lexical_parse_float/slow.rs
1//! Slow, fallback cases where we cannot unambiguously round a float.
2//!
3//! This occurs when we cannot determine the exact representation using
4//! both the fast path (native) cases nor the Lemire/Bellerophon algorithms,
5//! and therefore must fallback to a slow, arbitrary-precision representation.
6
7#![doc(hidden)]
8
9use core::cmp;
10
11#[cfg(not(feature = "compact"))]
12use lexical_parse_integer::algorithm;
13use lexical_util::digit::char_to_valid_digit_const;
14#[cfg(feature = "radix")]
15use lexical_util::digit::digit_to_char_const;
16use lexical_util::format::NumberFormat;
17use lexical_util::iterator::{AsBytes, DigitsIter, Iter};
18use lexical_util::num::{AsPrimitive, Integer};
19
20#[cfg(feature = "radix")]
21use crate::bigint::Bigfloat;
22use crate::bigint::{Bigint, Limb};
23use crate::float::{extended_to_float, ExtendedFloat80, RawFloat};
24use crate::limits::{u32_power_limit, u64_power_limit};
25use crate::number::Number;
26use crate::shared;
27
28// ALGORITHM
29// ---------
30
31/// Parse the significant digits and biased, binary exponent of a float.
32///
33/// This is a fallback algorithm that uses a big-integer representation
34/// of the float, and therefore is considerably slower than faster
35/// approximations. However, it will always determine how to round
36/// the significant digits to the nearest machine float, allowing
37/// use to handle near half-way cases.
38///
39/// Near half-way cases are halfway between two consecutive machine floats.
40/// For example, the float `16777217.0` has a bitwise representation of
41/// `100000000000000000000000 1`. Rounding to a single-precision float,
42/// the trailing `1` is truncated. Using round-nearest, tie-even, any
43/// value above `16777217.0` must be rounded up to `16777218.0`, while
44/// any value before or equal to `16777217.0` must be rounded down
45/// to `16777216.0`. These near-halfway conversions therefore may require
46/// a large number of digits to unambiguously determine how to round.
47#[must_use]
48#[inline(always)]
49#[allow(clippy::unwrap_used)] // reason = "none is a developer error"
50pub fn slow_radix<F: RawFloat, const FORMAT: u128>(
51 num: Number,
52 fp: ExtendedFloat80,
53) -> ExtendedFloat80 {
54 // Ensure our preconditions are valid:
55 // 1. The significant digits are not shifted into place.
56 debug_assert!(fp.mant & (1 << 63) != 0, "number must be normalized");
57
58 let format = NumberFormat::<{ FORMAT }> {};
59
60 // This assumes the sign bit has already been parsed, and we're
61 // starting with the integer digits, and the float format has been
62 // correctly validated.
63 let sci_exp = scientific_exponent::<FORMAT>(&num);
64
65 // We have 3 major algorithms we use for this:
66 // 1. An algorithm with a finite number of digits and a positive exponent.
67 // 2. An algorithm with a finite number of digits and a negative exponent.
68 // 3. A fallback algorithm with a non-finite number of digits.
69
70 // In order for a float in radix `b` with a finite number of digits
71 // to have a finite representation in radix `y`, `b` should divide
72 // an integer power of `y`. This means for binary, all even radixes
73 // have finite representations, and all odd ones do not.
74 #[cfg(feature = "radix")]
75 {
76 if let Some(max_digits) = F::max_digits(format.radix()) {
77 // Can use our finite number of digit algorithm.
78 digit_comp::<F, FORMAT>(num, fp, sci_exp, max_digits)
79 } else {
80 // Fallback to infinite digits.
81 byte_comp::<F, FORMAT>(num, fp, sci_exp)
82 }
83 }
84
85 #[cfg(not(feature = "radix"))]
86 {
87 // Can use our finite number of digit algorithm.
88 let max_digits = F::max_digits(format.radix()).unwrap();
89 digit_comp::<F, FORMAT>(num, fp, sci_exp, max_digits)
90 }
91}
92
93/// Algorithm that generates the mantissa for a finite representation.
94///
95/// For a positive exponent relative to the significant digits, this
96/// is just a multiplication by an exponent power. For a negative
97/// exponent relative to the significant digits, we scale the real
98/// digits to the theoretical digits for `b` and determine if we
99/// need to round-up.
100#[must_use]
101#[inline(always)]
102#[allow(clippy::cast_possible_wrap)] // reason = "the value range is [-324, 308]"
103pub fn digit_comp<F: RawFloat, const FORMAT: u128>(
104 num: Number,
105 fp: ExtendedFloat80,
106 sci_exp: i32,
107 max_digits: usize,
108) -> ExtendedFloat80 {
109 let (bigmant, digits) = parse_mantissa::<FORMAT>(num, max_digits);
110 // This can't underflow, since `digits` is at most `max_digits`.
111 let exponent = sci_exp + 1 - digits as i32;
112 if exponent >= 0 {
113 positive_digit_comp::<F, FORMAT>(bigmant, exponent)
114 } else {
115 negative_digit_comp::<F, FORMAT>(bigmant, fp, exponent)
116 }
117}
118
119/// Generate the significant digits with a positive exponent relative to
120/// mantissa.
121#[must_use]
122#[allow(clippy::unwrap_used)] // reason = "none is a developer error"
123#[allow(clippy::cast_possible_wrap)] // reason = "can't wrap in practice: max is ~1000 limbs"
124#[allow(clippy::missing_inline_in_public_items)] // reason = "only public for testing"
125pub fn positive_digit_comp<F: RawFloat, const FORMAT: u128>(
126 mut bigmant: Bigint,
127 exponent: i32,
128) -> ExtendedFloat80 {
129 let format = NumberFormat::<{ FORMAT }> {};
130
131 // Simple, we just need to multiply by the power of the radix.
132 // Now, we can calculate the mantissa and the exponent from this.
133 // The binary exponent is the binary exponent for the mantissa
134 // shifted to the hidden bit.
135 bigmant.pow(format.radix(), exponent as u32).unwrap();
136
137 // Get the exact representation of the float from the big integer.
138 // hi64 checks **all** the remaining bits after the mantissa,
139 // so it will check if **any** truncated digits exist.
140 let (mant, is_truncated) = bigmant.hi64();
141 let exp = bigmant.bit_length() as i32 - 64 + F::EXPONENT_BIAS;
142 let mut fp = ExtendedFloat80 {
143 mant,
144 exp,
145 };
146
147 // Shift the digits into position and determine if we need to round-up.
148 shared::round::<F, _>(&mut fp, |f, s| {
149 shared::round_nearest_tie_even(f, s, |is_odd, is_halfway, is_above| {
150 is_above || (is_halfway && is_truncated) || (is_odd && is_halfway)
151 });
152 });
153 fp
154}
155
156/// Generate the significant digits with a negative exponent relative to
157/// mantissa.
158///
159/// This algorithm is quite simple: we have the significant digits `m1 * b^N1`,
160/// where `m1` is the bigint mantissa, `b` is the radix, and `N1` is the radix
161/// exponent. We then calculate the theoretical representation of `b+h`, which
162/// is `m2 * 2^N2`, where `m2` is the bigint mantissa and `N2` is the binary
163/// exponent. If we had infinite, efficient floating precision, this would be
164/// equal to `m1 / b^-N1` and then compare it to `m2 * 2^N2`.
165///
166/// Since we cannot divide and keep precision, we must multiply the other:
167/// if we want to do `m1 / b^-N1 >= m2 * 2^N2`, we can do
168/// `m1 >= m2 * b^-N1 * 2^N2` Going to the decimal case, we can show and example
169/// and simplify this further: `m1 >= m2 * 2^N2 * 10^-N1`. Since we can remove
170/// a power-of-two, this is `m1 >= m2 * 2^(N2 - N1) * 5^-N1`. Therefore, if
171/// `N2 - N1 > 0`, we need have `m1 >= m2 * 2^(N2 - N1) * 5^-N1`, otherwise,
172/// we have `m1 * 2^(N1 - N2) >= m2 * 5^-N1`, where the resulting exponents
173/// are all positive.
174///
175/// This allows us to compare both floats using integers efficiently
176/// without any loss of precision.
177#[allow(clippy::match_bool)] // reason = "simplifies documentation"
178#[allow(clippy::unwrap_used)] // reason = "unwrap panics if a developer error"
179#[allow(clippy::comparison_chain)] // reason = "logically different conditions for algorithm"
180#[allow(clippy::missing_inline_in_public_items)] // reason = "only exposed for unittesting"
181pub fn negative_digit_comp<F: RawFloat, const FORMAT: u128>(
182 bigmant: Bigint,
183 mut fp: ExtendedFloat80,
184 exponent: i32,
185) -> ExtendedFloat80 {
186 // Ensure our preconditions are valid:
187 // 1. The significant digits are not shifted into place.
188 debug_assert!(fp.mant & (1 << 63) != 0, "the significant digits must be normalized");
189
190 let format = NumberFormat::<FORMAT> {};
191 let radix = format.radix();
192
193 // Get the significant digits and radix exponent for the real digits.
194 let mut real_digits = bigmant;
195 let real_exp = exponent;
196 debug_assert!(real_exp < 0, "algorithm only works with negative numbers");
197
198 // Round down our extended-precision float and calculate `b`.
199 let mut b = fp;
200 shared::round::<F, _>(&mut b, shared::round_down);
201 let b = extended_to_float::<F>(b);
202
203 // Get the significant digits and the binary exponent for `b+h`.
204 let theor = bh(b);
205 let mut theor_digits = Bigint::from_u64(theor.mant);
206 let theor_exp = theor.exp;
207
208 // We need to scale the real digits and `b+h` digits to be the same
209 // order. We currently have `real_exp`, in `radix`, that needs to be
210 // shifted to `theor_digits` (since it is negative), and `theor_exp`
211 // to either `theor_digits` or `real_digits` as a power of 2 (since it
212 // may be positive or negative). Try to remove as many powers of 2
213 // as possible. All values are relative to `theor_digits`, that is,
214 // reflect the power you need to multiply `theor_digits` by.
215 let (binary_exp, halfradix_exp, radix_exp) = match radix.is_even() {
216 // Can remove a power-of-two.
217 // Both are on opposite-sides of equation, can factor out a
218 // power of two.
219 //
220 // Example: 10^-10, 2^-10 -> ( 0, 10, 0)
221 // Example: 10^-10, 2^-15 -> (-5, 10, 0)
222 // Example: 10^-10, 2^-5 -> ( 5, 10, 0)
223 // Example: 10^-10, 2^5 -> (15, 10, 0)
224 true => (theor_exp - real_exp, -real_exp, 0),
225 // Cannot remove a power-of-two.
226 false => (theor_exp, 0, -real_exp),
227 };
228
229 if halfradix_exp != 0 {
230 theor_digits.pow(radix / 2, halfradix_exp as u32).unwrap();
231 }
232 if radix_exp != 0 {
233 theor_digits.pow(radix, radix_exp as u32).unwrap();
234 }
235 if binary_exp > 0 {
236 theor_digits.pow(2, binary_exp as u32).unwrap();
237 } else if binary_exp < 0 {
238 real_digits.pow(2, (-binary_exp) as u32).unwrap();
239 }
240
241 // Compare our theoretical and real digits and round nearest, tie even.
242 let ord = real_digits.data.cmp(&theor_digits.data);
243 shared::round::<F, _>(&mut fp, |f, s| {
244 shared::round_nearest_tie_even(f, s, |is_odd, _, _| {
245 // Can ignore `is_halfway` and `is_above`, since those were
246 // calculates using less significant digits.
247 match ord {
248 cmp::Ordering::Greater => true,
249 cmp::Ordering::Less => false,
250 cmp::Ordering::Equal if is_odd => true,
251 cmp::Ordering::Equal => false,
252 }
253 });
254 });
255 fp
256}
257
258/// Try to parse 8 digits at a time.
259///
260/// - `format` - The numerical format specification as a packed 128-bit integer
261/// - `iter` - An iterator over all bytes in the buffer
262/// - `value` - The currently parsed value.
263/// - `count` - The total number of parsed digits
264/// - `counter` - The number of parsed digits since creating the current u32
265/// - `step` - The maximum number of digits for the radix that can fit in a u32.
266/// - `max_digits` - The maximum number of digits that can affect floating-point
267/// rounding.
268#[cfg(not(feature = "compact"))]
269macro_rules! try_parse_8digits {
270 (
271 $format:ident,
272 $iter:ident,
273 $value:ident,
274 $count:ident,
275 $counter:ident,
276 $step:ident,
277 $max_digits:ident
278 ) => {{
279 let format = NumberFormat::<$format> {};
280 let radix = format.radix() as Limb;
281
282 // Try 8-digit optimizations.
283 if can_try_parse_multidigit!($iter, radix) {
284 debug_assert!(radix < 16);
285 let radix8 = format.radix8() as Limb;
286 while $step - $counter >= 8 && $max_digits - $count >= 8 {
287 if let Some(v) = algorithm::try_parse_8digits::<Limb, _, FORMAT>(&mut $iter) {
288 $value = $value.wrapping_mul(radix8).wrapping_add(v);
289 $counter += 8;
290 $count += 8;
291 } else {
292 break;
293 }
294 }
295 }
296 }};
297}
298
299/// Add a digit to the temporary value.
300///
301/// - `c` - The character to convert to a digit.
302/// - `value` - The currently parsed value.
303/// - `count` - The total number of parsed digits
304/// - `counter` - The number of parsed digits since creating the current u32
305macro_rules! add_digit {
306 ($c:ident, $radix:ident, $value:ident, $counter:ident, $count:ident) => {{
307 let digit = char_to_valid_digit_const($c, $radix);
308 $value *= $radix as Limb;
309 $value += digit as Limb;
310
311 // Increment our counters.
312 $counter += 1;
313 $count += 1;
314 }};
315}
316
317/// Add a temporary value to our mantissa.
318///
319/// - `format` - The numerical format specification as a packed 128-bit integer
320/// - `result` - The big integer,
321/// - `power` - The power to scale the big integer by.
322/// - `value` - The value to add to the big integer,
323/// - `counter` - The number of parsed digits since creating the current u32
324macro_rules! add_temporary {
325 // Multiply by the small power and add the native value.
326 (@mul $result:ident, $power:expr, $value:expr) => {
327 $result.data.mul_small($power).unwrap();
328 $result.data.add_small($value).unwrap();
329 };
330
331 // Add a temporary where we won't read the counter results internally.
332 (@end $format:ident, $result:ident, $counter:ident, $value:ident) => {
333 if $counter != 0 {
334 let small_power = f64::int_pow_fast_path($counter, $format.radix());
335 add_temporary!(@mul $result, small_power as Limb, $value);
336 }
337 };
338
339 // Add the maximum native value.
340 (@max $format:ident, $result:ident, $counter:ident, $value:ident, $max:ident) => {
341 add_temporary!(@mul $result, $max, $value);
342 $counter = 0;
343 $value = 0;
344 };
345}
346
347/// Round-up a truncated value.
348///
349/// - `format` - The numerical format specification as a packed 128-bit integer
350/// - `result` - The big integer,
351/// - `count` - The total number of parsed digits
352macro_rules! round_up_truncated {
353 ($format:ident, $result:ident, $count:ident) => {{
354 // Need to round-up.
355 // Can't just add 1, since this can accidentally round-up
356 // values to a halfway point, which can cause invalid results.
357 add_temporary!(@mul $result, $format.radix() as Limb, 1);
358 $count += 1;
359 }};
360}
361
362/// Check and round-up the fraction if any non-zero digits exist.
363///
364/// - `format` - The numerical format specification as a packed 128-bit integer
365/// - `iter` - An iterator over all bytes in the buffer
366/// - `result` - The big integer,
367/// - `count` - The total number of parsed digits
368macro_rules! round_up_nonzero {
369 ($format:ident, $iter:expr, $result:ident, $count:ident) => {{
370 // NOTE: All digits must already be valid.
371 let mut iter = $iter;
372
373 // First try reading 8-digits at a time.
374 if iter.is_contiguous() {
375 while let Some(value) = iter.peek_u64() {
376 // SAFETY: safe since we have at least 8 bytes in the buffer.
377 unsafe { iter.step_by_unchecked(8) };
378 if value != 0x3030_3030_3030_3030 {
379 // Have non-zero digits, exit early.
380 round_up_truncated!($format, $result, $count);
381 return ($result, $count);
382 }
383 }
384 }
385
386 for &digit in iter {
387 if digit != b'0' {
388 round_up_truncated!($format, $result, $count);
389 return ($result, $count);
390 }
391 }
392 }};
393}
394
395/// Parse the full mantissa into a big integer.
396///
397/// Returns the parsed mantissa and the number of digits in the mantissa.
398/// The max digits is the maximum number of digits plus one.
399#[must_use]
400#[allow(clippy::cognitive_complexity)] // reason = "complexity broken into macros"
401#[allow(clippy::missing_inline_in_public_items)] // reason = "only public for testing"
402pub fn parse_mantissa<const FORMAT: u128>(num: Number, max_digits: usize) -> (Bigint, usize) {
403 let format = NumberFormat::<FORMAT> {};
404 let radix = format.radix();
405
406 // Iteratively process all the data in the mantissa.
407 // We do this via small, intermediate values which once we reach
408 // the maximum number of digits we can process without overflow,
409 // we add the temporary to the big integer.
410 let mut counter: usize = 0;
411 let mut count: usize = 0;
412 let mut value: Limb = 0;
413 let mut result = Bigint::new();
414
415 // Now use our pre-computed small powers iteratively.
416 let step = if Limb::BITS == 32 {
417 u32_power_limit(format.radix())
418 } else {
419 u64_power_limit(format.radix())
420 } as usize;
421 let max_native = (format.radix() as Limb).pow(step as u32);
422
423 // Process the integer digits.
424 let mut integer = num.integer.bytes::<FORMAT>();
425 let mut integer_iter = integer.integer_iter();
426 integer_iter.skip_zeros();
427 'integer: loop {
428 #[cfg(not(feature = "compact"))]
429 try_parse_8digits!(FORMAT, integer_iter, value, count, counter, step, max_digits);
430
431 // Parse a digit at a time, until we reach step.
432 while counter < step && count < max_digits {
433 if let Some(&c) = integer_iter.next() {
434 add_digit!(c, radix, value, counter, count);
435 } else {
436 break 'integer;
437 }
438 }
439
440 // Check if we've exhausted our max digits.
441 if count == max_digits {
442 // Need to check if we're truncated, and round-up accordingly.
443 // SAFETY: safe since `counter <= step`.
444 add_temporary!(@end format, result, counter, value);
445 round_up_nonzero!(format, integer_iter, result, count);
446 if let Some(fraction) = num.fraction {
447 let mut fraction = fraction.bytes::<FORMAT>();
448 round_up_nonzero!(format, fraction.fraction_iter(), result, count);
449 }
450 return (result, count);
451 } else {
452 // Add our temporary from the loop.
453 // SAFETY: safe since `counter <= step`.
454 add_temporary!(@max format, result, counter, value, max_native);
455 }
456 }
457
458 // Process the fraction digits.
459 if let Some(fraction) = num.fraction {
460 let mut fraction = fraction.bytes::<FORMAT>();
461 let mut fraction_iter = fraction.integer_iter();
462 if count == 0 {
463 // No digits added yet, can skip leading fraction zeros too.
464 fraction_iter.skip_zeros();
465 }
466 'fraction: loop {
467 #[cfg(not(feature = "compact"))]
468 try_parse_8digits!(FORMAT, fraction_iter, value, count, counter, step, max_digits);
469
470 // Parse a digit at a time, until we reach step.
471 while counter < step && count < max_digits {
472 if let Some(&c) = fraction_iter.next() {
473 add_digit!(c, radix, value, counter, count);
474 } else {
475 break 'fraction;
476 }
477 }
478
479 // Check if we've exhausted our max digits.
480 if count == max_digits {
481 // SAFETY: safe since `counter <= step`.
482 add_temporary!(@end format, result, counter, value);
483 round_up_nonzero!(format, fraction_iter, result, count);
484 return (result, count);
485 } else {
486 // Add our temporary from the loop.
487 // SAFETY: safe since `counter <= step`.
488 add_temporary!(@max format, result, counter, value, max_native);
489 }
490 }
491 }
492
493 // We will always have a remainder, as long as we entered the loop
494 // once, or counter % step is 0.
495 // SAFETY: safe since `counter <= step`.
496 add_temporary!(@end format, result, counter, value);
497
498 (result, count)
499}
500
501/// Compare actual integer digits to the theoretical digits.
502///
503/// - `iter` - An iterator over all bytes in the buffer
504/// - `num` - The actual digits of the real floating point number.
505/// - `den` - The theoretical digits created by `b+h` to determine if `b` or
506/// `b+1`
507#[cfg(feature = "radix")]
508macro_rules! integer_compare {
509 ($iter:ident, $num:ident, $den:ident, $radix:ident) => {{
510 // Compare the integer digits.
511 while !$num.data.is_empty() {
512 // All digits **must** be valid.
513 let actual = match $iter.next() {
514 Some(&v) => v,
515 // Could have hit the decimal point.
516 _ => break,
517 };
518 let rem = $num.data.quorem(&$den.data) as u32;
519 let expected = digit_to_char_const(rem, $radix);
520 $num.data.mul_small($radix as Limb).unwrap();
521 if actual < expected {
522 return cmp::Ordering::Less;
523 } else if actual > expected {
524 return cmp::Ordering::Greater;
525 }
526 }
527
528 // Still have integer digits, check if any are non-zero.
529 if $num.data.is_empty() {
530 for &digit in $iter {
531 if digit != b'0' {
532 return cmp::Ordering::Greater;
533 }
534 }
535 }
536 }};
537}
538
539/// Compare actual fraction digits to the theoretical digits.
540///
541/// - `iter` - An iterator over all bytes in the buffer
542/// - `num` - The actual digits of the real floating point number.
543/// - `den` - The theoretical digits created by `b+h` to determine if `b` or
544/// `b+1`
545#[cfg(feature = "radix")]
546macro_rules! fraction_compare {
547 ($iter:ident, $num:ident, $den:ident, $radix:ident) => {{
548 // Compare the fraction digits.
549 // We can only be here if we hit a decimal point.
550 while !$num.data.is_empty() {
551 // All digits **must** be valid.
552 let actual = match $iter.next() {
553 Some(&v) => v,
554 // No more actual digits, or hit the exponent.
555 _ => return cmp::Ordering::Less,
556 };
557 let rem = $num.data.quorem(&$den.data) as u32;
558 let expected = digit_to_char_const(rem, $radix);
559 $num.data.mul_small($radix as Limb).unwrap();
560 if actual < expected {
561 return cmp::Ordering::Less;
562 } else if actual > expected {
563 return cmp::Ordering::Greater;
564 }
565 }
566
567 // Still have fraction digits, check if any are non-zero.
568 for &digit in $iter {
569 if digit != b'0' {
570 return cmp::Ordering::Greater;
571 }
572 }
573 }};
574}
575
576/// Compare theoretical digits to halfway point from theoretical digits.
577///
578/// Generates a float representing the halfway point, and generates
579/// theoretical digits as bytes, and compares the generated digits to
580/// the actual input.
581///
582/// Compares the known string to theoretical digits generated on the
583/// fly for `b+h`, where a string representation of a float is between
584/// `b` and `b+u`, where `b+u` is 1 unit in the least-precision. Therefore,
585/// the string must be close to `b+h`.
586///
587/// Adapted from "Bigcomp: Deciding Truncated, Near Halfway Conversions",
588/// available [here](https://www.exploringbinary.com/bigcomp-deciding-truncated-near-halfway-conversions/).
589#[cfg(feature = "radix")]
590#[allow(clippy::unwrap_used)] // reason = "none is a developer error due to shl overflow"
591#[allow(clippy::comparison_chain)] // reason = "logically different conditions for algorithm"
592pub fn byte_comp<F: RawFloat, const FORMAT: u128>(
593 number: Number,
594 mut fp: ExtendedFloat80,
595 sci_exp: i32,
596) -> ExtendedFloat80 {
597 // Ensure our preconditions are valid:
598 // 1. The significant digits are not shifted into place.
599 debug_assert!(fp.mant & (1 << 63) != 0);
600
601 let format = NumberFormat::<FORMAT> {};
602
603 // Round down our extended-precision float and calculate `b`.
604 let mut b = fp;
605 shared::round::<F, _>(&mut b, shared::round_down);
606 let b = extended_to_float::<F>(b);
607
608 // Calculate `b+h` to create a ratio for our theoretical digits.
609 let theor = Bigfloat::from_float(bh::<F>(b));
610
611 // Now, create a scaling factor for the digit count.
612 let mut factor = Bigfloat::from_u32(1);
613 factor.pow(format.radix(), sci_exp.unsigned_abs()).unwrap();
614 let mut num: Bigfloat;
615 let mut den: Bigfloat;
616
617 if sci_exp < 0 {
618 // Need to have the basen factor be the numerator, and the `fp`
619 // be the denominator. Since we assumed that `theor` was the numerator,
620 // if it's the denominator, we need to multiply it into the numerator.
621 num = factor;
622 num.data *= &theor.data;
623 den = Bigfloat::from_u32(1);
624 den.exp = -theor.exp;
625 } else {
626 num = theor;
627 den = factor;
628 }
629
630 // Scale the denominator so it has the number of bits
631 // in the radix as the number of leading zeros.
632 let wlz = integral_binary_factor(format.radix());
633 let nlz = den.leading_zeros().wrapping_sub(wlz) & (32 - 1);
634 if nlz != 0 {
635 den.shl_bits(nlz as usize).unwrap();
636 den.exp -= nlz as i32;
637 }
638
639 // Need to scale the numerator or denominator to the same value.
640 // We don't want to shift the denominator, so...
641 let diff = den.exp - num.exp;
642 let shift = diff.unsigned_abs() as usize;
643 if diff < 0 {
644 // Need to shift the numerator left.
645 num.shl(shift).unwrap();
646 num.exp -= shift as i32;
647 } else if diff > 0 {
648 // Need to shift denominator left, go by a power of Limb::BITS.
649 // After this, the numerator will be non-normalized, and the
650 // denominator will be normalized. We need to add one to the
651 // quotient,since we're calculating the ceiling of the divmod.
652 let (q, r) = shift.ceil_divmod(Limb::BITS as usize);
653 let r = -r;
654 if r != 0 {
655 num.shl_bits(r as usize).unwrap();
656 num.exp -= r;
657 }
658 if q != 0 {
659 den.shl_limbs(q).unwrap();
660 den.exp -= Limb::BITS as i32 * q as i32;
661 }
662 }
663
664 // Compare our theoretical and real digits and round nearest, tie even.
665 let ord = compare_bytes::<FORMAT>(number, num, den);
666 shared::round::<F, _>(&mut fp, |f, s| {
667 shared::round_nearest_tie_even(f, s, |is_odd, _, _| {
668 // Can ignore `is_halfway` and `is_above`, since those were
669 // calculates using less significant digits.
670 match ord {
671 cmp::Ordering::Greater => true,
672 cmp::Ordering::Less => false,
673 cmp::Ordering::Equal if is_odd => true,
674 cmp::Ordering::Equal => false,
675 }
676 });
677 });
678 fp
679}
680
681/// Compare digits between the generated values the ratio and the actual view.
682///
683/// - `number` - The representation of the float as a big number, with the
684/// parsed digits.
685/// - `num` - The actual digits of the real floating point number.
686/// - `den` - The theoretical digits created by `b+h` to determine if `b` or
687/// `b+1`
688#[cfg(feature = "radix")]
689#[allow(clippy::unwrap_used)] // reason = "none is a developer error due to a missing fraction"
690pub fn compare_bytes<const FORMAT: u128>(
691 number: Number,
692 mut num: Bigfloat,
693 den: Bigfloat,
694) -> cmp::Ordering {
695 let format = NumberFormat::<FORMAT> {};
696 let radix = format.radix();
697
698 // Now need to compare the theoretical digits. First, I need to trim
699 // any leading zeros, and will also need to ignore trailing ones.
700 let mut integer = number.integer.bytes::<{ FORMAT }>();
701 let mut integer_iter = integer.integer_iter();
702 integer_iter.skip_zeros();
703 if integer_iter.is_buffer_empty() {
704 // Cannot be empty, since we must have at least **some** significant digits.
705 let mut fraction = number.fraction.unwrap().bytes::<{ FORMAT }>();
706 let mut fraction_iter = fraction.fraction_iter();
707 fraction_iter.skip_zeros();
708 fraction_compare!(fraction_iter, num, den, radix);
709 } else {
710 integer_compare!(integer_iter, num, den, radix);
711 if let Some(fraction) = number.fraction {
712 let mut fraction = fraction.bytes::<{ FORMAT }>();
713 let mut fraction_iter = fraction.fraction_iter();
714 fraction_compare!(fraction_iter, num, den, radix);
715 } else if !num.data.is_empty() {
716 // We had more theoretical digits, but no more actual digits.
717 return cmp::Ordering::Less;
718 }
719 }
720
721 // Exhausted both, must be equal.
722 cmp::Ordering::Equal
723}
724
725// SCALING
726// -------
727
728/// Calculate the scientific exponent from a `Number` value.
729/// Any other attempts would require slowdowns for faster algorithms.
730#[must_use]
731#[inline(always)]
732pub fn scientific_exponent<const FORMAT: u128>(num: &Number) -> i32 {
733 // This has the significant digits and exponent relative to those
734 // digits: therefore, we just need to scale to mantissa to `[1, radix)`.
735 // This doesn't need to be very fast.
736 let format = NumberFormat::<FORMAT> {};
737
738 // Use power reduction to make this faster: we need at least
739 // `F::MANTISSA_SIZE` bits, so we must have at least radix^4 digits.
740 // IF we're using base 3, we can have at most 11 divisions, and
741 // base 36, at most ~4. So, this is reasonably efficient.
742 let radix = format.radix() as u64;
743 let radix2 = radix * radix;
744 let radix4 = radix2 * radix2;
745 let mut mantissa = num.mantissa;
746 let mut exponent = num.exponent;
747 while mantissa >= radix4 {
748 mantissa /= radix4;
749 exponent += 4;
750 }
751 while mantissa >= radix2 {
752 mantissa /= radix2;
753 exponent += 2;
754 }
755 while mantissa >= radix {
756 mantissa /= radix;
757 exponent += 1;
758 }
759 exponent as i32
760}
761
762/// Calculate `b` from a a representation of `b` as a float.
763#[must_use]
764#[inline(always)]
765pub fn b<F: RawFloat>(float: F) -> ExtendedFloat80 {
766 ExtendedFloat80 {
767 mant: float.mantissa().as_u64(),
768 exp: float.exponent(),
769 }
770}
771
772/// Calculate `b+h` from a a representation of `b` as a float.
773#[must_use]
774#[inline(always)]
775pub fn bh<F: RawFloat>(float: F) -> ExtendedFloat80 {
776 let fp = b(float);
777 ExtendedFloat80 {
778 mant: (fp.mant << 1) + 1,
779 exp: fp.exp - 1,
780 }
781}
782
783// NOTE: There will never be binary factors here.
784
785/// Calculate the integral ceiling of the binary factor from a basen number.
786#[must_use]
787#[inline(always)]
788#[cfg(feature = "radix")]
789pub const fn integral_binary_factor(radix: u32) -> u32 {
790 match radix {
791 3 => 2,
792 5 => 3,
793 6 => 3,
794 7 => 3,
795 9 => 4,
796 10 => 4,
797 11 => 4,
798 12 => 4,
799 13 => 4,
800 14 => 4,
801 15 => 4,
802 17 => 5,
803 18 => 5,
804 19 => 5,
805 20 => 5,
806 21 => 5,
807 22 => 5,
808 23 => 5,
809 24 => 5,
810 25 => 5,
811 26 => 5,
812 27 => 5,
813 28 => 5,
814 29 => 5,
815 30 => 5,
816 31 => 5,
817 33 => 6,
818 34 => 6,
819 35 => 6,
820 36 => 6,
821 // Invalid radix
822 _ => 0,
823 }
824}
825
826/// Calculate the integral ceiling of the binary factor from a basen number.
827#[must_use]
828#[inline(always)]
829#[cfg(not(feature = "radix"))]
830pub const fn integral_binary_factor(radix: u32) -> u32 {
831 match radix {
832 10 => 4,
833 // Invalid radix
834 _ => 0,
835 }
836}