1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
//! Types to build operators with general shapes.

use std::rc::Rc;
use std::cell::RefCell;
use std::default::Default;

use crate::progress::{ChangeBatch, Timestamp};
use crate::progress::operate::SharedProgress;
use crate::progress::frontier::{Antichain, MutableAntichain};

use crate::Container;
use crate::container::ContainerBuilder;
use crate::dataflow::{Scope, StreamCore};
use crate::dataflow::channels::pushers::Tee;
use crate::dataflow::channels::pushers::Counter as PushCounter;
use crate::dataflow::channels::pushers::buffer::Buffer as PushBuffer;
use crate::dataflow::channels::pact::ParallelizationContract;
use crate::dataflow::channels::pullers::Counter as PullCounter;
use crate::dataflow::operators::capability::Capability;
use crate::dataflow::operators::generic::handles::{InputHandleCore, new_input_handle, OutputWrapper};
use crate::dataflow::operators::generic::operator_info::OperatorInfo;
use crate::dataflow::operators::generic::builder_raw::OperatorShape;

use crate::logging::TimelyLogger as Logger;

use super::builder_raw::OperatorBuilder as OperatorBuilderRaw;

/// Builds operators with generic shape.
#[derive(Debug)]
pub struct OperatorBuilder<G: Scope> {
    builder: OperatorBuilderRaw<G>,
    frontier: Vec<MutableAntichain<G::Timestamp>>,
    consumed: Vec<Rc<RefCell<ChangeBatch<G::Timestamp>>>>,
    internal: Rc<RefCell<Vec<Rc<RefCell<ChangeBatch<G::Timestamp>>>>>>,
    /// For each input, a shared list of summaries to each output.
    summaries: Vec<Rc<RefCell<Vec<Antichain<<G::Timestamp as Timestamp>::Summary>>>>>,
    produced: Vec<Rc<RefCell<ChangeBatch<G::Timestamp>>>>,
    logging: Option<Logger>,
}

impl<G: Scope> OperatorBuilder<G> {

    /// Allocates a new generic operator builder from its containing scope.
    pub fn new(name: String, scope: G) -> Self {
        let logging = scope.logging();
        OperatorBuilder {
            builder: OperatorBuilderRaw::new(name, scope),
            frontier: Vec::new(),
            consumed: Vec::new(),
            internal: Rc::new(RefCell::new(Vec::new())),
            summaries: Vec::new(),
            produced: Vec::new(),
            logging,
        }
    }

    /// Indicates whether the operator requires frontier information.
    pub fn set_notify(&mut self, notify: bool) {
        self.builder.set_notify(notify);
    }

    /// Adds a new input to a generic operator builder, returning the `Pull` implementor to use.
    pub fn new_input<C: Container, P>(&mut self, stream: &StreamCore<G, C>, pact: P) -> InputHandleCore<G::Timestamp, C, P::Puller>
    where
        P: ParallelizationContract<G::Timestamp, C> {

        let connection = (0..self.builder.shape().outputs()).map(|_| Antichain::from_elem(Default::default())).collect();
        self.new_input_connection(stream, pact, connection)
    }

    /// Adds a new input with connection information to a generic operator builder, returning the `Pull` implementor to use.
    ///
    /// The `connection` parameter contains promises made by the operator for each of the existing *outputs*, that any timestamp
    /// appearing at the input, any output timestamp will be greater than or equal to the input timestamp subjected to a `Summary`
    /// greater or equal to some element of the corresponding antichain in `connection`.
    ///
    /// Commonly the connections are either the unit summary, indicating the same timestamp might be produced as output, or an empty
    /// antichain indicating that there is no connection from the input to the output.
    pub fn new_input_connection<C: Container, P>(&mut self, stream: &StreamCore<G, C>, pact: P, connection: Vec<Antichain<<G::Timestamp as Timestamp>::Summary>>) -> InputHandleCore<G::Timestamp, C, P::Puller>
        where
            P: ParallelizationContract<G::Timestamp, C> {

        let puller = self.builder.new_input_connection(stream, pact, connection.clone());

        let input = PullCounter::new(puller);
        self.frontier.push(MutableAntichain::new());
        self.consumed.push(input.consumed().clone());

        let shared_summary = Rc::new(RefCell::new(connection));
        self.summaries.push(shared_summary.clone());

        new_input_handle(input, self.internal.clone(), shared_summary, self.logging.clone())
    }

    /// Adds a new output to a generic operator builder, returning the `Push` implementor to use.
    pub fn new_output<CB: ContainerBuilder>(&mut self) -> (OutputWrapper<G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>, StreamCore<G, CB::Container>) {
        let connection = (0..self.builder.shape().inputs()).map(|_| Antichain::from_elem(Default::default())).collect();
        self.new_output_connection(connection)
    }

    /// Adds a new output with connection information to a generic operator builder, returning the `Push` implementor to use.
    ///
    /// The `connection` parameter contains promises made by the operator for each of the existing *inputs*, that any timestamp
    /// appearing at the input, any output timestamp will be greater than or equal to the input timestamp subjected to a `Summary`
    /// greater or equal to some element of the corresponding antichain in `connection`.
    ///
    /// Commonly the connections are either the unit summary, indicating the same timestamp might be produced as output, or an empty
    /// antichain indicating that there is no connection from the input to the output.
    pub fn new_output_connection<CB: ContainerBuilder>(
        &mut self,
        connection: Vec<Antichain<<G::Timestamp as Timestamp>::Summary>>
    ) -> (
        OutputWrapper<G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>,
        StreamCore<G, CB::Container>
    ) {

        let (tee, stream) = self.builder.new_output_connection(connection.clone());

        let internal = Rc::new(RefCell::new(ChangeBatch::new()));
        self.internal.borrow_mut().push(internal.clone());

        let mut buffer = PushBuffer::new(PushCounter::new(tee));
        self.produced.push(buffer.inner().produced().clone());

        for (summary, connection) in self.summaries.iter().zip(connection.into_iter()) {
            summary.borrow_mut().push(connection.clone());
        }

        (OutputWrapper::new(buffer, internal), stream)
    }

    /// Creates an operator implementation from supplied logic constructor.
    pub fn build<B, L>(self, constructor: B)
    where
        B: FnOnce(Vec<Capability<G::Timestamp>>) -> L,
        L: FnMut(&[MutableAntichain<G::Timestamp>])+'static
    {
        self.build_reschedule(|caps| {
            let mut logic = constructor(caps);
            move |frontier| { logic(frontier); false }
        })
    }

    /// Creates an operator implementation from supplied logic constructor.
    ///
    /// Unlike `build`, the supplied closure can indicate if the operator
    /// should be considered incomplete. The `build` method indicates that
    /// the operator is never incomplete and can be shut down at the system's
    /// discretion.
    pub fn build_reschedule<B, L>(self, constructor: B)
    where
        B: FnOnce(Vec<Capability<G::Timestamp>>) -> L,
        L: FnMut(&[MutableAntichain<G::Timestamp>])->bool+'static
    {
        // create capabilities, discard references to their creation.
        let mut capabilities = Vec::with_capacity(self.internal.borrow().len());
        for batch in self.internal.borrow().iter() {
            capabilities.push(Capability::new(G::Timestamp::minimum(), batch.clone()));
            // Discard evidence of creation, as we are assumed to start with one.
            batch.borrow_mut().clear();
        }

        let mut logic = constructor(capabilities);

        let mut self_frontier = self.frontier;
        let self_consumed = self.consumed;
        let self_internal = self.internal;
        let self_produced = self.produced;

        let raw_logic =
        move |progress: &mut SharedProgress<G::Timestamp>| {

            // drain frontier changes
            for (progress, frontier) in progress.frontiers.iter_mut().zip(self_frontier.iter_mut()) {
                frontier.update_iter(progress.drain());
            }

            // invoke supplied logic
            let result = logic(&self_frontier[..]);

            // move batches of consumed changes.
            for (progress, consumed) in progress.consumeds.iter_mut().zip(self_consumed.iter()) {
                consumed.borrow_mut().drain_into(progress);
            }

            // move batches of internal changes.
            let self_internal_borrow = self_internal.borrow_mut();
            for index in 0 .. self_internal_borrow.len() {
                let mut borrow = self_internal_borrow[index].borrow_mut();
                progress.internals[index].extend(borrow.drain());
            }

            // move batches of produced changes.
            for (progress, produced) in progress.produceds.iter_mut().zip(self_produced.iter()) {
                produced.borrow_mut().drain_into(progress);
            }

            result
        };

        self.builder.build(raw_logic);
    }

    /// Get the identifier assigned to the operator being constructed
    pub fn index(&self) -> usize {
        self.builder.index()
    }

    /// The operator's worker-unique identifier.
    pub fn global(&self) -> usize {
        self.builder.global()
    }

    /// Return a reference to the operator's shape
    pub fn shape(&self) -> &OperatorShape {
        self.builder.shape()
    }

    /// Creates operator info for the operator.
    pub fn operator_info(&self) -> OperatorInfo {
        self.builder.operator_info()
    }
}


#[cfg(test)]
mod tests {
    use crate::container::CapacityContainerBuilder;

    #[test]
    #[should_panic]
    fn incorrect_capabilities() {

        // This tests that if we attempt to use a capability associated with the
        // wrong output, there is a run-time assertion.

        use crate::dataflow::operators::generic::builder_rc::OperatorBuilder;

        crate::example(|scope| {

            let mut builder = OperatorBuilder::new("Failure".to_owned(), scope.clone());

            // let mut input = builder.new_input(stream, Pipeline);
            let (mut output1, _stream1) = builder.new_output::<CapacityContainerBuilder<Vec<()>>>();
            let (mut output2, _stream2) = builder.new_output::<CapacityContainerBuilder<Vec<()>>>();

            builder.build(move |capabilities| {
                move |_frontiers| {

                    let mut output_handle1 = output1.activate();
                    let mut output_handle2 = output2.activate();

                    // NOTE: Using incorrect capabilities here.
                    output_handle2.session(&capabilities[0]);
                    output_handle1.session(&capabilities[1]);
                }
            });
        })
    }

    #[test]
    fn correct_capabilities() {

        // This tests that if we attempt to use capabilities with the correct outputs
        // there is no runtime assertion

        use crate::dataflow::operators::generic::builder_rc::OperatorBuilder;

        crate::example(|scope| {

            let mut builder = OperatorBuilder::new("Failure".to_owned(), scope.clone());

            // let mut input = builder.new_input(stream, Pipeline);
            let (mut output1, _stream1) = builder.new_output::<CapacityContainerBuilder<Vec<()>>>();
            let (mut output2, _stream2) = builder.new_output::<CapacityContainerBuilder<Vec<()>>>();

            builder.build(move |mut capabilities| {
                move |_frontiers| {

                    let mut output_handle1 = output1.activate();
                    let mut output_handle2 = output2.activate();

                    // Avoid second call.
                    if !capabilities.is_empty() {

                        // NOTE: Using correct capabilities here.
                        output_handle1.session(&capabilities[0]);
                        output_handle2.session(&capabilities[1]);

                        capabilities.clear();
                    }
                }
            });

            "Hello".to_owned()
        });
    }
}