now - don't allow the buffered frame to get reclaimed.
self.in_flight_data_frame = InFlightData::Drop;
}
}
}
pub fn clear_pending_send(&mut self, store: &mut Store, counts: &mut Counts) {
while let Some(stream) = self.pending_send.pop(store) {
let is_pending_reset = stream.is_pending_reset_expiration();
counts.transition_after(stream, is_pending_reset);
}
}
pub fn clear_pending_open(&mut self, store: &mut Store, counts: &mut Counts) {
while let Some(stream) = self.pending_open.pop(store) {
let is_pending_reset = stream.is_pending_reset_expiration();
counts.transition_after(stream, is_pending_reset);
}
}
fn pop_frame<B>(
&mut self,
buffer: &mut Buffer<Frame<B>>,
store: &mut Store,
max_len: usize,
counts: &mut Counts,
) -> Option<Frame<Prioritized<B>>>
where
B: Buf,
{
let span = tracing::trace_span!("pop_frame");
let _e = span.enter();
loop {
match self.pending_send.pop(store) {
Some(mut stream) => {
let span = tracing::trace_span!("popped", ?stream.id, ?stream.state);
let _e = span.enter();
// It's possible that this stream, besides having data to send,
// is also queued to send a reset, and thus is already in the queue
// to wait for "some time" after a reset.
//
// To be safe, we just always ask the stream.
let is_pending_reset = stream.is_pending_reset_expiration();
tracing::trace!(is_pending_reset);
let frame = match stream.pending_send.pop_front(buffer) {
Some(Frame::Data(mut frame)) => {
// Get the amount of capacity remaining for stream's
// window.
let stream_capacity = stream.send_flow.available();
let sz = frame.payload().remaining();
tracing::trace!(
sz,
eos = frame.is_end_stream(),
window = %stream_capacity,
available = %stream.send_flow.available(),
requested = stream.requested_send_capacity,
buffered = stream.buffered_send_data,
"data frame"
);
// Zero length data frames always have capacity to
// be sent.
if sz > 0 && stream_capacity == 0 {
tracing::trace!("stream capacity is 0");
// Ensure that the stream is waiting for
// connection level capacity
//
// TODO: uncomment
// debug_assert!(stream.is_pending_send_capacity);
// The stream has no more capacity, this can
// happen if the remote reduced the stream
// window. In this case, we need to buffer the
// frame and wait for a window update...
stream.pending_send.push_front(buffer, frame.into());
continue;
}
// Only send up to the max frame length
let len = cmp::min(sz, max_len);
// Only send up to the stream's window capacity
let len =
cmp::min(len, stream_capacity.as_size() as usize) as WindowSize;
// There *must* be be enough connection level
// capacity at this point.
debug_assert!(len <= self.flow.window_size());
// Check if the stream level window the peer knows is available. In some
// scenarios, maybe the window we know is available but the window which
// peer knows is not.
if len > 0 && len > stream.send_flow.window_size() {
stream.pending_send.push_front(buffer, frame.into());
continue;
}
tracing::trace!(len, "sending data frame");
// Update the flow control
tracing::trace_span!("updating stream flow").in_scope(|| {
stream.send_data(len, self.max_buffer_size);
// Assign the capacity back to the connection that
// was just consumed from the stream in the previous
// line.
// TODO: proper error handling
let _res = self.flow.assign_capacity(len);
debug_assert!(_res.is_ok());
});
let (eos, len) = tracing::trace_span!("updating connection flow")
.in_scope(|| {
// TODO: proper error handling
let _res = self.flow.send_data(len);
debug_assert!(_res.is_ok());
// Wrap the frame's data payload to ensure that the
// correct amount of data gets written.
let eos = frame.is_end_stream();
let len = len as usize;
if frame.payload().remaining() > len {
frame.set_end_stream(false);
}
(eos, len)
});
Frame::Data(frame.map(|buf| Prioritized {
inner: buf.take(len),
end_of_stream: eos,
stream: stream.key(),
}))
}
Some(Frame::PushPromise(pp)) => {
let mut pushed =
stream.store_mut().find_mut(&pp.promised_id()).unwrap();
pushed.is_pending_push = false;
// Transition stream from pending_push to pending_open
// if possible
if !pushed.pending_send.is_empty() {
if counts.can_inc_num_send_streams() {
counts.inc_num_send_streams(&mut pushed);
self.pending_send.push(&mut pushed);
} else {
self.queue_open(&mut pushed);
}
}
Frame::PushPromise(pp)
}
Some(frame) => frame.map(|_| {
unreachable!(
"Frame::map closure will only be called \
on DATA frames."
)
}),
None => {
if let Some(reason) = stream.state.get_scheduled_reset() {
let stream_id = stream.id;
stream
.state
.set_reset(stream_id, reason, Initiator::Library);
let frame = frame::Reset::new(stream.id, reason);
Frame::Reset(frame)
} else {
// If the stream receives a RESET from the peer, it may have
// had data buffered to be sent, but all the frames are cleared
// in clear_queue(). Instead of doing O(N) traversal through queue
// to remove, lets just ignore the stream here.
tracing::trace!("removing dangling stream from pending_send");
// Since this should only happen as a consequence of `clear_queue`,
// we must be in a closed state of some kind.
debug_assert!(stream.state.is_closed());
counts.transition_after(stream, is_pending_reset);
continue;
}
}
};
tracing::trace!("pop_frame; frame={:?}", frame);
if cfg!(debug_assertions) && stream.state.is_idle() {
debug_assert!(stream.id > self.last_opened_id);
self.last_opened_id = stream.id;
}
if !stream.pending_send.is_empty() || stream.state.is_scheduled_reset() {
// TODO: Only requeue the sender IF it is ready to send
// the next frame. i.e. don't requeue it if the next
// frame is a data frame and the stream does not have
// any more capacity.
self.pending_send.push(&mut stream);
}
counts.transition_after(stream, is_pending_reset);
return Some(frame);
}
None => return None,
}
}
}
fn pop_pending_open<'s>(
&mut self,
store: &'s mut Store,
counts: &mut Counts,
) -> Option<store::Ptr<'s>> {
tracing::trace!("schedule_pending_open");
// check for any pending open streams
if counts.can_inc_num_send_streams() {
if let Some(mut stream) = self.pending_open.pop(store) {
tracing::trace!("schedule_pending_open; stream={:?}", stream.id);
counts.inc_num_send_streams(&mut stream);
stream.notify_send();
return Some(stream);
}
}
None
}
}
// ===== impl Prioritized =====
impl<B> Buf for Prioritized<B>
where
B: Buf,
{
fn remaining(&self) -> usize {
self.inner.remaining()
}
fn chunk(&self) -> &[u8] {
self.inner.chunk()
}
fn chunks_vectored<'a>(&'a self, dst: &mut [std::io::IoSlice<'a>]) -> usize {
self.inner.chunks_vectored(dst)
}
fn advance(&mut self, cnt: usize) {
self.inner.advance(cnt)
}
}
impl<B: Buf> fmt::Debug for Prioritized<B> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("Prioritized")
.field("remaining", &self.inner.get_ref().remaining())
.field("end_of_stream", &self.end_of_stream)
.field("stream", &self.stream)
.finish()
}
}