moka/common/
frequency_sketch.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
// License and Copyright Notice:
//
// Some of the code and doc comments in this module were ported or copied from
// a Java class `com.github.benmanes.caffeine.cache.FrequencySketch` of Caffeine.
// https://github.com/ben-manes/caffeine/blob/master/caffeine/src/main/java/com/github/benmanes/caffeine/cache/FrequencySketch.java
//
// The original code/comments from Caffeine are licensed under the Apache License,
// Version 2.0 <https://github.com/ben-manes/caffeine/blob/master/LICENSE>
//
// Copyrights of the original code/comments are retained by their contributors.
// For full authorship information, see the version control history of
// https://github.com/ben-manes/caffeine/

/// A probabilistic multi-set for estimating the popularity of an element within
/// a time window. The maximum frequency of an element is limited to 15 (4-bits)
/// and an aging process periodically halves the popularity of all elements.
#[derive(Default)]
pub(crate) struct FrequencySketch {
    sample_size: u32,
    table_mask: u64,
    table: Box<[u64]>,
    size: u32,
}

// A mixture of seeds from FNV-1a, CityHash, and Murmur3. (Taken from Caffeine)
static SEED: [u64; 4] = [
    0xc3a5_c85c_97cb_3127,
    0xb492_b66f_be98_f273,
    0x9ae1_6a3b_2f90_404f,
    0xcbf2_9ce4_8422_2325,
];

static RESET_MASK: u64 = 0x7777_7777_7777_7777;

static ONE_MASK: u64 = 0x1111_1111_1111_1111;

// -------------------------------------------------------------------------------
// Some of the code and doc comments in this module were ported or copied from
// a Java class `com.github.benmanes.caffeine.cache.FrequencySketch` of Caffeine.
// https://github.com/ben-manes/caffeine/blob/master/caffeine/src/main/java/com/github/benmanes/caffeine/cache/FrequencySketch.java
// -------------------------------------------------------------------------------
//
// FrequencySketch maintains a 4-bit CountMinSketch [1] with periodic aging to
// provide the popularity history for the TinyLfu admission policy [2].
// The time and space efficiency of the sketch allows it to cheaply estimate the
// frequency of an entry in a stream of cache access events.
//
// The counter matrix is represented as a single dimensional array holding 16
// counters per slot. A fixed depth of four balances the accuracy and cost,
// resulting in a width of four times the length of the array. To retain an
// accurate estimation the array's length equals the maximum number of entries
// in the cache, increased to the closest power-of-two to exploit more efficient
// bit masking. This configuration results in a confidence of 93.75% and error
// bound of e / width.
//
// The frequency of all entries is aged periodically using a sampling window
// based on the maximum number of entries in the cache. This is referred to as
// the reset operation by TinyLfu and keeps the sketch fresh by dividing all
// counters by two and subtracting based on the number of odd counters
// found. The O(n) cost of aging is amortized, ideal for hardware pre-fetching,
// and uses inexpensive bit manipulations per array location.
//
// [1] An Improved Data Stream Summary: The Count-Min Sketch and its Applications
//     http://dimacs.rutgers.edu/~graham/pubs/papers/cm-full.pdf
// [2] TinyLFU: A Highly Efficient Cache Admission Policy
//     https://dl.acm.org/citation.cfm?id=3149371
//
// -------------------------------------------------------------------------------

impl FrequencySketch {
    /// Initializes and increases the capacity of this `FrequencySketch` instance,
    /// if necessary, to ensure that it can accurately estimate the popularity of
    /// elements given the maximum size of the cache. This operation forgets all
    /// previous counts when resizing.
    pub(crate) fn ensure_capacity(&mut self, cap: u32) {
        // The max byte size of the table, Box<[u64; table_size]>
        //
        // | Pointer width    | Max size |
        // |:-----------------|---------:|
        // | 16 bit           |    8 KiB |
        // | 32 bit           |  128 MiB |
        // | 64 bit or bigger |    8 GiB |

        let maximum = if cfg!(target_pointer_width = "16") {
            cap.min(1024)
        } else if cfg!(target_pointer_width = "32") {
            cap.min(2u32.pow(24)) // about 16 millions
        } else {
            // Same to Caffeine's limit:
            //   `Integer.MAX_VALUE >>> 1` with `ceilingPowerOfTwo()` applied.
            cap.min(2u32.pow(30)) // about 1 billion
        };
        let table_size = if maximum == 0 {
            1
        } else {
            maximum.next_power_of_two()
        };

        if self.table.len() as u32 >= table_size {
            return;
        }

        self.table = vec![0; table_size as usize].into_boxed_slice();
        self.table_mask = 0.max(table_size - 1) as u64;
        self.sample_size = if cap == 0 {
            10
        } else {
            maximum.saturating_mul(10).min(i32::MAX as u32)
        };
    }

    /// Takes the hash value of an element, and returns the estimated number of
    /// occurrences of the element, up to the maximum (15).
    pub(crate) fn frequency(&self, hash: u64) -> u8 {
        if self.table.is_empty() {
            return 0;
        }

        let start = ((hash & 3) << 2) as u8;
        let mut frequency = std::u8::MAX;
        for i in 0..4 {
            let index = self.index_of(hash, i);
            let count = (self.table[index] >> ((start + i) << 2) & 0xF) as u8;
            frequency = frequency.min(count);
        }
        frequency
    }

    /// Take a hash value of an element and increments the popularity of the
    /// element if it does not exceed the maximum (15). The popularity of all
    /// elements will be periodically down sampled when the observed events
    /// exceeds a threshold. This process provides a frequency aging to allow
    /// expired long term entries to fade away.
    pub(crate) fn increment(&mut self, hash: u64) {
        if self.table.is_empty() {
            return;
        }

        let start = ((hash & 3) << 2) as u8;
        let mut added = false;
        for i in 0..4 {
            let index = self.index_of(hash, i);
            added |= self.increment_at(index, start + i);
        }

        if added {
            self.size += 1;
            if self.size >= self.sample_size {
                self.reset();
            }
        }
    }

    /// Takes a table index (each entry has 16 counters) and counter index, and
    /// increments the counter by 1 if it is not already at the maximum value
    /// (15). Returns `true` if incremented.
    fn increment_at(&mut self, table_index: usize, counter_index: u8) -> bool {
        let offset = (counter_index as usize) << 2;
        let mask = 0xF_u64 << offset;
        if self.table[table_index] & mask != mask {
            self.table[table_index] += 1u64 << offset;
            true
        } else {
            false
        }
    }

    /// Reduces every counter by half of its original value.
    fn reset(&mut self) {
        let mut count = 0u32;
        for entry in self.table.iter_mut() {
            // Count number of odd numbers.
            count += (*entry & ONE_MASK).count_ones();
            *entry = (*entry >> 1) & RESET_MASK;
        }
        self.size = (self.size >> 1) - (count >> 2);
    }

    /// Returns the table index for the counter at the specified depth.
    fn index_of(&self, hash: u64, depth: u8) -> usize {
        let i = depth as usize;
        let mut hash = hash.wrapping_add(SEED[i]).wrapping_mul(SEED[i]);
        hash += hash >> 32;
        (hash & self.table_mask) as usize
    }

    #[cfg(feature = "unstable-debug-counters")]
    pub(crate) fn table_size(&self) -> u64 {
        (self.table.len() * std::mem::size_of::<u64>()) as u64
    }
}

// Methods only available for testing.
#[cfg(test)]
impl FrequencySketch {
    pub(crate) fn table_len(&self) -> usize {
        self.table.len()
    }
}

// Some test cases were ported from Caffeine at:
// https://github.com/ben-manes/caffeine/blob/master/caffeine/src/test/java/com/github/benmanes/caffeine/cache/FrequencySketchTest.java
//
// To see the debug prints, run test as `cargo test -- --nocapture`
#[cfg(test)]
mod tests {
    use super::FrequencySketch;
    use once_cell::sync::Lazy;
    use std::hash::{BuildHasher, Hash, Hasher};

    static ITEM: Lazy<u32> = Lazy::new(|| {
        let mut buf = [0; 4];
        getrandom::getrandom(&mut buf).unwrap();
        unsafe { std::mem::transmute::<[u8; 4], u32>(buf) }
    });

    // This test was ported from Caffeine.
    #[test]
    fn increment_once() {
        let mut sketch = FrequencySketch::default();
        sketch.ensure_capacity(512);
        let hasher = hasher();
        let item_hash = hasher(*ITEM);
        sketch.increment(item_hash);
        assert_eq!(sketch.frequency(item_hash), 1);
    }

    // This test was ported from Caffeine.
    #[test]
    fn increment_max() {
        let mut sketch = FrequencySketch::default();
        sketch.ensure_capacity(512);
        let hasher = hasher();
        let item_hash = hasher(*ITEM);
        for _ in 0..20 {
            sketch.increment(item_hash);
        }
        assert_eq!(sketch.frequency(item_hash), 15);
    }

    // This test was ported from Caffeine.
    #[test]
    fn increment_distinct() {
        let mut sketch = FrequencySketch::default();
        sketch.ensure_capacity(512);
        let hasher = hasher();
        sketch.increment(hasher(*ITEM));
        sketch.increment(hasher(ITEM.wrapping_add(1)));
        assert_eq!(sketch.frequency(hasher(*ITEM)), 1);
        assert_eq!(sketch.frequency(hasher(ITEM.wrapping_add(1))), 1);
        assert_eq!(sketch.frequency(hasher(ITEM.wrapping_add(2))), 0);
    }

    // This test was ported from Caffeine.
    #[test]
    fn index_of_around_zero() {
        let mut sketch = FrequencySketch::default();
        sketch.ensure_capacity(512);
        let mut indexes = std::collections::HashSet::new();
        let hashes = vec![std::u64::MAX, 0, 1];
        for hash in hashes.iter() {
            for depth in 0..4 {
                indexes.insert(sketch.index_of(*hash, depth));
            }
        }
        assert_eq!(indexes.len(), 4 * hashes.len())
    }

    // This test was ported from Caffeine.
    #[test]
    fn reset() {
        let mut reset = false;
        let mut sketch = FrequencySketch::default();
        sketch.ensure_capacity(64);
        let hasher = hasher();

        for i in 1..(20 * sketch.table.len() as u32) {
            sketch.increment(hasher(i));
            if sketch.size != i {
                reset = true;
                break;
            }
        }

        assert!(reset);
        assert!(sketch.size <= sketch.sample_size / 2);
    }

    // This test was ported from Caffeine.
    #[test]
    fn heavy_hitters() {
        let mut sketch = FrequencySketch::default();
        sketch.ensure_capacity(65_536);
        let hasher = hasher();

        for i in 100..100_000 {
            sketch.increment(hasher(i));
        }

        for i in (0..10).step_by(2) {
            for _ in 0..i {
                sketch.increment(hasher(i));
            }
        }

        // A perfect popularity count yields an array [0, 0, 2, 0, 4, 0, 6, 0, 8, 0]
        let popularity = (0..10)
            .map(|i| sketch.frequency(hasher(i)))
            .collect::<Vec<_>>();

        for (i, freq) in popularity.iter().enumerate() {
            match i {
                2 => assert!(freq <= &popularity[4]),
                4 => assert!(freq <= &popularity[6]),
                6 => assert!(freq <= &popularity[8]),
                8 => (),
                _ => assert!(freq <= &popularity[2]),
            }
        }
    }

    fn hasher<K: Hash>() -> impl Fn(K) -> u64 {
        let build_hasher = std::collections::hash_map::RandomState::default();
        move |key| {
            let mut hasher = build_hasher.build_hasher();
            key.hash(&mut hasher);
            hasher.finish()
        }
    }
}