differential_dataflow/trace/implementations/
huffman_container.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
//! A slice container that Huffman encodes its contents.

use std::collections::BTreeMap;
use timely::container::PushInto;

use crate::trace::implementations::{BatchContainer, OffsetList};

use self::wrapper::Wrapped;
use self::encoded::Encoded;
use self::huffman::Huffman;

/// A container that contains slices `[B]` as items.
pub struct HuffmanContainer<B: Ord+Clone> {
    /// Either encoded data or raw data.
    inner: Result<(Huffman<B>, Vec<u8>), Vec<B>>,
    /// Offsets that bound each contained slice.
    ///
    /// The length will be one greater than the number of contained items.
    offsets: OffsetList,
    /// Counts of the number of each pattern we've seen.
    stats: BTreeMap<B, i64>
}

impl<B> HuffmanContainer<B>
where
    B: Ord + Clone,
{
    /// Prints statistics about encoded containers.
    pub fn print(&self) {
        if let Ok((_huff, bytes)) = &self.inner {
            println!("Bytes: {:?}, Symbols: {:?}", bytes.len(), self.stats.values().sum::<i64>());
        }
    }
}

impl<B: Ord + Clone + 'static> PushInto<Vec<B>> for HuffmanContainer<B> {
    fn push_into(&mut self, item: Vec<B>) {
        for x in item.iter() { *self.stats.entry(x.clone()).or_insert(0) += 1; }
        match &mut self.inner {
            Ok((huffman, bytes)) => {
                bytes.extend(huffman.encode(item.iter()));
                self.offsets.push(bytes.len());
            },
            Err(raw) => { 
                raw.extend(item); 
                self.offsets.push(raw.len());
            }
        }
    }
}

impl<'a, B: Ord + Clone + 'static> PushInto<Wrapped<'a, B>> for HuffmanContainer<B> {
    fn push_into(&mut self, item: Wrapped<'a, B>) {
        match item.decode() {
            Ok(decoded) => {
                for x in decoded { *self.stats.entry(x.clone()).or_insert(0) += 1; }

            },
            Err(symbols) => {
                for x in symbols.iter() { *self.stats.entry(x.clone()).or_insert(0) += 1; }
            }
        }
        match (item.decode(), &mut self.inner) {
            (Ok(decoded), Ok((huffman, bytes))) => {
                bytes.extend(huffman.encode(decoded));
                self.offsets.push(bytes.len());
            }
            (Ok(decoded), Err(raw)) => {
                raw.extend(decoded.cloned());
                self.offsets.push(raw.len());
            }
            (Err(symbols), Ok((huffman, bytes))) => {
                bytes.extend(huffman.encode(symbols.iter()));
                self.offsets.push(bytes.len());
            }
            (Err(symbols), Err(raw)) => {
                raw.extend(symbols.iter().cloned());
                self.offsets.push(raw.len());
            }
        }
    }
}

impl<B: Ord + Clone + 'static> BatchContainer for HuffmanContainer<B> {
    type Owned = Vec<B>;
    type ReadItem<'a> = Wrapped<'a, B>;

    fn reborrow<'b, 'a: 'b>(item: Self::ReadItem<'a>) -> Self::ReadItem<'b> { item }

    fn with_capacity(size: usize) -> Self {
        let mut offsets = OffsetList::with_capacity(size + 1);
        offsets.push(0);
        Self {
            inner: Err(Vec::with_capacity(size)),
            offsets,
            stats: Default::default(),
        }
    }
    fn merge_capacity(cont1: &Self, cont2: &Self) -> Self {

        if cont1.len() > 0 { cont1.print(); }
        if cont2.len() > 0 { cont2.print(); }

        let mut counts = BTreeMap::default();
        for (symbol, count) in cont1.stats.iter() {
            *counts.entry(symbol.clone()).or_insert(0) += count;
        }
        for (symbol, count) in cont2.stats.iter() {
            *counts.entry(symbol.clone()).or_insert(0) += count;
        }

        let bytes = Vec::with_capacity(counts.values().cloned().sum::<i64>() as usize);
        let huffman = Huffman::create_from(counts);
        let inner = Ok((huffman, bytes));
        // : Err(Vec::with_capacity(length))

        let length = cont1.offsets.len() + cont2.offsets.len() - 2;
        let mut offsets = OffsetList::with_capacity(length + 1);
        offsets.push(0);
        Self {
            inner,
            offsets,
            stats: Default::default(),
        }
    }
    fn index(&self, index: usize) -> Self::ReadItem<'_> {
        let lower = self.offsets.index(index);
        let upper = self.offsets.index(index+1);
        match &self.inner {
            Ok((huffman, bytes)) => Wrapped::encoded(Encoded::new(huffman, &bytes[lower .. upper])),
            Err(raw) => Wrapped::decoded(&raw[lower .. upper]),
        }
    }
    fn len(&self) -> usize {
        self.offsets.len() - 1
    }
}
/// Default implementation introduces a first offset.
impl<B: Ord+Clone> Default for HuffmanContainer<B> {
    fn default() -> Self {
        let mut offsets = OffsetList::with_capacity(1);
        offsets.push(0);
        Self {
            inner: Err(Vec::new()),
            offsets,
            stats: Default::default(),
        }
    }
}

mod wrapper {

    use crate::trace::IntoOwned;
    use super::Encoded;

    pub struct Wrapped<'a, B: Ord> {
        inner: Result<Encoded<'a, B>, &'a [B]>,
    }

    impl<'a, B: Ord> Wrapped<'a, B> {
        /// Returns either a decoding iterator, or just the bytes themselves.
        pub fn decode(&'a self) -> Result<impl Iterator<Item=&'a B> + 'a, &'a [B]> {
            match &self.inner {
                Ok(encoded) => Ok(encoded.decode()),
                Err(symbols) => Err(symbols),
            }
        }
        /// A wrapper around an encoded sequence.
        pub fn encoded(e: Encoded<'a, B>) -> Self { Self { inner: Ok(e) } }
        /// A wrapper around a decoded sequence.
        pub fn decoded(d: &'a [B]) -> Self { Self { inner: Err(d) } }
    }

    impl<'a, B: Ord> Copy for Wrapped<'a, B> { }
    impl<'a, B: Ord> Clone for Wrapped<'a, B> {
        fn clone(&self) -> Self { *self }
    }

    use std::cmp::Ordering;
    impl<'a, 'b, B: Ord> PartialEq<Wrapped<'a, B>> for Wrapped<'b, B> {
        fn eq(&self, other: &Wrapped<'a, B>) -> bool {
            match (self.decode(), other.decode()) {
                (Ok(decode1), Ok(decode2)) => decode1.eq(decode2),
                (Ok(decode1), Err(bytes2)) => decode1.eq(bytes2.iter()),
                (Err(bytes1), Ok(decode2)) => bytes1.iter().eq(decode2),
                (Err(bytes1), Err(bytes2)) => bytes1.eq(bytes2),
            }
        }
    }
    impl<'a, B: Ord> Eq for Wrapped<'a, B> { }
    impl<'a, 'b, B: Ord> PartialOrd<Wrapped<'a, B>> for Wrapped<'b, B> {
        fn partial_cmp(&self, other: &Wrapped<'a, B>) -> Option<Ordering> {
            match (self.decode(), other.decode()) {
                (Ok(decode1), Ok(decode2)) => decode1.partial_cmp(decode2),
                (Ok(decode1), Err(bytes2)) => decode1.partial_cmp(bytes2.iter()),
                (Err(bytes1), Ok(decode2)) => bytes1.iter().partial_cmp(decode2),
                (Err(bytes1), Err(bytes2)) => bytes1.partial_cmp(bytes2),
            }
        }
    }
    impl<'a, B: Ord> Ord for Wrapped<'a, B> {
        fn cmp(&self, other: &Self) -> Ordering {
            self.partial_cmp(other).unwrap()
        }
    }
    impl<'a, B: Ord+Clone> IntoOwned<'a> for Wrapped<'a, B> {
        type Owned = Vec<B>;
        fn into_owned(self) -> Self::Owned {
            match self.decode() {
                Ok(decode) => decode.cloned().collect(),
                Err(bytes) => bytes.to_vec(),
            }
        }
        fn clone_onto(self, other: &mut Self::Owned) {
            other.clear();
            match self.decode() {
                Ok(decode) => other.extend(decode.cloned()),
                Err(bytes) => other.extend_from_slice(bytes),
            }
        }
        fn borrow_as(owned: &'a Self::Owned) -> Self {
            Self { inner: Err(&owned[..]) }
        }
    }
}

/// Wrapper around a Huffman decoder and byte slices, decodeable to a byte sequence.
mod encoded {

    use super::Huffman;

    /// Welcome to GATs!
    pub struct Encoded<'a, B: Ord> {
        /// Text that decorates the data.
        huffman: &'a Huffman<B>,
        /// The data itself.
        bytes: &'a [u8],
    }

    impl<'a, B: Ord> Encoded<'a, B> {
        /// Returns either a decoding iterator, or just the bytes themselves.
        pub fn decode(&'a self) -> impl Iterator<Item=&'a B> + 'a {
            self.huffman.decode(self.bytes.iter().cloned())
        }
        pub fn new(huffman: &'a Huffman<B>, bytes: &'a [u8]) -> Self {
            Self { huffman, bytes }
        }
    }

    impl<'a, B: Ord> Copy for Encoded<'a, B> { }
    impl<'a, B: Ord> Clone for Encoded<'a, B> {
        fn clone(&self) -> Self { *self }
    }
}

mod huffman {

    use std::collections::BTreeMap;
    use std::convert::TryInto;
    
    use self::decoder::Decoder;
    use self::encoder::Encoder;

    /// Encoding and decoding state for Huffman codes.
    pub struct Huffman<T: Ord> {
        /// byte indexed description of what to blat down for encoding.
        /// An entry `(bits, code)` indicates that the low `bits` of `code` should be blatted down.
        /// Probably every `code` fits in a `u64`, unless there are crazy frequencies?
        encode: BTreeMap<T, (usize, u64)>,
        /// Byte-by-byte decoder.
        decode: [Decode<T>; 256],
    }
    impl<T: Ord> Huffman<T> {

        /// Encodes the provided symbols as a sequence of bytes.
        ///
        /// The last byte may only contain partial information, but it should be recorded as presented,
        /// as we haven't a way to distinguish (e.g. a `Result` return type).
        pub fn encode<'a, I>(&'a self, symbols: I) -> Encoder<'a, T, I::IntoIter>
        where
            I: IntoIterator<Item = &'a T>,
        {
            Encoder::new(&self.encode, symbols.into_iter())
        }

        /// Decodes the provided bytes as a sequence of symbols.
        pub fn decode<I>(&self, bytes: I) -> Decoder<'_, T, I::IntoIter> 
        where
            I: IntoIterator<Item=u8>
        {
            Decoder::new(&self.decode, bytes.into_iter())
        }

        pub fn create_from(counts: BTreeMap<T, i64>) -> Self where T: Clone {

            if counts.is_empty() {
                return Self {
                    encode: Default::default(),
                    decode: Decode::map(),
                };
            }

            let mut heap = std::collections::BinaryHeap::new();
            for (item, count) in counts {
                heap.push((-count, Node::Leaf(item)));
            }
            let mut tree = Vec::with_capacity(2 * heap.len() - 1);
            while heap.len() > 1 {
                let (count1, least1) = heap.pop().unwrap();
                let (count2, least2) = heap.pop().unwrap();
                let fork = Node::Fork(tree.len(), tree.len()+1);
                tree.push(least1);
                tree.push(least2);
                heap.push((count1 + count2, fork));
            }
            tree.push(heap.pop().unwrap().1);

            let mut levels = Vec::with_capacity(1 + tree.len()/2);
            let mut todo = vec![(tree.last().unwrap(), 0)];
            while let Some((node, level)) = todo.pop() {
                match node {
                    Node::Leaf(sym) => { levels.push((level, sym)); },
                    Node::Fork(l,r) => { 
                        todo.push((&tree[*l], level + 1));
                        todo.push((&tree[*r], level + 1));
                    },
                }
            }
            levels.sort_by(|x,y| x.0.cmp(&y.0));
            let mut code: u64 = 0;
            let mut prev_level = 0;
            let mut encode = BTreeMap::new();
            let mut decode = Decode::map();
            for (level, sym) in levels {
                if prev_level != level {
                    code <<= level - prev_level;
                    prev_level = level;
                }
                encode.insert(sym.clone(), (level, code));
                Self::insert_decode(&mut decode, sym, level, code << (64-level));

                code += 1;
            }

            for (index, entry) in decode.iter().enumerate() {
                if entry.any_void() {
                    panic!("VOID FOUND: {:?}", index);
                }
            }

            Huffman { 
                encode,
                decode,
            }
        }

        /// Inserts a symbol, and 
        fn insert_decode(map: &mut [Decode<T>; 256], symbol: &T, bits: usize, code: u64) where T: Clone {
            let byte: u8 = (code >> 56).try_into().unwrap();
            if bits <= 8 {
                for off in 0 .. (1 << (8 - bits)) {
                    map[(byte as usize) + off] = Decode::Symbol(symbol.clone(), bits);
                }
            }
            else {
                if let Decode::Void = &map[byte as usize] {
                    map[byte as usize] = Decode::Further(Box::new(Decode::map()));
                }
                if let Decode::Further(next_map) = &mut map[byte as usize] {
                    Self::insert_decode(next_map, symbol, bits - 8, code << 8);
                }
            }
        }
    }
    /// Tree structure for Huffman bit length determination.
    #[derive(Eq, PartialEq, Ord, PartialOrd, Debug)]
    enum Node<T> {
        Leaf(T),
        Fork(usize, usize),
    }

    /// Decoder 
    #[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Default)]
    pub enum Decode<T> {
        /// An as-yet unfilled slot.
        #[default]
        Void,
        /// The symbol, and the number of bits consumed.
        Symbol(T, usize),
        /// An additional map to push subsequent bytes at.
        Further(Box<[Decode<T>; 256]>),
    }

    impl<T> Decode<T> {
        /// Tests to see if the map contains any invalid values.
        ///
        /// A correctly initialized map will have no invalid values.
        /// A map with invalid values will be unable to decode some 
        /// input byte sequences.
        fn any_void(&self) -> bool {
            match self {
                Decode::Void => true,
                Decode::Symbol(_,_) => false,
                Decode::Further(map) => map.iter().any(|m| m.any_void()),
            }
        }
        /// Creates a new map containing invalid values.
        fn map() -> [Decode<T>; 256] {
            let mut vec = Vec::with_capacity(256);
            for _ in 0 .. 256 {
                vec.push(Decode::Void);
            }
            vec.try_into().ok().unwrap()
        }
    }


    /// A tabled Huffman decoder, written as an iterator.
    mod decoder {

        use super::Decode;

        #[derive(Copy, Clone)]
        pub struct Decoder<'a, T, I> {
            decode: &'a [Decode<T>; 256],
            bytes: I,
            pending_byte: u16,
            pending_bits: usize,
        }

        impl<'a, T, I> Decoder<'a, T, I> {
            pub fn new(decode: &'a [Decode<T>; 256], bytes: I) -> Self {
                Self {
                    decode,
                    bytes,
                    pending_byte: 0,
                    pending_bits: 0,
                }
            }
        }

        impl<'a, T, I> Iterator for Decoder<'a, T, I>
        where
            I: Iterator<Item=u8>,
        {
            type Item = &'a T;
            fn next(&mut self) -> Option<&'a T> {
                // We must navigate `self.decode`, restocking bits whenever possible.
                // We stop if ever there are not enough bits remaining.
                let mut map = self.decode;
                loop {
                    if self.pending_bits < 8 {
                        if let Some(next_byte) = self.bytes.next() {
                            self.pending_byte = (self.pending_byte << 8) + next_byte as u16;
                            self.pending_bits += 8;
                        }
                        else {
                            return None;
                        }
                    }
                    let byte = (self.pending_byte >> (self.pending_bits - 8)) as usize;
                    match &map[byte] {
                        Decode::Void => { panic!("invalid decoding map"); }
                        Decode::Symbol(s, bits) => {
                            self.pending_bits -= bits;
                            self.pending_byte &= (1 << self.pending_bits) - 1;
                            return Some(s);
                        }
                        Decode::Further(next_map) => {
                            self.pending_bits -= 8;
                            self.pending_byte &= (1 << self.pending_bits) - 1;
                            map = next_map;
                        }
                    }
                }
            }
        }
    }

    /// A tabled Huffman encoder, written as an iterator.
    mod encoder {

        use std::collections::BTreeMap;

        #[derive(Copy, Clone)]
        pub struct Encoder<'a, T, I> {
            encode: &'a BTreeMap<T, (usize, u64)>,
            symbols: I,
            pending_byte: u64,
            pending_bits: usize,
        }

        impl<'a, T, I> Encoder<'a, T, I> {
            pub fn new(encode: &'a BTreeMap<T, (usize, u64)>, symbols: I) -> Self {
                Self {
                    encode,
                    symbols,
                    pending_byte: 0,
                    pending_bits: 0,
                }
            }
        }

        impl<'a, T: Ord, I> Iterator for Encoder<'a, T, I>
        where
            I: Iterator<Item=&'a T>,
        {
            type Item = u8;
            fn next(&mut self) -> Option<u8> {
                // We repeatedly ship bytes out of `self.pending_byte`, restocking from `self.symbols`.
                while self.pending_bits < 8 {
                    if let Some(symbol) = self.symbols.next() {
                        let (bits, code) = self.encode.get(symbol).unwrap();
                        self.pending_byte <<= bits;
                        self.pending_byte += code;
                        self.pending_bits += bits;
                    }
                    else {
                        // We have run out of symbols. Perhaps there is a final fractional byte to ship?
                        if self.pending_bits > 0 {
                            let byte = self.pending_byte << (8 - self.pending_bits);
                            self.pending_bits = 0;
                            self.pending_byte = 0;
                            return Some(byte as u8);
                        }
                        else {
                            return None;
                        }
                    }
                }

                let byte = self.pending_byte >> (self.pending_bits - 8);
                self.pending_bits -= 8;
                self.pending_byte &= (1 << self.pending_bits) - 1;
                Some(byte as u8)
            }
        }
    }

}