1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
//! A timestamp type as in Naiad, where a vector of timestamps of different lengths are comparable.
//!
//! This type compares using "standard" tuple logic as if each timestamp were extended indefinitely with minimal elements.
//!
//! The path summary for this type allows *run-time* rather than *type-driven* iterative scopes.
//! Each summary represents some journey within and out of some number of scopes, followed by entry
//! into and iteration within some other number of scopes.
//!
//! As a result, summaries describe some number of trailing coordinates to truncate, and some increments
//! to the resulting vector. Structurally, the increments can only be to one non-truncated coordinate
//! (as iteration within a scope requires leaving contained scopes), and then to any number of appended
//! default coordinates (which is effectively just *setting* the coordinate).
use serde::{Deserialize, Serialize};
/// A sequence of timestamps, partially ordered by the product order.
///
/// Sequences of different lengths are compared as if extended indefinitely by `T::minimum()`.
/// Sequences are guaranteed to be "minimal", and may not end with `T::minimum()` entries.
#[derive(Hash, Default, Clone, Eq, PartialEq, Ord, PartialOrd, Debug, Serialize, Deserialize)]
pub struct PointStamp<T> {
/// A sequence of timestamps corresponding to timestamps in a sequence of nested scopes.
vector: Vec<T>,
}
impl<T: Timestamp> PartialEq<[T]> for PointStamp<T> {
fn eq(&self, other: &[T]) -> bool {
self.vector.iter()
.zip(other.iter().chain(std::iter::repeat(&T::minimum())))
.all(|(t1, t2)| t1.eq(t2))
}
}
impl<T: Timestamp> PartialEq<PointStamp<T>> for [T] {
fn eq(&self, other: &PointStamp<T>) -> bool {
self.iter()
.zip(other.vector.iter().chain(std::iter::repeat(&T::minimum())))
.all(|(t1, t2)| t1.eq(t2))
}
}
impl<T: Timestamp> PartialOrder<[T]> for PointStamp<T> {
fn less_equal(&self, other: &[T]) -> bool {
self.vector.iter()
.zip(other.iter().chain(std::iter::repeat(&T::minimum())))
.all(|(t1, t2)| t1.less_equal(t2))
}
}
impl<T: Timestamp> PartialOrder<PointStamp<T>> for [T] {
fn less_equal(&self, other: &PointStamp<T>) -> bool {
self.iter()
.zip(other.vector.iter().chain(std::iter::repeat(&T::minimum())))
.all(|(t1, t2)| t1.less_equal(t2))
}
}
impl<T: Timestamp> PointStamp<T> {
/// Create a new sequence.
///
/// This method will modify `vector` to ensure it does not end with `T::minimum()`.
pub fn new(mut vector: Vec<T>) -> Self {
while vector.last() == Some(&T::minimum()) {
vector.pop();
}
PointStamp { vector }
}
/// Returns the wrapped vector.
///
/// This method is the support way to mutate the contents of `self`, by extracting
/// the vector and then re-introducing it with `PointStamp::new` to re-establish
/// the invariant that the vector not end with `T::minimum`.
pub fn into_vec(self) -> Vec<T> {
self.vector
}
}
impl<T> std::ops::Deref for PointStamp<T> {
type Target = [T];
fn deref(&self) -> &Self::Target {
&self.vector
}
}
// Implement timely dataflow's `PartialOrder` trait.
use timely::order::PartialOrder;
impl<T: PartialOrder + Timestamp> PartialOrder for PointStamp<T> {
fn less_equal(&self, other: &Self) -> bool {
// Every present coordinate must be less-equal the corresponding coordinate,
// where absent corresponding coordinates are `T::minimum()`. Coordinates
// absent from `self.vector` are themselves `T::minimum()` and are less-equal
// any corresponding coordinate in `other.vector`.
self.vector
.iter()
.zip(other.vector.iter().chain(std::iter::repeat(&T::minimum())))
.all(|(t1, t2)| t1.less_equal(t2))
}
}
use timely::progress::timestamp::Refines;
impl<T: Timestamp> Refines<()> for PointStamp<T> {
fn to_inner(_outer: ()) -> Self {
Self { vector: Vec::new() }
}
fn to_outer(self) -> () {
()
}
fn summarize(_summary: <Self>::Summary) -> () {
()
}
}
// Implement timely dataflow's `PathSummary` trait.
// This is preparation for the `Timestamp` implementation below.
use timely::progress::PathSummary;
/// Describes an action on a `PointStamp`: truncation to `length` followed by `actions`.
#[derive(Hash, Default, Clone, Eq, PartialEq, Ord, PartialOrd, Debug, Serialize, Deserialize)]
pub struct PointStampSummary<TS> {
/// Number of leading coordinates to retain.
///
/// A `None` value indicates that all coordinates should be retained.
pub retain: Option<usize>,
/// Summary actions to apply to all coordinates.
///
/// If `actions.len()` is greater than `retain`, a timestamp should be extended by
/// `T::minimum()` in order to be subjected to `actions`.
pub actions: Vec<TS>,
}
impl<T: Timestamp> PathSummary<PointStamp<T>> for PointStampSummary<T::Summary> {
fn results_in(&self, timestamp: &PointStamp<T>) -> Option<PointStamp<T>> {
// Get a slice of timestamp coordinates appropriate for consideration.
let timestamps = if let Some(retain) = self.retain {
if retain < timestamp.vector.len() {
×tamp.vector[..retain]
} else {
×tamp.vector[..]
}
} else {
×tamp.vector[..]
};
let mut vector = Vec::with_capacity(std::cmp::max(timestamps.len(), self.actions.len()));
// Introduce elements where both timestamp and action exist.
let min_len = std::cmp::min(timestamps.len(), self.actions.len());
for (action, timestamp) in self.actions.iter().zip(timestamps.iter()) {
vector.push(action.results_in(timestamp)?);
}
// Any remaining timestamps should be copied in.
for timestamp in timestamps.iter().skip(min_len) {
vector.push(timestamp.clone());
}
// Any remaining actions should be applied to the empty timestamp.
for action in self.actions.iter().skip(min_len) {
vector.push(action.results_in(&T::minimum())?);
}
Some(PointStamp::new(vector))
}
fn followed_by(&self, other: &Self) -> Option<Self> {
// The output `retain` will be the minimum of the two inputs.
let retain = match (self.retain, other.retain) {
(Some(x), Some(y)) => Some(std::cmp::min(x, y)),
(Some(x), None) => Some(x),
(None, Some(y)) => Some(y),
(None, None) => None,
};
// The output `actions` will depend on the relative sizes of the input `retain`s.
let self_actions = if let Some(retain) = other.retain {
if retain < self.actions.len() {
&self.actions[..retain]
} else {
&self.actions[..]
}
} else {
&self.actions[..]
};
let mut actions = Vec::with_capacity(std::cmp::max(self_actions.len(), other.actions.len()));
// Introduce actions where both input actions apply.
let min_len = std::cmp::min(self_actions.len(), other.actions.len());
for (action1, action2) in self_actions.iter().zip(other.actions.iter()) {
actions.push(action1.followed_by(action2)?);
}
// Append any remaining self actions.
actions.extend(self_actions.iter().skip(min_len).cloned());
// Append any remaining other actions.
actions.extend(other.actions.iter().skip(min_len).cloned());
Some(Self { retain, actions })
}
}
impl<TS: PartialOrder> PartialOrder for PointStampSummary<TS> {
fn less_equal(&self, other: &Self) -> bool {
// If the `retain`s are not the same, there is some coordinate which
// could either be bigger or smaller as the timestamp or the replacement.
// In principle, a `T::minimum()` extension could break this rule, and
// we could tighten this logic if needed; I think it is fine not to though.
self.retain == other.retain
&& self.actions.len() <= other.actions.len()
&& self
.actions
.iter()
.zip(other.actions.iter())
.all(|(t1, t2)| t1.less_equal(t2))
}
}
// Implement timely dataflow's `Timestamp` trait.
use timely::progress::Timestamp;
impl<T: Timestamp> Timestamp for PointStamp<T> {
fn minimum() -> Self {
Self::new(Vec::new())
}
type Summary = PointStampSummary<T::Summary>;
}
// Implement differential dataflow's `Lattice` trait.
// This extends the `PartialOrder` implementation with additional structure.
use crate::lattice::Lattice;
impl<T: Lattice + Timestamp + Clone> Lattice for PointStamp<T> {
fn join(&self, other: &Self) -> Self {
let min_len = ::std::cmp::min(self.vector.len(), other.vector.len());
let max_len = ::std::cmp::max(self.vector.len(), other.vector.len());
let mut vector = Vec::with_capacity(max_len);
// For coordinates in both inputs, apply `join` to the pair.
for index in 0..min_len {
vector.push(self.vector[index].join(&other.vector[index]));
}
// Only one of the two vectors will have remaining elements; copy them.
for time in &self.vector[min_len..] {
vector.push(time.clone());
}
for time in &other.vector[min_len..] {
vector.push(time.clone());
}
Self::new(vector)
}
fn meet(&self, other: &Self) -> Self {
let min_len = ::std::cmp::min(self.vector.len(), other.vector.len());
let mut vector = Vec::with_capacity(min_len);
// For coordinates in both inputs, apply `meet` to the pair.
for index in 0..min_len {
vector.push(self.vector[index].meet(&other.vector[index]));
}
// Remaining coordinates are `T::minimum()` in one input, and so in the output.
Self::new(vector)
}
}
use timely::container::columnation::{Columnation, Region};
impl<T: Columnation> Columnation for PointStamp<T> {
type InnerRegion = PointStampStack<T::InnerRegion>;
}
/// Stack for PointStamp. Part of Columnation implementation.
pub struct PointStampStack<R: Region>(<Vec<R::Item> as Columnation>::InnerRegion)
where
<R as Region>::Item: Columnation;
impl<R: Region> Default for PointStampStack<R>
where
<R as Region>::Item: Columnation
{
#[inline]
fn default() -> Self {
Self(Default::default())
}
}
impl<R: Region> Region for PointStampStack<R>
where
<R as Region>::Item: Columnation
{
type Item = PointStamp<R::Item>;
#[inline]
unsafe fn copy(&mut self, item: &Self::Item) -> Self::Item {
Self::Item { vector: self.0.copy(&item.vector) }
}
fn clear(&mut self) {
self.0.clear();
}
fn reserve_items<'a, I>(&mut self, items: I) where Self: 'a, I: Iterator<Item=&'a Self::Item> + Clone {
self.0.reserve_items(items.map(|x| &x.vector));
}
fn reserve_regions<'a, I>(&mut self, regions: I) where Self: 'a, I: Iterator<Item=&'a Self> + Clone {
self.0.reserve_regions(regions.map(|r| &r.0));
}
fn heap_size(&self, callback: impl FnMut(usize, usize)) {
self.0.heap_size(callback);
}
}