differential_dataflow/trace/implementations/merge_batcher.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
//! A `Batcher` implementation based on merge sort.
//!
//! The `MergeBatcher` requires support from two types, a "chunker" and a "merger".
//! The chunker receives input batches and consolidates them, producing sorted output
//! "chunks" that are fully consolidated (no adjacent updates can be accumulated).
//! The merger implements the [`Merger`] trait, and provides hooks for manipulating
//! sorted "chains" of chunks as needed by the merge batcher: merging chunks and also
//! splitting them apart based on time.
//!
//! Implementations of `MergeBatcher` can be instantiated through the choice of both
//! the chunker and the merger, provided their respective output and input types align.
use std::marker::PhantomData;
use timely::progress::frontier::AntichainRef;
use timely::progress::{frontier::Antichain, Timestamp};
use timely::Container;
use timely::container::{ContainerBuilder, PushInto};
use crate::logging::{BatcherEvent, Logger};
use crate::trace::{Batcher, Builder, Description};
/// Creates batches from containers of unordered tuples.
///
/// To implement `Batcher`, the container builder `C` must accept `&mut Input` as inputs,
/// and must produce outputs of type `M::Chunk`.
pub struct MergeBatcher<Input, C, M: Merger> {
/// Transforms input streams to chunks of sorted, consolidated data.
chunker: C,
/// A sequence of power-of-two length lists of sorted, consolidated containers.
///
/// Do not push/pop directly but use the corresponding functions ([`Self::chain_push`]/[`Self::chain_pop`]).
chains: Vec<Vec<M::Chunk>>,
/// Stash of empty chunks, recycled through the merging process.
stash: Vec<M::Chunk>,
/// Merges consolidated chunks, and extracts the subset of an update chain that lies in an interval of time.
merger: M,
/// Current lower frontier, we sealed up to here.
lower: Antichain<M::Time>,
/// The lower-bound frontier of the data, after the last call to seal.
frontier: Antichain<M::Time>,
/// Logger for size accounting.
logger: Option<Logger>,
/// Timely operator ID.
operator_id: usize,
/// The `Input` type needs to be called out as the type of container accepted, but it is not otherwise present.
_marker: PhantomData<Input>,
}
impl<Input, C, M> Batcher for MergeBatcher<Input, C, M>
where
C: ContainerBuilder<Container=M::Chunk> + Default + for<'a> PushInto<&'a mut Input>,
M: Merger,
M::Time: Timestamp,
{
type Input = Input;
type Time = M::Time;
type Output = M::Chunk;
fn new(logger: Option<Logger>, operator_id: usize) -> Self {
Self {
logger,
operator_id,
chunker: C::default(),
merger: M::default(),
chains: Vec::new(),
stash: Vec::new(),
frontier: Antichain::new(),
lower: Antichain::from_elem(M::Time::minimum()),
_marker: PhantomData,
}
}
/// Push a container of data into this merge batcher. Updates the internal chain structure if
/// needed.
fn push_container(&mut self, container: &mut Input) {
self.chunker.push_into(container);
while let Some(chunk) = self.chunker.extract() {
let chunk = std::mem::take(chunk);
self.insert_chain(vec![chunk]);
}
}
// Sealing a batch means finding those updates with times not greater or equal to any time
// in `upper`. All updates must have time greater or equal to the previously used `upper`,
// which we call `lower`, by assumption that after sealing a batcher we receive no more
// updates with times not greater or equal to `upper`.
fn seal<B: Builder<Input = Self::Output, Time = Self::Time>>(&mut self, upper: Antichain<M::Time>) -> B::Output {
// Finish
while let Some(chunk) = self.chunker.finish() {
let chunk = std::mem::take(chunk);
self.insert_chain(vec![chunk]);
}
// Merge all remaining chains into a single chain.
while self.chains.len() > 1 {
let list1 = self.chain_pop().unwrap();
let list2 = self.chain_pop().unwrap();
let merged = self.merge_by(list1, list2);
self.chain_push(merged);
}
let merged = self.chain_pop().unwrap_or_default();
// Extract readied data.
let mut kept = Vec::new();
let mut readied = Vec::new();
self.frontier.clear();
self.merger.extract(merged, upper.borrow(), &mut self.frontier, &mut readied, &mut kept, &mut self.stash);
if !kept.is_empty() {
self.chain_push(kept);
}
self.stash.clear();
let description = Description::new(self.lower.clone(), upper.clone(), Antichain::from_elem(M::Time::minimum()));
let seal = B::seal(&mut readied, description);
self.lower = upper;
seal
}
/// The frontier of elements remaining after the most recent call to `self.seal`.
#[inline]
fn frontier(&mut self) -> AntichainRef<M::Time> {
self.frontier.borrow()
}
}
impl<Input, C, M> MergeBatcher<Input, C, M>
where
M: Merger,
{
/// Insert a chain and maintain chain properties: Chains are geometrically sized and ordered
/// by decreasing length.
fn insert_chain(&mut self, chain: Vec<M::Chunk>) {
if !chain.is_empty() {
self.chain_push(chain);
while self.chains.len() > 1 && (self.chains[self.chains.len() - 1].len() >= self.chains[self.chains.len() - 2].len() / 2) {
let list1 = self.chain_pop().unwrap();
let list2 = self.chain_pop().unwrap();
let merged = self.merge_by(list1, list2);
self.chain_push(merged);
}
}
}
// merges two sorted input lists into one sorted output list.
fn merge_by(&mut self, list1: Vec<M::Chunk>, list2: Vec<M::Chunk>) -> Vec<M::Chunk> {
// TODO: `list1` and `list2` get dropped; would be better to reuse?
let mut output = Vec::with_capacity(list1.len() + list2.len());
self.merger.merge(list1, list2, &mut output, &mut self.stash);
output
}
/// Pop a chain and account size changes.
#[inline]
fn chain_pop(&mut self) -> Option<Vec<M::Chunk>> {
let chain = self.chains.pop();
self.account(chain.iter().flatten().map(M::account), -1);
chain
}
/// Push a chain and account size changes.
#[inline]
fn chain_push(&mut self, chain: Vec<M::Chunk>) {
self.account(chain.iter().map(M::account), 1);
self.chains.push(chain);
}
/// Account size changes. Only performs work if a logger exists.
///
/// Calculate the size based on the iterator passed along, with each attribute
/// multiplied by `diff`. Usually, one wants to pass 1 or -1 as the diff.
#[inline]
fn account<I: IntoIterator<Item = (usize, usize, usize, usize)>>(&self, items: I, diff: isize) {
if let Some(logger) = &self.logger {
let (mut records, mut size, mut capacity, mut allocations) = (0isize, 0isize, 0isize, 0isize);
for (records_, size_, capacity_, allocations_) in items {
records = records.saturating_add_unsigned(records_);
size = size.saturating_add_unsigned(size_);
capacity = capacity.saturating_add_unsigned(capacity_);
allocations = allocations.saturating_add_unsigned(allocations_);
}
logger.log(BatcherEvent {
operator: self.operator_id,
records_diff: records * diff,
size_diff: size * diff,
capacity_diff: capacity * diff,
allocations_diff: allocations * diff,
})
}
}
}
impl<Input, C, M> Drop for MergeBatcher<Input, C, M>
where
M: Merger,
{
fn drop(&mut self) {
// Cleanup chain to retract accounting information.
while self.chain_pop().is_some() {}
}
}
/// A trait to describe interesting moments in a merge batcher.
pub trait Merger: Default {
/// The internal representation of chunks of data.
type Chunk: Container;
/// The type of time in frontiers to extract updates.
type Time;
/// Merge chains into an output chain.
fn merge(&mut self, list1: Vec<Self::Chunk>, list2: Vec<Self::Chunk>, output: &mut Vec<Self::Chunk>, stash: &mut Vec<Self::Chunk>);
/// Extract ready updates based on the `upper` frontier.
fn extract(
&mut self,
merged: Vec<Self::Chunk>,
upper: AntichainRef<Self::Time>,
frontier: &mut Antichain<Self::Time>,
readied: &mut Vec<Self::Chunk>,
kept: &mut Vec<Self::Chunk>,
stash: &mut Vec<Self::Chunk>,
);
/// Account size and allocation changes. Returns a tuple of (records, size, capacity, allocations).
fn account(chunk: &Self::Chunk) -> (usize, usize, usize, usize);
}
pub use container::{VecMerger, ColMerger};
pub mod container {
//! A general purpose `Merger` implementation for arbitrary containers.
//!
//! The implementation requires implementations of two traits, `ContainerQueue` and `MergerChunk`.
//! The `ContainerQueue` trait is meant to wrap a container and provide iterable access to it, as
//! well as the ability to return the container when iteration is complete.
//! The `MergerChunk` trait is meant to be implemented by containers, and it explains how container
//! items should be interpreted with respect to times, and with respect to differences.
//! These two traits exist instead of a stack of constraints on the structure of the associated items
//! of the containers, allowing them to perform their functions without destructuring their guts.
//!
//! Standard implementations exist in the `vec`, `columnation`, and `flat_container` modules.
use std::cmp::Ordering;
use std::marker::PhantomData;
use timely::{Container, container::{PushInto, SizableContainer}};
use timely::progress::frontier::{Antichain, AntichainRef};
use timely::{Data, PartialOrder};
use crate::trace::implementations::merge_batcher::Merger;
/// An abstraction for a container that can be iterated over, and conclude by returning itself.
pub trait ContainerQueue<C: Container> {
/// Returns either the next item in the container, or the container itself.
fn next_or_alloc(&mut self) -> Result<C::Item<'_>, C>;
/// Indicates whether `next_or_alloc` will return `Ok`, and whether `peek` will return `Some`.
fn is_empty(&self) -> bool;
/// Compare the heads of two queues, where empty queues come last.
fn cmp_heads(&self, other: &Self) -> std::cmp::Ordering;
/// Create a new queue from an existing container.
fn from(container: C) -> Self;
}
/// Behavior to dissect items of chunks in the merge batcher
pub trait MergerChunk : SizableContainer {
/// An owned time type.
///
/// This type is provided so that users can maintain antichains of something, in order to track
/// the forward movement of time and extract intervals from chains of updates.
type TimeOwned;
/// The owned diff type.
///
/// This type is provided so that users can provide an owned instance to the `push_and_add` method,
/// to act as a scratch space when the type is substantial and could otherwise require allocations.
type DiffOwned: Default;
/// Relates a borrowed time to antichains of owned times.
///
/// If `upper` is less or equal to `time`, the method returns `true` and ensures that `frontier` reflects `time`.
fn time_kept(time1: &Self::Item<'_>, upper: &AntichainRef<Self::TimeOwned>, frontier: &mut Antichain<Self::TimeOwned>) -> bool;
/// Push an entry that adds together two diffs.
///
/// This is only called when two items are deemed mergeable by the container queue.
/// If the two diffs added together is zero do not push anything.
fn push_and_add<'a>(&mut self, item1: Self::Item<'a>, item2: Self::Item<'a>, stash: &mut Self::DiffOwned);
/// Account the allocations behind the chunk.
// TODO: Find a more universal home for this: `Container`?
fn account(&self) -> (usize, usize, usize, usize) {
let (size, capacity, allocations) = (0, 0, 0);
(self.len(), size, capacity, allocations)
}
}
/// A merger for arbitrary containers.
///
/// `MC` is a [`Container`] that implements [`MergerChunk`].
/// `CQ` is a [`ContainerQueue`] supporting `MC`.
pub struct ContainerMerger<MC, CQ> {
_marker: PhantomData<(MC, CQ)>,
}
impl<MC, CQ> Default for ContainerMerger<MC, CQ> {
fn default() -> Self {
Self { _marker: PhantomData, }
}
}
impl<MC: MergerChunk, CQ> ContainerMerger<MC, CQ> {
/// Helper to get pre-sized vector from the stash.
#[inline]
fn empty(&self, stash: &mut Vec<MC>) -> MC {
stash.pop().unwrap_or_else(|| {
let mut container = MC::default();
container.ensure_capacity(&mut None);
container
})
}
/// Helper to return a chunk to the stash.
#[inline]
fn recycle(&self, mut chunk: MC, stash: &mut Vec<MC>) {
// TODO: Should we only retain correctly sized containers?
chunk.clear();
stash.push(chunk);
}
}
impl<MC, CQ> Merger for ContainerMerger<MC, CQ>
where
for<'a> MC: MergerChunk + Clone + PushInto<<MC as Container>::Item<'a>> + 'static,
for<'a> MC::TimeOwned: Ord + PartialOrder + Data,
CQ: ContainerQueue<MC>,
{
type Time = MC::TimeOwned;
type Chunk = MC;
// TODO: Consider integrating with `ConsolidateLayout`.
fn merge(&mut self, list1: Vec<Self::Chunk>, list2: Vec<Self::Chunk>, output: &mut Vec<Self::Chunk>, stash: &mut Vec<Self::Chunk>) {
let mut list1 = list1.into_iter();
let mut list2 = list2.into_iter();
let mut head1 = CQ::from(list1.next().unwrap_or_default());
let mut head2 = CQ::from(list2.next().unwrap_or_default());
let mut result = self.empty(stash);
let mut diff_owned = Default::default();
// while we have valid data in each input, merge.
while !head1.is_empty() && !head2.is_empty() {
while !result.at_capacity() && !head1.is_empty() && !head2.is_empty() {
let cmp = head1.cmp_heads(&head2);
// TODO: The following less/greater branches could plausibly be a good moment for
// `copy_range`, on account of runs of records that might benefit more from a
// `memcpy`.
match cmp {
Ordering::Less => {
result.push_into(head1.next_or_alloc().ok().unwrap());
}
Ordering::Greater => {
result.push_into(head2.next_or_alloc().ok().unwrap());
}
Ordering::Equal => {
let item1 = head1.next_or_alloc().ok().unwrap();
let item2 = head2.next_or_alloc().ok().unwrap();
result.push_and_add(item1, item2, &mut diff_owned);
}
}
}
if result.at_capacity() {
output.push_into(result);
result = self.empty(stash);
}
if head1.is_empty() {
self.recycle(head1.next_or_alloc().err().unwrap(), stash);
head1 = CQ::from(list1.next().unwrap_or_default());
}
if head2.is_empty() {
self.recycle(head2.next_or_alloc().err().unwrap(), stash);
head2 = CQ::from(list2.next().unwrap_or_default());
}
}
// TODO: recycle `head1` rather than discarding.
while let Ok(next) = head1.next_or_alloc() {
result.push_into(next);
if result.at_capacity() {
output.push_into(result);
result = self.empty(stash);
}
}
if !result.is_empty() {
output.push_into(result);
result = self.empty(stash);
}
output.extend(list1);
// TODO: recycle `head2` rather than discarding.
while let Ok(next) = head2.next_or_alloc() {
result.push_into(next);
if result.at_capacity() {
output.push(result);
result = self.empty(stash);
}
}
if !result.is_empty() {
output.push_into(result);
// result = self.empty(stash);
}
output.extend(list2);
}
fn extract(
&mut self,
merged: Vec<Self::Chunk>,
upper: AntichainRef<Self::Time>,
frontier: &mut Antichain<Self::Time>,
readied: &mut Vec<Self::Chunk>,
kept: &mut Vec<Self::Chunk>,
stash: &mut Vec<Self::Chunk>,
) {
let mut keep = self.empty(stash);
let mut ready = self.empty(stash);
for mut buffer in merged {
for item in buffer.drain() {
if MC::time_kept(&item, &upper, frontier) {
if keep.at_capacity() && !keep.is_empty() {
kept.push(keep);
keep = self.empty(stash);
}
keep.push_into(item);
} else {
if ready.at_capacity() && !ready.is_empty() {
readied.push(ready);
ready = self.empty(stash);
}
ready.push_into(item);
}
}
// Recycling buffer.
self.recycle(buffer, stash);
}
// Finish the kept data.
if !keep.is_empty() {
kept.push(keep);
}
if !ready.is_empty() {
readied.push(ready);
}
}
/// Account the allocations behind the chunk.
fn account(chunk: &Self::Chunk) -> (usize, usize, usize, usize) {
chunk.account()
}
}
pub use vec::VecMerger;
/// Implementations of `ContainerQueue` and `MergerChunk` for `Vec` containers.
pub mod vec {
use std::collections::VecDeque;
use timely::progress::{Antichain, frontier::AntichainRef};
use crate::difference::Semigroup;
use super::{ContainerQueue, MergerChunk};
/// A `Merger` implementation backed by vector containers.
pub type VecMerger<D, T, R> = super::ContainerMerger<Vec<(D, T, R)>, std::collections::VecDeque<(D, T, R)>>;
impl<D: Ord, T: Ord, R> ContainerQueue<Vec<(D, T, R)>> for VecDeque<(D, T, R)> {
fn next_or_alloc(&mut self) -> Result<(D, T, R), Vec<(D, T, R)>> {
if self.is_empty() {
Err(Vec::from(std::mem::take(self)))
}
else {
Ok(self.pop_front().unwrap())
}
}
fn is_empty(&self) -> bool {
self.is_empty()
}
fn cmp_heads(&self, other: &Self) -> std::cmp::Ordering {
let (data1, time1, _) = self.front().unwrap();
let (data2, time2, _) = other.front().unwrap();
(data1, time1).cmp(&(data2, time2))
}
fn from(list: Vec<(D, T, R)>) -> Self {
<Self as From<_>>::from(list)
}
}
impl<D: Ord + 'static, T: Ord + timely::PartialOrder + Clone + 'static, R: Semigroup + 'static> MergerChunk for Vec<(D, T, R)> {
type TimeOwned = T;
type DiffOwned = ();
fn time_kept((_, time, _): &Self::Item<'_>, upper: &AntichainRef<Self::TimeOwned>, frontier: &mut Antichain<Self::TimeOwned>) -> bool {
if upper.less_equal(time) {
frontier.insert_with(&time, |time| time.clone());
true
}
else { false }
}
fn push_and_add<'a>(&mut self, item1: Self::Item<'a>, item2: Self::Item<'a>, _stash: &mut Self::DiffOwned) {
let (data, time, mut diff1) = item1;
let (_data, _time, diff2) = item2;
diff1.plus_equals(&diff2);
if !diff1.is_zero() {
self.push((data, time, diff1));
}
}
fn account(&self) -> (usize, usize, usize, usize) {
let (size, capacity, allocations) = (0, 0, 0);
(self.len(), size, capacity, allocations)
}
}
}
pub use columnation::ColMerger;
/// Implementations of `ContainerQueue` and `MergerChunk` for `TimelyStack` containers (columnation).
pub mod columnation {
use timely::progress::{Antichain, frontier::AntichainRef};
use timely::container::columnation::TimelyStack;
use timely::container::columnation::Columnation;
use crate::difference::Semigroup;
use super::{ContainerQueue, MergerChunk};
/// A `Merger` implementation backed by `TimelyStack` containers (columnation).
pub type ColMerger<D, T, R> = super::ContainerMerger<TimelyStack<(D,T,R)>,TimelyStackQueue<(D, T, R)>>;
/// TODO
pub struct TimelyStackQueue<T: Columnation> {
list: TimelyStack<T>,
head: usize,
}
impl<D: Ord + Columnation, T: Ord + Columnation, R: Columnation> ContainerQueue<TimelyStack<(D, T, R)>> for TimelyStackQueue<(D, T, R)> {
fn next_or_alloc(&mut self) -> Result<&(D, T, R), TimelyStack<(D, T, R)>> {
if self.is_empty() {
Err(std::mem::take(&mut self.list))
}
else {
Ok(self.pop())
}
}
fn is_empty(&self) -> bool {
self.head == self.list[..].len()
}
fn cmp_heads(&self, other: &Self) -> std::cmp::Ordering {
let (data1, time1, _) = self.peek();
let (data2, time2, _) = other.peek();
(data1, time1).cmp(&(data2, time2))
}
fn from(list: TimelyStack<(D, T, R)>) -> Self {
TimelyStackQueue { list, head: 0 }
}
}
impl<T: Columnation> TimelyStackQueue<T> {
fn pop(&mut self) -> &T {
self.head += 1;
&self.list[self.head - 1]
}
fn peek(&self) -> &T {
&self.list[self.head]
}
}
impl<D: Ord + Columnation + 'static, T: Ord + timely::PartialOrder + Clone + Columnation + 'static, R: Default + Semigroup + Columnation + 'static> MergerChunk for TimelyStack<(D, T, R)> {
type TimeOwned = T;
type DiffOwned = R;
fn time_kept((_, time, _): &Self::Item<'_>, upper: &AntichainRef<Self::TimeOwned>, frontier: &mut Antichain<Self::TimeOwned>) -> bool {
if upper.less_equal(time) {
frontier.insert_with(&time, |time| time.clone());
true
}
else { false }
}
fn push_and_add<'a>(&mut self, item1: Self::Item<'a>, item2: Self::Item<'a>, stash: &mut Self::DiffOwned) {
let (data, time, diff1) = item1;
let (_data, _time, diff2) = item2;
stash.clone_from(diff1);
stash.plus_equals(&diff2);
if !stash.is_zero() {
self.copy_destructured(data, time, stash);
}
}
fn account(&self) -> (usize, usize, usize, usize) {
let (mut size, mut capacity, mut allocations) = (0, 0, 0);
let cb = |siz, cap| {
size += siz;
capacity += cap;
allocations += 1;
};
self.heap_size(cb);
(self.len(), size, capacity, allocations)
}
}
}
pub use flat_container::FlatMerger;
/// Implementations of `ContainerQueue` and `MergerChunk` for `FlatStack` containers (flat_container).
///
/// This is currently non-functional, while we try and sort out some missing constraints that seem to
/// allow the direct implementation to work, but the corresponding implementation here to not compile.
pub mod flat_container {
use timely::progress::{Antichain, frontier::AntichainRef};
use timely::container::flatcontainer::{FlatStack, Region};
use timely::container::flatcontainer::impls::tuple::TupleABCRegion;
use timely::container::flatcontainer::Push;
use crate::difference::{IsZero, Semigroup};
use super::{ContainerQueue, MergerChunk};
/// A `Merger` implementation backed by `FlatStack` containers (flat_container).
pub type FlatMerger<K, V, T, R> = super::ContainerMerger<FlatStack<((K,V),T,R)>,FlatStackQueue<((K,V), T, R)>>;
/// A queue implementation over a flat stack.
pub struct FlatStackQueue<R: Region> {
list: FlatStack<R>,
head: usize,
}
impl<R: Region> ContainerQueue<FlatStack<R>> for FlatStackQueue<R>
where
for<'a> R::ReadItem<'a>: Ord,
{
fn next_or_alloc(&mut self) -> Result<R::ReadItem<'_>, FlatStack<R>> {
if self.is_empty() {
Err(std::mem::take(&mut self.list))
}
else {
Ok(self.pop())
}
}
fn is_empty(&self) -> bool {
self.head >= self.list.len()
}
fn cmp_heads(&self, other: &Self) -> std::cmp::Ordering {
self.peek().cmp(&other.peek())
}
fn from(list: FlatStack<R>) -> Self {
FlatStackQueue { list, head: 0 }
}
}
impl<R: Region> FlatStackQueue<R> {
fn pop(&mut self) -> R::ReadItem<'_> {
self.head += 1;
self.list.get(self.head - 1)
}
fn peek(&self) -> R::ReadItem<'_> {
self.list.get(self.head)
}
}
impl<D,T,R> MergerChunk for FlatStack<TupleABCRegion<D, T, R>>
where
D: Region,
for<'a> D::ReadItem<'a>: Ord,
T: Region,
for<'a> T::ReadItem<'a>: Ord,
R: Region,
R::Owned: Default + IsZero + for<'a> Semigroup<R::ReadItem<'a>>,
TupleABCRegion<D, T, R>: for<'a,'b> Push<(D::ReadItem<'a>, T::ReadItem<'a>, &'b R::Owned)>,
{
type TimeOwned = T::Owned;
type DiffOwned = R::Owned;
fn time_kept(_time: &Self::Item<'_>, _upper: &AntichainRef<Self::TimeOwned>, _frontier: &mut Antichain<Self::TimeOwned>) -> bool {
unimplemented!()
}
fn push_and_add<'a>(&mut self, _item1: <TupleABCRegion<D, T, R> as Region>::ReadItem<'a>, _item2: Self::Item<'a>, _stash: &mut Self::DiffOwned) {
// let (_, _, _) = _item1;
unimplemented!()
}
fn account(&self) -> (usize, usize, usize, usize) {
let (mut size, mut capacity, mut allocations) = (0, 0, 0);
let cb = |siz, cap| {
size += siz;
capacity += cap;
allocations += 1;
};
self.heap_size(cb);
(self.len(), size, capacity, allocations)
}
}
}
}