1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
//! Zero-copy allocator based on TCP.
use std::rc::Rc;
use std::cell::RefCell;
use std::collections::{VecDeque, HashMap, hash_map::Entry};
use crossbeam_channel::{Sender, Receiver};
use timely_bytes::arc::Bytes;
use crate::networking::MessageHeader;
use crate::{Allocate, Push, Pull};
use crate::allocator::{AllocateBuilder, Exchangeable};
use crate::allocator::canary::Canary;
use super::bytes_exchange::{BytesPull, SendEndpoint, MergeQueue};
use super::push_pull::{Pusher, PullerInner};
/// Builds an instance of a TcpAllocator.
///
/// Builders are required because some of the state in a `TcpAllocator` cannot be sent between
/// threads (specifically, the `Rc<RefCell<_>>` local channels). So, we must package up the state
/// shared between threads here, and then provide a method that will instantiate the non-movable
/// members once in the destination thread.
pub struct TcpBuilder<A: AllocateBuilder> {
inner: A,
index: usize, // number out of peers
peers: usize, // number of peer allocators.
futures: Vec<Receiver<MergeQueue>>, // to receive queues to each network thread.
promises: Vec<Sender<MergeQueue>>, // to send queues from each network thread.
}
/// Creates a vector of builders, sharing appropriate state.
///
/// `threads` is the number of workers in a single process, `processes` is the
/// total number of processes.
/// The returned tuple contains
/// ```ignore
/// (
/// AllocateBuilder for local threads,
/// info to spawn egress comm threads,
/// info to spawn ingress comm thresds,
/// )
/// ```
pub fn new_vector<A: AllocateBuilder>(
allocators: Vec<A>,
my_process: usize,
processes: usize)
-> (Vec<TcpBuilder<A>>,
Vec<Vec<Sender<MergeQueue>>>,
Vec<Vec<Receiver<MergeQueue>>>)
{
let threads = allocators.len();
// For queues from worker threads to network threads, and vice versa.
let (network_promises, worker_futures) = crate::promise_futures(processes-1, threads);
let (worker_promises, network_futures) = crate::promise_futures(threads, processes-1);
let builders =
allocators
.into_iter()
.zip(worker_promises)
.zip(worker_futures)
.enumerate()
.map(|(index, ((inner, promises), futures))| {
TcpBuilder {
inner,
index: my_process * threads + index,
peers: threads * processes,
promises,
futures,
}})
.collect();
(builders, network_promises, network_futures)
}
impl<A: AllocateBuilder> TcpBuilder<A> {
/// Builds a `TcpAllocator`, instantiating `Rc<RefCell<_>>` elements.
pub fn build(self) -> TcpAllocator<A::Allocator> {
// Fulfill puller obligations.
let mut recvs = Vec::with_capacity(self.peers);
for promise in self.promises.into_iter() {
let buzzer = crate::buzzer::Buzzer::new();
let queue = MergeQueue::new(buzzer);
promise.send(queue.clone()).expect("Failed to send MergeQueue");
recvs.push(queue.clone());
}
// Extract pusher commitments.
let mut sends = Vec::with_capacity(self.peers);
for pusher in self.futures.into_iter() {
let queue = pusher.recv().expect("Failed to receive push queue");
let sendpoint = SendEndpoint::new(queue);
sends.push(Rc::new(RefCell::new(sendpoint)));
}
// let sends: Vec<_> = self.sends.into_iter().map(
// |send| Rc::new(RefCell::new(SendEndpoint::new(send)))).collect();
TcpAllocator {
inner: self.inner.build(),
index: self.index,
peers: self.peers,
canaries: Rc::new(RefCell::new(Vec::new())),
channel_id_bound: None,
staged: Vec::new(),
sends,
recvs,
to_local: HashMap::new(),
}
}
}
/// A TCP-based allocator for inter-process communication.
pub struct TcpAllocator<A: Allocate> {
inner: A, // A non-serialized inner allocator for process-local peers.
index: usize, // number out of peers
peers: usize, // number of peer allocators (for typed channel allocation).
staged: Vec<Bytes>, // staging area for incoming Bytes
canaries: Rc<RefCell<Vec<usize>>>,
channel_id_bound: Option<usize>,
// sending, receiving, and responding to binary buffers.
sends: Vec<Rc<RefCell<SendEndpoint<MergeQueue>>>>, // sends[x] -> goes to process x.
recvs: Vec<MergeQueue>, // recvs[x] <- from process x.
to_local: HashMap<usize, Rc<RefCell<VecDeque<Bytes>>>>, // to worker-local typed pullers.
}
impl<A: Allocate> Allocate for TcpAllocator<A> {
fn index(&self) -> usize { self.index }
fn peers(&self) -> usize { self.peers }
fn allocate<T: Exchangeable>(&mut self, identifier: usize) -> (Vec<Box<dyn Push<T>>>, Box<dyn Pull<T>>) {
// Assume and enforce in-order identifier allocation.
if let Some(bound) = self.channel_id_bound {
assert!(bound < identifier);
}
self.channel_id_bound = Some(identifier);
// Result list of boxed pushers.
let mut pushes = Vec::<Box<dyn Push<T>>>::new();
// Inner exchange allocations.
let inner_peers = self.inner.peers();
let (mut inner_sends, inner_recv) = self.inner.allocate(identifier);
for target_index in 0 .. self.peers() {
// TODO: crappy place to hardcode this rule.
let mut process_id = target_index / inner_peers;
if process_id == self.index / inner_peers {
pushes.push(inner_sends.remove(0));
}
else {
// message header template.
let header = MessageHeader {
channel: identifier,
source: self.index,
target: target_index,
length: 0,
seqno: 0,
};
// create, box, and stash new process_binary pusher.
if process_id > self.index / inner_peers { process_id -= 1; }
pushes.push(Box::new(Pusher::new(header, self.sends[process_id].clone())));
}
}
let channel =
self.to_local
.entry(identifier)
.or_insert_with(|| Rc::new(RefCell::new(VecDeque::new())))
.clone();
use crate::allocator::counters::Puller as CountPuller;
let canary = Canary::new(identifier, self.canaries.clone());
let puller = Box::new(CountPuller::new(PullerInner::new(inner_recv, channel, canary), identifier, self.events().clone()));
(pushes, puller, )
}
// Perform preparatory work, most likely reading binary buffers from self.recv.
#[inline(never)]
fn receive(&mut self) {
// Check for channels whose `Puller` has been dropped.
let mut canaries = self.canaries.borrow_mut();
for dropped_channel in canaries.drain(..) {
let _dropped =
self.to_local
.remove(&dropped_channel)
.expect("non-existent channel dropped");
// Borrowed channels may be non-empty, if the dataflow was forcibly
// dropped. The contract is that if a dataflow is dropped, all other
// workers will drop the dataflow too, without blocking indefinitely
// on events from it.
// assert!(dropped.borrow().is_empty());
}
::std::mem::drop(canaries);
self.inner.receive();
for recv in self.recvs.iter_mut() {
recv.drain_into(&mut self.staged);
}
let mut events = self.inner.events().borrow_mut();
for mut bytes in self.staged.drain(..) {
// We expect that `bytes` contains an integral number of messages.
// No splitting occurs across allocations.
while bytes.len() > 0 {
if let Some(header) = MessageHeader::try_read(&mut bytes[..]) {
// Get the header and payload, ditch the header.
let mut peel = bytes.extract_to(header.required_bytes());
let _ = peel.extract_to(::std::mem::size_of::<MessageHeader>());
// Increment message count for channel.
// Safe to do this even if the channel has been dropped.
events.push(header.channel);
// Ensure that a queue exists.
match self.to_local.entry(header.channel) {
Entry::Vacant(entry) => {
// We may receive data before allocating, and shouldn't block.
if self.channel_id_bound.map(|b| b < header.channel).unwrap_or(true) {
entry.insert(Rc::new(RefCell::new(VecDeque::new())))
.borrow_mut()
.push_back(peel);
}
}
Entry::Occupied(mut entry) => {
entry.get_mut().borrow_mut().push_back(peel);
}
}
}
else {
println!("failed to read full header!");
}
}
}
}
// Perform postparatory work, most likely sending un-full binary buffers.
fn release(&mut self) {
// Publish outgoing byte ledgers.
for send in self.sends.iter_mut() {
send.borrow_mut().publish();
}
// OPTIONAL: Tattle on channels sitting on borrowed data.
// OPTIONAL: Perhaps copy borrowed data into owned allocation.
// for (index, list) in self.to_local.iter() {
// let len = list.borrow_mut().len();
// if len > 0 {
// eprintln!("Warning: worker {}, undrained channel[{}].len() = {}", self.index, index, len);
// }
// }
}
fn events(&self) -> &Rc<RefCell<Vec<usize>>> {
self.inner.events()
}
fn await_events(&self, duration: Option<std::time::Duration>) {
self.inner.await_events(duration);
}
}