sized_chunks/inline_array/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
//! A fixed capacity array sized to match some other type `T`.
//!
//! See [`InlineArray`](struct.InlineArray.html)
use core::borrow::{Borrow, BorrowMut};
use core::cmp::Ordering;
use core::fmt::{Debug, Error, Formatter};
use core::hash::{Hash, Hasher};
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::mem::{self, MaybeUninit};
use core::ops::{Deref, DerefMut};
use core::ptr;
use core::ptr::NonNull;
use core::slice::{from_raw_parts, from_raw_parts_mut, Iter as SliceIter, IterMut as SliceIterMut};
mod iter;
pub use self::iter::{Drain, Iter};
/// A fixed capacity array sized to match some other type `T`.
///
/// This works like a vector, but allocated on the stack (and thus marginally
/// faster than `Vec`), with the allocated space exactly matching the size of
/// the given type `T`. The vector consists of a `usize` tracking its current
/// length and zero or more elements of type `A`. The capacity is thus
/// `( size_of::<T>() - size_of::<usize>() ) / size_of::<A>()`. This could lead
/// to situations where the capacity is zero, if `size_of::<A>()` is greater
/// than `size_of::<T>() - size_of::<usize>()`, which is not an error and
/// handled properly by the data structure.
///
/// If `size_of::<T>()` is less than `size_of::<usize>()`, meaning the vector
/// has no space to store its length, `InlineArray::new()` will panic.
///
/// This is meant to facilitate optimisations where a list data structure
/// allocates a fairly large struct for itself, allowing you to replace it with
/// an `InlineArray` until it grows beyond its capacity. This not only gives you
/// a performance boost at very small sizes, it also saves you from having to
/// allocate anything on the heap until absolutely necessary.
///
/// For instance, `im::Vector<A>` in its final form currently looks like this
/// (approximately):
///
/// ```rust, ignore
/// struct RRB<A> {
/// length: usize,
/// tree_height: usize,
/// outer_head: Rc<Chunk<A>>,
/// inner_head: Rc<Chunk<A>>,
/// tree: Rc<TreeNode<A>>,
/// inner_tail: Rc<Chunk<A>>,
/// outer_tail: Rc<Chunk<A>>,
/// }
/// ```
///
/// That's two `usize`s and five `Rc`s, which comes in at 56 bytes on x86_64
/// architectures. With `InlineArray`, that leaves us with 56 -
/// `size_of::<usize>()` = 48 bytes we can use before having to expand into the
/// full data struture. If `A` is `u8`, that's 48 elements, and even if `A` is a
/// pointer we can still keep 6 of them inline before we run out of capacity.
///
/// We can declare an enum like this:
///
/// ```rust, ignore
/// enum VectorWrapper<A> {
/// Inline(InlineArray<A, RRB<A>>),
/// Full(RRB<A>),
/// }
/// ```
///
/// Both of these will have the same size, and we can swap the `Inline` case out
/// with the `Full` case once the `InlineArray` runs out of capacity.
#[repr(C)]
pub struct InlineArray<A, T> {
// Alignment tricks
//
// We need both the `_header_align` and `data` to be properly aligned in memory. We do a few tricks
// to handle that.
//
// * An alignment is always power of 2. Therefore, with a pair of alignments, one is always
// a multiple of the other (one way or the other).
// * A struct is aligned to at least the max alignment of each of its fields.
// * A `repr(C)` struct follows the order of fields and pushes each as close to the previous one
// as allowed by alignment.
//
// By placing two "fake" fields that have 0 size, but an alignment first, we make sure that all
// 3 start at the beginning of the struct and that all of them are aligned to their maximum
// alignment.
//
// Unfortunately, we can't use `[A; 0]` to align to actual alignment of the type `A`, because
// it prevents use of `InlineArray` in recursive types.
// We rely on alignment of `u64`/`usize` or `T` to be sufficient, and panic otherwise. We use
// `u64` to handle all common types on 32-bit systems too.
//
// Furthermore, because we don't know if `u64` or `A` has bigger alignment, we decide on case by
// case basis if the header or the elements go first. By placing the one with higher alignment
// requirements first, we align that one and the other one will be aligned "automatically" when
// placed just after it.
//
// To the best of our knowledge, this is all guaranteed by the compiler. But just to make sure,
// we have bunch of asserts in the constructor to check; as these are invariants enforced by
// the compiler, it should be trivial for it to remove the checks so they are for free (if we
// are correct) or will save us (if we are not).
_header_align: [(u64, usize); 0],
_phantom: PhantomData<A>,
data: MaybeUninit<T>,
}
const fn capacity(
host_size: usize,
header_size: usize,
element_size: usize,
element_align: usize,
container_align: usize,
) -> usize {
if element_size == 0 {
usize::MAX
} else if element_align <= container_align && host_size > header_size {
(host_size - header_size) / element_size
} else {
0 // larger alignment can't be guaranteed, so it'd be unsafe to store any elements
}
}
impl<A, T> InlineArray<A, T> {
const HOST_SIZE: usize = mem::size_of::<T>();
const ELEMENT_SIZE: usize = mem::size_of::<A>();
const HEADER_SIZE: usize = mem::size_of::<usize>();
// Do we place the header before the elements or the other way around?
const HEADER_FIRST: bool = mem::align_of::<usize>() >= mem::align_of::<A>();
// Note: one of the following is always 0
// How many usizes to skip before the first element?
const ELEMENT_SKIP: usize = Self::HEADER_FIRST as usize;
// How many elements to skip before the header
const HEADER_SKIP: usize = Self::CAPACITY * (1 - Self::ELEMENT_SKIP);
/// The maximum number of elements the `InlineArray` can hold.
pub const CAPACITY: usize = capacity(
Self::HOST_SIZE,
Self::HEADER_SIZE,
Self::ELEMENT_SIZE,
mem::align_of::<A>(),
mem::align_of::<Self>(),
);
#[inline]
#[must_use]
unsafe fn len_const(&self) -> *const usize {
let ptr = self
.data
.as_ptr()
.cast::<A>()
.add(Self::HEADER_SKIP)
.cast::<usize>();
debug_assert!(ptr as usize % mem::align_of::<usize>() == 0);
ptr
}
#[inline]
#[must_use]
pub(crate) unsafe fn len_mut(&mut self) -> *mut usize {
let ptr = self
.data
.as_mut_ptr()
.cast::<A>()
.add(Self::HEADER_SKIP)
.cast::<usize>();
debug_assert!(ptr as usize % mem::align_of::<usize>() == 0);
ptr
}
#[inline]
#[must_use]
pub(crate) unsafe fn data(&self) -> *const A {
if Self::CAPACITY == 0 {
return NonNull::<A>::dangling().as_ptr();
}
let ptr = self
.data
.as_ptr()
.cast::<usize>()
.add(Self::ELEMENT_SKIP)
.cast::<A>();
debug_assert!(ptr as usize % mem::align_of::<A>() == 0);
ptr
}
#[inline]
#[must_use]
unsafe fn data_mut(&mut self) -> *mut A {
if Self::CAPACITY == 0 {
return NonNull::<A>::dangling().as_ptr();
}
let ptr = self
.data
.as_mut_ptr()
.cast::<usize>()
.add(Self::ELEMENT_SKIP)
.cast::<A>();
debug_assert!(ptr as usize % mem::align_of::<A>() == 0);
ptr
}
#[inline]
#[must_use]
unsafe fn ptr_at(&self, index: usize) -> *const A {
debug_assert!(index < Self::CAPACITY);
self.data().add(index)
}
#[inline]
#[must_use]
unsafe fn ptr_at_mut(&mut self, index: usize) -> *mut A {
debug_assert!(index < Self::CAPACITY);
self.data_mut().add(index)
}
#[inline]
unsafe fn read_at(&self, index: usize) -> A {
ptr::read(self.ptr_at(index))
}
#[inline]
unsafe fn write_at(&mut self, index: usize, value: A) {
ptr::write(self.ptr_at_mut(index), value);
}
/// Get the length of the array.
#[inline]
#[must_use]
pub fn len(&self) -> usize {
unsafe { *self.len_const() }
}
/// Test if the array is empty.
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Test if the array is at capacity.
#[inline]
#[must_use]
pub fn is_full(&self) -> bool {
self.len() >= Self::CAPACITY
}
/// Construct a new empty array.
///
/// # Panics
///
/// If the element type requires large alignment, which is larger than
/// both alignment of `usize` and alignment of the type that provides the capacity.
#[inline]
#[must_use]
pub fn new() -> Self {
assert!(Self::HOST_SIZE > Self::HEADER_SIZE);
assert!(
(Self::CAPACITY == 0) || (mem::align_of::<Self>() % mem::align_of::<A>() == 0),
"InlineArray can't satisfy alignment of {}",
core::any::type_name::<A>()
);
let mut self_ = Self {
_header_align: [],
_phantom: PhantomData,
data: MaybeUninit::uninit(),
};
// Sanity check our assumptions about what is guaranteed by the compiler. If we are right,
// these should completely optimize out of the resulting binary.
assert_eq!(
&self_ as *const _ as usize,
self_.data.as_ptr() as usize,
"Padding at the start of struct",
);
assert_eq!(
self_.data.as_ptr() as usize % mem::align_of::<usize>(),
0,
"Unaligned header"
);
assert!(mem::size_of::<Self>() == mem::size_of::<T>() || mem::align_of::<T>() < mem::align_of::<Self>());
assert_eq!(0, unsafe { self_.data() } as usize % mem::align_of::<A>());
assert_eq!(0, unsafe { self_.data_mut() } as usize % mem::align_of::<A>());
assert!(Self::ELEMENT_SKIP == 0 || Self::HEADER_SKIP == 0);
unsafe { ptr::write(self_.len_mut(), 0usize) };
self_
}
/// Push an item to the back of the array.
///
/// Panics if the capacity of the array is exceeded.
///
/// Time: O(1)
pub fn push(&mut self, value: A) {
if self.is_full() {
panic!("InlineArray::push: chunk size overflow");
}
unsafe {
self.write_at(self.len(), value);
*self.len_mut() += 1;
}
}
/// Pop an item from the back of the array.
///
/// Returns `None` if the array is empty.
///
/// Time: O(1)
pub fn pop(&mut self) -> Option<A> {
if self.is_empty() {
None
} else {
unsafe {
*self.len_mut() -= 1;
}
Some(unsafe { self.read_at(self.len()) })
}
}
/// Insert a new value at index `index`, shifting all the following values
/// to the right.
///
/// Panics if the index is out of bounds or the array is at capacity.
///
/// Time: O(n) for the number of items shifted
pub fn insert(&mut self, index: usize, value: A) {
if self.is_full() {
panic!("InlineArray::push: chunk size overflow");
}
if index > self.len() {
panic!("InlineArray::insert: index out of bounds");
}
unsafe {
let src = self.ptr_at_mut(index);
ptr::copy(src, src.add(1), self.len() - index);
ptr::write(src, value);
*self.len_mut() += 1;
}
}
/// Remove the value at index `index`, shifting all the following values to
/// the left.
///
/// Returns the removed value, or `None` if the array is empty or the index
/// is out of bounds.
///
/// Time: O(n) for the number of items shifted
pub fn remove(&mut self, index: usize) -> Option<A> {
if index >= self.len() {
None
} else {
unsafe {
let src = self.ptr_at_mut(index);
let value = ptr::read(src);
*self.len_mut() -= 1;
ptr::copy(src.add(1), src, self.len() - index);
Some(value)
}
}
}
/// Split an array into two, the original array containing
/// everything up to `index` and the returned array containing
/// everything from `index` onwards.
///
/// Panics if `index` is out of bounds.
///
/// Time: O(n) for the number of items in the new chunk
pub fn split_off(&mut self, index: usize) -> Self {
if index > self.len() {
panic!("InlineArray::split_off: index out of bounds");
}
let mut out = Self::new();
if index < self.len() {
unsafe {
ptr::copy(self.ptr_at(index), out.data_mut(), self.len() - index);
*out.len_mut() = self.len() - index;
*self.len_mut() = index;
}
}
out
}
#[inline]
unsafe fn drop_contents(&mut self) {
ptr::drop_in_place::<[A]>(&mut **self) // uses DerefMut
}
/// Discard the contents of the array.
///
/// Time: O(n)
pub fn clear(&mut self) {
unsafe {
self.drop_contents();
*self.len_mut() = 0;
}
}
/// Construct an iterator that drains values from the front of the array.
pub fn drain(&mut self) -> Drain<'_, A, T> {
Drain { array: self }
}
}
impl<A, T> Drop for InlineArray<A, T> {
fn drop(&mut self) {
unsafe { self.drop_contents() }
}
}
impl<A, T> Default for InlineArray<A, T> {
fn default() -> Self {
Self::new()
}
}
// WANT:
// impl<A, T> Copy for InlineArray<A, T> where A: Copy {}
impl<A, T> Clone for InlineArray<A, T>
where
A: Clone,
{
fn clone(&self) -> Self {
let mut copy = Self::new();
for i in 0..self.len() {
unsafe {
copy.write_at(i, self.get_unchecked(i).clone());
}
}
unsafe {
*copy.len_mut() = self.len();
}
copy
}
}
impl<A, T> Deref for InlineArray<A, T> {
type Target = [A];
fn deref(&self) -> &Self::Target {
unsafe { from_raw_parts(self.data(), self.len()) }
}
}
impl<A, T> DerefMut for InlineArray<A, T> {
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { from_raw_parts_mut(self.data_mut(), self.len()) }
}
}
impl<A, T> Borrow<[A]> for InlineArray<A, T> {
fn borrow(&self) -> &[A] {
self.deref()
}
}
impl<A, T> BorrowMut<[A]> for InlineArray<A, T> {
fn borrow_mut(&mut self) -> &mut [A] {
self.deref_mut()
}
}
impl<A, T> AsRef<[A]> for InlineArray<A, T> {
fn as_ref(&self) -> &[A] {
self.deref()
}
}
impl<A, T> AsMut<[A]> for InlineArray<A, T> {
fn as_mut(&mut self) -> &mut [A] {
self.deref_mut()
}
}
impl<A, T, Slice> PartialEq<Slice> for InlineArray<A, T>
where
Slice: Borrow<[A]>,
A: PartialEq,
{
fn eq(&self, other: &Slice) -> bool {
self.deref() == other.borrow()
}
}
impl<A, T> Eq for InlineArray<A, T> where A: Eq {}
impl<A, T> PartialOrd for InlineArray<A, T>
where
A: PartialOrd,
{
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.iter().partial_cmp(other.iter())
}
}
impl<A, T> Ord for InlineArray<A, T>
where
A: Ord,
{
fn cmp(&self, other: &Self) -> Ordering {
self.iter().cmp(other.iter())
}
}
impl<A, T> Debug for InlineArray<A, T>
where
A: Debug,
{
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
f.write_str("Chunk")?;
f.debug_list().entries(self.iter()).finish()
}
}
impl<A, T> Hash for InlineArray<A, T>
where
A: Hash,
{
fn hash<H>(&self, hasher: &mut H)
where
H: Hasher,
{
for item in self {
item.hash(hasher)
}
}
}
impl<A, T> IntoIterator for InlineArray<A, T> {
type Item = A;
type IntoIter = Iter<A, T>;
fn into_iter(self) -> Self::IntoIter {
Iter { array: self }
}
}
impl<A, T> FromIterator<A> for InlineArray<A, T> {
fn from_iter<I>(it: I) -> Self
where
I: IntoIterator<Item = A>,
{
let mut chunk = Self::new();
for item in it {
chunk.push(item);
}
chunk
}
}
impl<'a, A, T> IntoIterator for &'a InlineArray<A, T> {
type Item = &'a A;
type IntoIter = SliceIter<'a, A>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, A, T> IntoIterator for &'a mut InlineArray<A, T> {
type Item = &'a mut A;
type IntoIter = SliceIterMut<'a, A>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<A, T> Extend<A> for InlineArray<A, T> {
/// Append the contents of the iterator to the back of the array.
///
/// Panics if the array exceeds its capacity.
///
/// Time: O(n) for the length of the iterator
fn extend<I>(&mut self, it: I)
where
I: IntoIterator<Item = A>,
{
for item in it {
self.push(item);
}
}
}
impl<'a, A, T> Extend<&'a A> for InlineArray<A, T>
where
A: 'a + Copy,
{
/// Append the contents of the iterator to the back of the array.
///
/// Panics if the array exceeds its capacity.
///
/// Time: O(n) for the length of the iterator
fn extend<I>(&mut self, it: I)
where
I: IntoIterator<Item = &'a A>,
{
for item in it {
self.push(*item);
}
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::tests::DropTest;
use std::sync::atomic::{AtomicUsize, Ordering};
#[test]
fn dropping() {
let counter = AtomicUsize::new(0);
{
let mut chunk: InlineArray<DropTest<'_>, [usize; 32]> = InlineArray::new();
for _i in 0..16 {
chunk.push(DropTest::new(&counter));
}
assert_eq!(16, counter.load(Ordering::Relaxed));
for _i in 0..8 {
chunk.pop();
}
assert_eq!(8, counter.load(Ordering::Relaxed));
}
assert_eq!(0, counter.load(Ordering::Relaxed));
}
#[test]
fn zero_sized_values() {
let mut chunk: InlineArray<(), [usize; 32]> = InlineArray::new();
for _i in 0..65536 {
chunk.push(());
}
assert_eq!(65536, chunk.len());
assert_eq!(Some(()), chunk.pop());
}
#[test]
fn low_align_base() {
let mut chunk: InlineArray<String, [u8; 512]> = InlineArray::new();
chunk.push("Hello".to_owned());
assert_eq!(chunk[0], "Hello");
let mut chunk: InlineArray<String, [u16; 512]> = InlineArray::new();
chunk.push("Hello".to_owned());
assert_eq!(chunk[0], "Hello");
}
#[test]
fn float_align() {
let mut chunk: InlineArray<f64, [u8; 16]> = InlineArray::new();
chunk.push(1234.);
assert_eq!(chunk[0], 1234.);
let mut chunk: InlineArray<f64, [u8; 17]> = InlineArray::new();
chunk.push(1234.);
assert_eq!(chunk[0], 1234.);
}
#[test]
fn recursive_types_compile() {
#[allow(dead_code)]
enum Recursive {
A(InlineArray<Recursive, u64>),
B,
}
}
#[test]
fn insufficient_alignment1() {
#[repr(align(256))]
struct BigAlign(u8);
#[repr(align(32))]
struct MediumAlign(u8);
assert_eq!(0, InlineArray::<BigAlign, [usize; 256]>::CAPACITY);
assert_eq!(0, InlineArray::<BigAlign, [u64; 256]>::CAPACITY);
assert_eq!(0, InlineArray::<BigAlign, [f64; 256]>::CAPACITY);
assert_eq!(0, InlineArray::<BigAlign, [MediumAlign; 256]>::CAPACITY);
}
#[test]
fn insufficient_alignment2() {
#[repr(align(256))]
struct BigAlign(usize);
let mut bad: InlineArray<BigAlign, [usize; 256]> = InlineArray::new();
assert_eq!(0, InlineArray::<BigAlign, [usize; 256]>::CAPACITY);
assert_eq!(0, bad.len());
assert_eq!(0, bad[..].len());
assert_eq!(true, bad.is_full());
assert_eq!(0, bad.drain().count());
assert!(bad.pop().is_none());
assert!(bad.remove(0).is_none());
assert!(bad.split_off(0).is_full());
bad.clear();
}
#[test]
fn sufficient_alignment1() {
#[repr(align(256))]
struct BigAlign(u8);
assert_eq!(13, InlineArray::<BigAlign, [BigAlign; 14]>::CAPACITY);
assert_eq!(1, InlineArray::<BigAlign, [BigAlign; 2]>::CAPACITY);
assert_eq!(0, InlineArray::<BigAlign, [BigAlign; 1]>::CAPACITY);
let mut chunk: InlineArray<BigAlign, [BigAlign; 2]> = InlineArray::new();
chunk.push(BigAlign(42));
assert_eq!(
chunk.get(0).unwrap() as *const _ as usize % mem::align_of::<BigAlign>(),
0
);
}
#[test]
fn sufficient_alignment2() {
#[repr(align(128))]
struct BigAlign([u8; 64]);
#[repr(align(256))]
struct BiggerAlign(u8);
assert_eq!(128, mem::align_of::<BigAlign>());
assert_eq!(256, mem::align_of::<BiggerAlign>());
assert_eq!(199, InlineArray::<BigAlign, [BiggerAlign; 100]>::CAPACITY);
assert_eq!(3, InlineArray::<BigAlign, [BiggerAlign; 2]>::CAPACITY);
assert_eq!(1, InlineArray::<BigAlign, [BiggerAlign; 1]>::CAPACITY);
assert_eq!(0, InlineArray::<BigAlign, [BiggerAlign; 0]>::CAPACITY);
let mut chunk: InlineArray<BigAlign, [BiggerAlign; 1]> = InlineArray::new();
chunk.push(BigAlign([0; 64]));
assert_eq!(
chunk.get(0).unwrap() as *const _ as usize % mem::align_of::<BigAlign>(),
0
);
}
}