arrow_select/
dictionary.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::interleave::interleave;
use ahash::RandomState;
use arrow_array::builder::BooleanBufferBuilder;
use arrow_array::cast::AsArray;
use arrow_array::types::{
    ArrowDictionaryKeyType, BinaryType, ByteArrayType, LargeBinaryType, LargeUtf8Type, Utf8Type,
};
use arrow_array::{Array, ArrayRef, DictionaryArray, GenericByteArray};
use arrow_buffer::{ArrowNativeType, BooleanBuffer, ScalarBuffer};
use arrow_schema::{ArrowError, DataType};

/// A best effort interner that maintains a fixed number of buckets
/// and interns keys based on their hash value
///
/// Hash collisions will result in replacement
struct Interner<'a, V> {
    state: RandomState,
    buckets: Vec<Option<(&'a [u8], V)>>,
    shift: u32,
}

impl<'a, V> Interner<'a, V> {
    /// Capacity controls the number of unique buckets allocated within the Interner
    ///
    /// A larger capacity reduces the probability of hash collisions, and should be set
    /// based on an approximation of the upper bound of unique values
    fn new(capacity: usize) -> Self {
        // Add additional buckets to help reduce collisions
        let shift = (capacity as u64 + 128).leading_zeros();
        let num_buckets = (u64::MAX >> shift) as usize;
        let buckets = (0..num_buckets.saturating_add(1)).map(|_| None).collect();
        Self {
            // A fixed seed to ensure deterministic behaviour
            state: RandomState::with_seeds(0, 0, 0, 0),
            buckets,
            shift,
        }
    }

    fn intern<F: FnOnce() -> Result<V, E>, E>(&mut self, new: &'a [u8], f: F) -> Result<&V, E> {
        let hash = self.state.hash_one(new);
        let bucket_idx = hash >> self.shift;
        Ok(match &mut self.buckets[bucket_idx as usize] {
            Some((current, v)) => {
                if *current != new {
                    *v = f()?;
                    *current = new;
                }
                v
            }
            slot => &slot.insert((new, f()?)).1,
        })
    }
}

pub struct MergedDictionaries<K: ArrowDictionaryKeyType> {
    /// Provides `key_mappings[`array_idx`][`old_key`] -> new_key`
    pub key_mappings: Vec<Vec<K::Native>>,
    /// The new values
    pub values: ArrayRef,
}

/// Performs a cheap, pointer-based comparison of two byte array
///
/// See [`ScalarBuffer::ptr_eq`]
fn bytes_ptr_eq<T: ByteArrayType>(a: &dyn Array, b: &dyn Array) -> bool {
    match (a.as_bytes_opt::<T>(), b.as_bytes_opt::<T>()) {
        (Some(a), Some(b)) => {
            let values_eq = a.values().ptr_eq(b.values()) && a.offsets().ptr_eq(b.offsets());
            match (a.nulls(), b.nulls()) {
                (Some(a), Some(b)) => values_eq && a.inner().ptr_eq(b.inner()),
                (None, None) => values_eq,
                _ => false,
            }
        }
        _ => false,
    }
}

/// A type-erased function that compares two array for pointer equality
type PtrEq = dyn Fn(&dyn Array, &dyn Array) -> bool;

/// A weak heuristic of whether to merge dictionary values that aims to only
/// perform the expensive merge computation when it is likely to yield at least
/// some return over the naive approach used by MutableArrayData
///
/// `len` is the total length of the merged output
pub fn should_merge_dictionary_values<K: ArrowDictionaryKeyType>(
    dictionaries: &[&DictionaryArray<K>],
    len: usize,
) -> bool {
    use DataType::*;
    let first_values = dictionaries[0].values().as_ref();
    let ptr_eq: Box<PtrEq> = match first_values.data_type() {
        Utf8 => Box::new(bytes_ptr_eq::<Utf8Type>),
        LargeUtf8 => Box::new(bytes_ptr_eq::<LargeUtf8Type>),
        Binary => Box::new(bytes_ptr_eq::<BinaryType>),
        LargeBinary => Box::new(bytes_ptr_eq::<LargeBinaryType>),
        _ => return false,
    };

    let mut single_dictionary = true;
    let mut total_values = first_values.len();
    for dict in dictionaries.iter().skip(1) {
        let values = dict.values().as_ref();
        total_values += values.len();
        if single_dictionary {
            single_dictionary = ptr_eq(first_values, values)
        }
    }

    let overflow = K::Native::from_usize(total_values).is_none();
    let values_exceed_length = total_values >= len;

    !single_dictionary && (overflow || values_exceed_length)
}

/// Given an array of dictionaries and an optional key mask compute a values array
/// containing referenced values, along with mappings from the [`DictionaryArray`]
/// keys to the new keys within this values array. Best-effort will be made to ensure
/// that the dictionary values are unique
///
/// This method is meant to be very fast and the output dictionary values
/// may not be unique, unlike `GenericByteDictionaryBuilder` which is slower
/// but produces unique values
pub fn merge_dictionary_values<K: ArrowDictionaryKeyType>(
    dictionaries: &[&DictionaryArray<K>],
    masks: Option<&[BooleanBuffer]>,
) -> Result<MergedDictionaries<K>, ArrowError> {
    let mut num_values = 0;

    let mut values_arrays = Vec::with_capacity(dictionaries.len());
    let mut value_slices = Vec::with_capacity(dictionaries.len());

    for (idx, dictionary) in dictionaries.iter().enumerate() {
        let mask = masks.and_then(|m| m.get(idx));
        let key_mask = match (dictionary.logical_nulls(), mask) {
            (Some(n), None) => Some(n.into_inner()),
            (None, Some(n)) => Some(n.clone()),
            (Some(n), Some(m)) => Some(n.inner() & m),
            (None, None) => None,
        };
        let keys = dictionary.keys().values();
        let values = dictionary.values().as_ref();
        let values_mask = compute_values_mask(keys, key_mask.as_ref(), values.len());

        let masked_values = get_masked_values(values, &values_mask);
        num_values += masked_values.len();
        value_slices.push(masked_values);
        values_arrays.push(values)
    }

    // Map from value to new index
    let mut interner = Interner::new(num_values);
    // Interleave indices for new values array
    let mut indices = Vec::with_capacity(num_values);

    // Compute the mapping for each dictionary
    let key_mappings = dictionaries
        .iter()
        .enumerate()
        .zip(value_slices)
        .map(|((dictionary_idx, dictionary), values)| {
            let zero = K::Native::from_usize(0).unwrap();
            let mut mapping = vec![zero; dictionary.values().len()];

            for (value_idx, value) in values {
                mapping[value_idx] =
                    *interner.intern(value, || match K::Native::from_usize(indices.len()) {
                        Some(idx) => {
                            indices.push((dictionary_idx, value_idx));
                            Ok(idx)
                        }
                        None => Err(ArrowError::DictionaryKeyOverflowError),
                    })?;
            }
            Ok(mapping)
        })
        .collect::<Result<Vec<_>, ArrowError>>()?;

    Ok(MergedDictionaries {
        key_mappings,
        values: interleave(&values_arrays, &indices)?,
    })
}

/// Return a mask identifying the values that are referenced by keys in `dictionary`
/// at the positions indicated by `selection`
fn compute_values_mask<K: ArrowNativeType>(
    keys: &ScalarBuffer<K>,
    mask: Option<&BooleanBuffer>,
    max_key: usize,
) -> BooleanBuffer {
    let mut builder = BooleanBufferBuilder::new(max_key);
    builder.advance(max_key);

    match mask {
        Some(n) => n
            .set_indices()
            .for_each(|idx| builder.set_bit(keys[idx].as_usize(), true)),
        None => keys
            .iter()
            .for_each(|k| builder.set_bit(k.as_usize(), true)),
    }
    builder.finish()
}

/// Return a Vec containing for each set index in `mask`, the index and byte value of that index
fn get_masked_values<'a>(array: &'a dyn Array, mask: &BooleanBuffer) -> Vec<(usize, &'a [u8])> {
    match array.data_type() {
        DataType::Utf8 => masked_bytes(array.as_string::<i32>(), mask),
        DataType::LargeUtf8 => masked_bytes(array.as_string::<i64>(), mask),
        DataType::Binary => masked_bytes(array.as_binary::<i32>(), mask),
        DataType::LargeBinary => masked_bytes(array.as_binary::<i64>(), mask),
        _ => unimplemented!(),
    }
}

/// Compute [`get_masked_values`] for a [`GenericByteArray`]
///
/// Note: this does not check the null mask and will return values contained in null slots
fn masked_bytes<'a, T: ByteArrayType>(
    array: &'a GenericByteArray<T>,
    mask: &BooleanBuffer,
) -> Vec<(usize, &'a [u8])> {
    let mut out = Vec::with_capacity(mask.count_set_bits());
    for idx in mask.set_indices() {
        out.push((idx, array.value(idx).as_ref()))
    }
    out
}

#[cfg(test)]
mod tests {
    use crate::dictionary::merge_dictionary_values;
    use arrow_array::cast::as_string_array;
    use arrow_array::types::Int32Type;
    use arrow_array::{DictionaryArray, Int32Array, StringArray};
    use arrow_buffer::{BooleanBuffer, Buffer, NullBuffer, OffsetBuffer};
    use std::sync::Arc;

    #[test]
    fn test_merge_strings() {
        let a = DictionaryArray::<Int32Type>::from_iter(["a", "b", "a", "b", "d", "c", "e"]);
        let b = DictionaryArray::<Int32Type>::from_iter(["c", "f", "c", "d", "a", "d"]);
        let merged = merge_dictionary_values(&[&a, &b], None).unwrap();

        let values = as_string_array(merged.values.as_ref());
        let actual: Vec<_> = values.iter().map(Option::unwrap).collect();
        assert_eq!(&actual, &["a", "b", "d", "c", "e", "f"]);

        assert_eq!(merged.key_mappings.len(), 2);
        assert_eq!(&merged.key_mappings[0], &[0, 1, 2, 3, 4]);
        assert_eq!(&merged.key_mappings[1], &[3, 5, 2, 0]);

        let a_slice = a.slice(1, 4);
        let merged = merge_dictionary_values(&[&a_slice, &b], None).unwrap();

        let values = as_string_array(merged.values.as_ref());
        let actual: Vec<_> = values.iter().map(Option::unwrap).collect();
        assert_eq!(&actual, &["a", "b", "d", "c", "f"]);

        assert_eq!(merged.key_mappings.len(), 2);
        assert_eq!(&merged.key_mappings[0], &[0, 1, 2, 0, 0]);
        assert_eq!(&merged.key_mappings[1], &[3, 4, 2, 0]);

        // Mask out only ["b", "b", "d"] from a
        let a_mask = BooleanBuffer::from_iter([false, true, false, true, true, false, false]);
        let b_mask = BooleanBuffer::new_set(b.len());
        let merged = merge_dictionary_values(&[&a, &b], Some(&[a_mask, b_mask])).unwrap();

        let values = as_string_array(merged.values.as_ref());
        let actual: Vec<_> = values.iter().map(Option::unwrap).collect();
        assert_eq!(&actual, &["b", "d", "c", "f", "a"]);

        assert_eq!(merged.key_mappings.len(), 2);
        assert_eq!(&merged.key_mappings[0], &[0, 0, 1, 0, 0]);
        assert_eq!(&merged.key_mappings[1], &[2, 3, 1, 4]);
    }

    #[test]
    fn test_merge_nulls() {
        let buffer = Buffer::from(b"helloworldbingohelloworld");
        let offsets = OffsetBuffer::from_lengths([5, 5, 5, 5, 5]);
        let nulls = NullBuffer::from(vec![true, false, true, true, true]);
        let values = StringArray::new(offsets, buffer, Some(nulls));

        let key_values = vec![1, 2, 3, 1, 8, 2, 3];
        let key_nulls = NullBuffer::from(vec![true, true, false, true, false, true, true]);
        let keys = Int32Array::new(key_values.into(), Some(key_nulls));
        let a = DictionaryArray::new(keys, Arc::new(values));
        // [NULL, "bingo", NULL, NULL, NULL, "bingo", "hello"]

        let b = DictionaryArray::new(Int32Array::new_null(10), Arc::new(StringArray::new_null(0)));

        let merged = merge_dictionary_values(&[&a, &b], None).unwrap();
        let expected = StringArray::from(vec!["bingo", "hello"]);
        assert_eq!(merged.values.as_ref(), &expected);
        assert_eq!(merged.key_mappings.len(), 2);
        assert_eq!(&merged.key_mappings[0], &[0, 0, 0, 1, 0]);
        assert_eq!(&merged.key_mappings[1], &[]);
    }

    #[test]
    fn test_merge_keys_smaller() {
        let values = StringArray::from_iter_values(["a", "b"]);
        let keys = Int32Array::from_iter_values([1]);
        let a = DictionaryArray::new(keys, Arc::new(values));

        let merged = merge_dictionary_values(&[&a], None).unwrap();
        let expected = StringArray::from(vec!["b"]);
        assert_eq!(merged.values.as_ref(), &expected);
    }
}