libm/math/jn.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* jn(n, x), yn(n, x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
* Note 2. About jn(n,x), yn(n,x)
* For n=0, j0(x) is called,
* for n=1, j1(x) is called,
* for n<=x, forward recursion is used starting
* from values of j0(x) and j1(x).
* for n>x, a continued fraction approximation to
* j(n,x)/j(n-1,x) is evaluated and then backward
* recursion is used starting from a supposed value
* for j(n,x). The resulting value of j(0,x) is
* compared with the actual value to correct the
* supposed value of j(n,x).
*
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
*/
use super::{cos, fabs, get_high_word, get_low_word, j0, j1, log, sin, sqrt, y0, y1};
const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
pub fn jn(n: i32, mut x: f64) -> f64 {
let mut ix: u32;
let lx: u32;
let nm1: i32;
let mut i: i32;
let mut sign: bool;
let mut a: f64;
let mut b: f64;
let mut temp: f64;
ix = get_high_word(x);
lx = get_low_word(x);
sign = (ix >> 31) != 0;
ix &= 0x7fffffff;
// -lx == !lx + 1
if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
/* nan */
return x;
}
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
/* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
if n == 0 {
return j0(x);
}
if n < 0 {
nm1 = -(n + 1);
x = -x;
sign = !sign;
} else {
nm1 = n - 1;
}
if nm1 == 0 {
return j1(x);
}
sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
x = fabs(x);
if (ix | lx) == 0 || ix == 0x7ff00000 {
/* if x is 0 or inf */
b = 0.0;
} else if (nm1 as f64) < x {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
if ix >= 0x52d00000 {
/* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
temp = match nm1 & 3 {
0 => -cos(x) + sin(x),
1 => -cos(x) - sin(x),
2 => cos(x) - sin(x),
3 | _ => cos(x) + sin(x),
};
b = INVSQRTPI * temp / sqrt(x);
} else {
a = j0(x);
b = j1(x);
i = 0;
while i < nm1 {
i += 1;
temp = b;
b = b * (2.0 * (i as f64) / x) - a; /* avoid underflow */
a = temp;
}
}
} else {
if ix < 0x3e100000 {
/* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if nm1 > 32 {
/* underflow */
b = 0.0;
} else {
temp = x * 0.5;
b = temp;
a = 1.0;
i = 2;
while i <= nm1 + 1 {
a *= i as f64; /* a = n! */
b *= temp; /* b = (x/2)^n */
i += 1;
}
b = b / a;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
let mut t: f64;
let mut q0: f64;
let mut q1: f64;
let mut w: f64;
let h: f64;
let mut z: f64;
let mut tmp: f64;
let nf: f64;
let mut k: i32;
nf = (nm1 as f64) + 1.0;
w = 2.0 * nf / x;
h = 2.0 / x;
z = w + h;
q0 = w;
q1 = w * z - 1.0;
k = 1;
while q1 < 1.0e9 {
k += 1;
z += h;
tmp = z * q1 - q0;
q0 = q1;
q1 = tmp;
}
t = 0.0;
i = k;
while i >= 0 {
t = 1.0 / (2.0 * ((i as f64) + nf) / x - t);
i -= 1;
}
a = t;
b = 1.0;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = nf * log(fabs(w));
if tmp < 7.09782712893383973096e+02 {
i = nm1;
while i > 0 {
temp = b;
b = b * (2.0 * (i as f64)) / x - a;
a = temp;
i -= 1;
}
} else {
i = nm1;
while i > 0 {
temp = b;
b = b * (2.0 * (i as f64)) / x - a;
a = temp;
/* scale b to avoid spurious overflow */
let x1p500 = f64::from_bits(0x5f30000000000000); // 0x1p500 == 2^500
if b > x1p500 {
a /= b;
t /= b;
b = 1.0;
}
i -= 1;
}
}
z = j0(x);
w = j1(x);
if fabs(z) >= fabs(w) {
b = t * z / b;
} else {
b = t * w / a;
}
}
}
if sign {
-b
} else {
b
}
}
pub fn yn(n: i32, x: f64) -> f64 {
let mut ix: u32;
let lx: u32;
let mut ib: u32;
let nm1: i32;
let mut sign: bool;
let mut i: i32;
let mut a: f64;
let mut b: f64;
let mut temp: f64;
ix = get_high_word(x);
lx = get_low_word(x);
sign = (ix >> 31) != 0;
ix &= 0x7fffffff;
// -lx == !lx + 1
if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
/* nan */
return x;
}
if sign && (ix | lx) != 0 {
/* x < 0 */
return 0.0 / 0.0;
}
if ix == 0x7ff00000 {
return 0.0;
}
if n == 0 {
return y0(x);
}
if n < 0 {
nm1 = -(n + 1);
sign = (n & 1) != 0;
} else {
nm1 = n - 1;
sign = false;
}
if nm1 == 0 {
if sign {
return -y1(x);
} else {
return y1(x);
}
}
if ix >= 0x52d00000 {
/* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
temp = match nm1 & 3 {
0 => -sin(x) - cos(x),
1 => -sin(x) + cos(x),
2 => sin(x) + cos(x),
3 | _ => sin(x) - cos(x),
};
b = INVSQRTPI * temp / sqrt(x);
} else {
a = y0(x);
b = y1(x);
/* quit if b is -inf */
ib = get_high_word(b);
i = 0;
while i < nm1 && ib != 0xfff00000 {
i += 1;
temp = b;
b = (2.0 * (i as f64) / x) * b - a;
ib = get_high_word(b);
a = temp;
}
}
if sign {
-b
} else {
b
}
}