1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! An interactive dataflow server.
use std::cell::RefCell;
use std::collections::{BTreeMap, BTreeSet, VecDeque};
use std::fmt::Debug;
use std::path::PathBuf;
use std::rc::Rc;
use std::sync::Arc;
use std::time::{Duration, Instant};
use anyhow::Error;
use crossbeam_channel::{RecvError, TryRecvError};
use mz_cluster::server::TimelyContainerRef;
use mz_compute_client::protocol::command::ComputeCommand;
use mz_compute_client::protocol::history::ComputeCommandHistory;
use mz_compute_client::protocol::response::ComputeResponse;
use mz_compute_client::service::ComputeClient;
use mz_compute_types::dataflows::{BuildDesc, DataflowDescription};
use mz_ore::cast::CastFrom;
use mz_ore::halt;
use mz_ore::tracing::TracingHandle;
use mz_persist_client::cache::PersistClientCache;
use mz_storage_types::connections::ConnectionContext;
use mz_txn_wal::operator::TxnsContext;
use timely::communication::Allocate;
use timely::dataflow::channels::pact::Exchange;
use timely::dataflow::operators::generic::source;
use timely::dataflow::operators::Operator;
use timely::progress::{Antichain, Timestamp};
use timely::scheduling::{Scheduler, SyncActivator};
use timely::worker::Worker as TimelyWorker;
use tokio::sync::mpsc;
use tokio::sync::mpsc::error::SendError;
use tracing::{info, trace, warn};
use crate::compute_state::{ActiveComputeState, ComputeState, ReportedFrontier};
use crate::metrics::ComputeMetrics;
/// Caller-provided configuration for compute.
#[derive(Clone, Debug)]
pub struct ComputeInstanceContext {
/// A directory that can be used for scratch work.
pub scratch_directory: Option<PathBuf>,
/// Whether to set core affinity for Timely workers.
pub worker_core_affinity: bool,
/// Context required to connect to an external sink from compute,
/// like the `CopyToS3OneshotSink` compute sink.
pub connection_context: ConnectionContext,
}
/// Configures the server with compute-specific metrics.
#[derive(Debug, Clone)]
pub struct Config {
/// Metrics exposed by compute replicas.
// TODO(guswynn): cluster-unification: ensure these stats
// also work for storage when merging.
pub metrics: ComputeMetrics,
/// Other configuration for compute.
pub context: ComputeInstanceContext,
}
/// Initiates a timely dataflow computation, processing compute commands.
pub fn serve(
config: mz_cluster::server::ClusterConfig,
context: ComputeInstanceContext,
) -> Result<
(
TimelyContainerRef<ComputeCommand, ComputeResponse, SyncActivator>,
impl Fn() -> Box<dyn ComputeClient>,
),
Error,
> {
let metrics = ComputeMetrics::register_with(&config.metrics_registry);
let compute_config = Config { metrics, context };
let (timely_container, client_builder) = mz_cluster::server::serve::<
Config,
ComputeCommand,
ComputeResponse,
>(config, compute_config)?;
let client_builder = {
move || {
let client: Box<dyn ComputeClient> = client_builder();
client
}
};
Ok((timely_container, client_builder))
}
type ActivatorSender = mpsc::UnboundedSender<SyncActivator>;
/// Endpoint used by workers to receive compute commands.
struct CommandReceiver {
inner: crossbeam_channel::Receiver<ComputeCommand>,
worker_id: usize,
}
impl CommandReceiver {
fn new(inner: crossbeam_channel::Receiver<ComputeCommand>, worker_id: usize) -> Self {
Self { inner, worker_id }
}
fn try_recv(&self) -> Result<ComputeCommand, TryRecvError> {
self.inner.try_recv().map(|cmd| {
trace!(worker = ?self.worker_id, command = ?cmd, "received command");
cmd
})
}
}
/// Endpoint used by workers to send sending compute responses.
pub(crate) struct ResponseSender {
inner: mpsc::UnboundedSender<ComputeResponse>,
worker_id: usize,
}
impl ResponseSender {
fn new(inner: mpsc::UnboundedSender<ComputeResponse>, worker_id: usize) -> Self {
Self { inner, worker_id }
}
pub fn send(&self, response: ComputeResponse) -> Result<(), SendError<ComputeResponse>> {
trace!(worker = ?self.worker_id, response = ?response, "sending response");
self.inner.send(response)
}
}
struct CommandReceiverQueue {
queue: Rc<RefCell<VecDeque<Result<ComputeCommand, TryRecvError>>>>,
}
impl CommandReceiverQueue {
fn try_recv(&self) -> Result<ComputeCommand, TryRecvError> {
match self.queue.borrow_mut().pop_front() {
Some(Ok(cmd)) => Ok(cmd),
Some(Err(e)) => Err(e),
None => Err(TryRecvError::Empty),
}
}
/// Block until a command is available.
/// This method takes the worker as an argument such that it can step timely while no result
/// is available.
fn recv<A: Allocate>(&self, worker: &mut Worker<A>) -> Result<ComputeCommand, RecvError> {
while self.is_empty() {
let start = Instant::now();
worker.timely_worker.step_or_park(None);
worker
.metrics
.timely_step_duration_seconds
.observe(start.elapsed().as_secs_f64());
}
match self.try_recv() {
Ok(cmd) => Ok(cmd),
Err(TryRecvError::Disconnected) => Err(RecvError),
Err(TryRecvError::Empty) => unreachable!("checked above"),
}
}
fn is_empty(&self) -> bool {
self.queue.borrow().is_empty()
}
}
/// State maintained for each worker thread.
///
/// Much of this state can be viewed as local variables for the worker thread,
/// holding state that persists across function calls.
struct Worker<'w, A: Allocate> {
/// The underlying Timely worker.
timely_worker: &'w mut TimelyWorker<A>,
/// The channel over which communication handles for newly connected clients
/// are delivered.
client_rx: crossbeam_channel::Receiver<(
crossbeam_channel::Receiver<ComputeCommand>,
mpsc::UnboundedSender<ComputeResponse>,
ActivatorSender,
)>,
compute_state: Option<ComputeState>,
/// Compute metrics.
metrics: ComputeMetrics,
/// A process-global cache of (blob_uri, consensus_uri) -> PersistClient.
/// This is intentionally shared between workers
persist_clients: Arc<PersistClientCache>,
/// Context necessary for rendering txn-wal operators.
txns_ctx: TxnsContext,
/// A process-global handle to tracing configuration.
tracing_handle: Arc<TracingHandle>,
context: ComputeInstanceContext,
}
impl mz_cluster::types::AsRunnableWorker<ComputeCommand, ComputeResponse> for Config {
type Activatable = SyncActivator;
fn build_and_run<A: Allocate + 'static>(
config: Self,
timely_worker: &mut TimelyWorker<A>,
client_rx: crossbeam_channel::Receiver<(
crossbeam_channel::Receiver<ComputeCommand>,
tokio::sync::mpsc::UnboundedSender<ComputeResponse>,
ActivatorSender,
)>,
persist_clients: Arc<PersistClientCache>,
txns_ctx: TxnsContext,
tracing_handle: Arc<TracingHandle>,
) {
if config.context.worker_core_affinity {
set_core_affinity(timely_worker.index());
}
Worker {
timely_worker,
client_rx,
metrics: config.metrics,
context: config.context,
persist_clients,
txns_ctx,
compute_state: None,
tracing_handle,
}
.run()
}
}
/// Set the current thread's core affinity, based on the given `worker_id`.
#[cfg(not(target_os = "macos"))]
fn set_core_affinity(worker_id: usize) {
use tracing::error;
let Some(mut core_ids) = core_affinity::get_core_ids() else {
error!(worker_id, "unable to get core IDs for setting affinity");
return;
};
// The `get_core_ids` docs don't say anything about a guaranteed order of the returned Vec,
// so sort it just to be safe.
core_ids.sort_unstable_by_key(|i| i.id);
// On multi-process replicas `worker_id` might be greater than the number of available cores.
// However, we assume that we always have at least as many cores as there are local workers.
// Violating this assumption is safe but might lead to degraded performance due to skew in core
// utilization.
let idx = worker_id % core_ids.len();
let core_id = core_ids[idx];
if core_affinity::set_for_current(core_id) {
info!(
worker_id,
core_id = core_id.id,
"set core affinity for worker"
);
} else {
error!(
worker_id,
core_id = core_id.id,
"failed to set core affinity for worker"
)
}
}
/// Set the current thread's core affinity, based on the given `worker_id`.
#[cfg(target_os = "macos")]
fn set_core_affinity(_worker_id: usize) {
// Setting core affinity is known to not work on Apple Silicon:
// https://github.com/Elzair/core_affinity_rs/issues/22
info!("setting core affinity is not supported on macOS");
}
impl<'w, A: Allocate + 'static> Worker<'w, A> {
/// Waits for client connections and runs them to completion.
pub fn run(&mut self) {
let mut shutdown = false;
while !shutdown {
match self.client_rx.recv() {
Ok((rx, tx, activator_tx)) => {
self.setup_channel_and_run_client(rx, tx, activator_tx)
}
Err(_) => shutdown = true,
}
}
}
fn split_command<T: Timestamp>(
command: ComputeCommand<T>,
parts: usize,
) -> Vec<ComputeCommand<T>> {
match command {
ComputeCommand::CreateDataflow(dataflow) => {
// A list of descriptions of objects for each part to build.
let mut builds_parts = vec![Vec::new(); parts];
// Partition each build description among `parts`.
for build_desc in dataflow.objects_to_build {
let build_part = build_desc.plan.partition_among(parts);
for (plan, objects_to_build) in
build_part.into_iter().zip(builds_parts.iter_mut())
{
objects_to_build.push(BuildDesc {
id: build_desc.id,
plan,
});
}
}
// Each list of build descriptions results in a dataflow description.
builds_parts
.into_iter()
.map(|objects_to_build| DataflowDescription {
source_imports: dataflow.source_imports.clone(),
index_imports: dataflow.index_imports.clone(),
objects_to_build,
index_exports: dataflow.index_exports.clone(),
sink_exports: dataflow.sink_exports.clone(),
as_of: dataflow.as_of.clone(),
until: dataflow.until.clone(),
debug_name: dataflow.debug_name.clone(),
initial_storage_as_of: dataflow.initial_storage_as_of.clone(),
refresh_schedule: dataflow.refresh_schedule.clone(),
time_dependence: dataflow.time_dependence.clone(),
})
.map(ComputeCommand::CreateDataflow)
.collect()
}
command => vec![command; parts],
}
}
fn setup_channel_and_run_client(
&mut self,
command_rx: crossbeam_channel::Receiver<ComputeCommand>,
response_tx: mpsc::UnboundedSender<ComputeResponse>,
activator_tx: ActivatorSender,
) {
let cmd_queue = Rc::new(RefCell::new(
VecDeque::<Result<ComputeCommand, TryRecvError>>::new(),
));
let peers = self.timely_worker.peers();
let worker_id = self.timely_worker.index();
let command_rx = CommandReceiver::new(command_rx, worker_id);
let response_tx = ResponseSender::new(response_tx, worker_id);
self.timely_worker.dataflow::<u64, _, _>({
let cmd_queue = Rc::clone(&cmd_queue);
move |scope| {
source(scope, "CmdSource", |capability, info| {
// Send activator for this operator back.
let activator = scope.sync_activator_for(info.address.to_vec());
// This might fail if the client has already shut down, which is fine. The rest
// of the operator implementation knows how to handle a disconnected client.
let _ = activator_tx.send(activator);
//Hold onto capbility until we receive a disconnected error
let mut cap_opt = Some(capability);
// Drop capability if we are not the leader, as our queue will
// be empty and we will never use nor importantly downgrade it.
if worker_id != 0 {
cap_opt = None;
}
move |output| {
let mut disconnected = false;
if let Some(cap) = cap_opt.as_mut() {
let time = cap.time().clone();
let mut session = output.session(&cap);
loop {
match command_rx.try_recv() {
Ok(cmd) => {
// Commands must never be accepted from another worker. This
// implementation does not guarantee an ordering of events
// sent to different workers.
assert_eq!(worker_id, 0);
session.give_iterator(
Self::split_command(cmd, peers).into_iter().enumerate(),
);
}
Err(TryRecvError::Disconnected) => {
disconnected = true;
break;
}
Err(TryRecvError::Empty) => {
break;
}
};
}
cap.downgrade(&(time + 1));
} else {
// Non-leader workers will still receive `UpdateConfiguration` commands
// and we must drain those to not leak memory.
if let Ok(cmd) = command_rx.try_recv() {
assert_ne!(worker_id, 0);
assert!(matches!(cmd, ComputeCommand::UpdateConfiguration(_)));
}
}
if disconnected {
cap_opt = None;
}
}
})
.sink(
Exchange::new(|(idx, _)| u64::cast_from(*idx)),
"CmdReceiver",
move |input| {
let mut queue = cmd_queue.borrow_mut();
if input.frontier().is_empty() {
queue.push_back(Err(TryRecvError::Disconnected))
}
while let Some((_, data)) = input.next() {
for (_, cmd) in data.drain(..) {
queue.push_back(Ok(cmd));
}
}
},
);
}
});
self.run_client(
CommandReceiverQueue {
queue: Rc::clone(&cmd_queue),
},
response_tx,
)
}
/// Draws commands from a single client until disconnected.
fn run_client(&mut self, command_rx: CommandReceiverQueue, mut response_tx: ResponseSender) {
if let Err(_) = self.reconcile(&command_rx, &mut response_tx) {
return;
}
// The last time we did periodic maintenance.
let mut last_maintenance = Instant::now();
// Commence normal operation.
let mut shutdown = false;
while !shutdown {
// Get the maintenance interval, default to zero if we don't have a compute state.
let maintenance_interval = self
.compute_state
.as_ref()
.map_or(Duration::ZERO, |state| state.server_maintenance_interval);
let now = Instant::now();
// Determine if we need to perform maintenance, which is true if `maintenance_interval`
// time has passed since the last maintenance.
let sleep_duration;
if now >= last_maintenance + maintenance_interval {
last_maintenance = now;
sleep_duration = None;
// Report frontier information back the coordinator.
if let Some(mut compute_state) = self.activate_compute(&mut response_tx) {
compute_state.compute_state.traces.maintenance();
// Report operator hydration before frontiers, as reporting frontiers may
// affect hydration reporting.
compute_state.report_operator_hydration();
compute_state.report_frontiers();
compute_state.report_dropped_collections();
compute_state.report_metrics();
compute_state.check_expiration();
}
self.metrics
.record_shared_row_metrics(self.timely_worker.index());
} else {
// We didn't perform maintenance, sleep until the next maintenance interval.
let next_maintenance = last_maintenance + maintenance_interval;
sleep_duration = Some(next_maintenance.saturating_duration_since(now))
};
// Step the timely worker, recording the time taken.
let timer = self.metrics.timely_step_duration_seconds.start_timer();
self.timely_worker.step_or_park(sleep_duration);
timer.observe_duration();
// Handle any received commands.
let mut cmds = vec![];
let mut empty = false;
while !empty {
match command_rx.try_recv() {
Ok(cmd) => cmds.push(cmd),
Err(TryRecvError::Empty) => empty = true,
Err(TryRecvError::Disconnected) => {
empty = true;
shutdown = true;
}
}
}
for cmd in cmds {
self.handle_command(&mut response_tx, cmd);
}
if let Some(mut compute_state) = self.activate_compute(&mut response_tx) {
compute_state.process_peeks();
compute_state.process_subscribes();
compute_state.process_copy_tos();
}
}
}
fn handle_command(&mut self, response_tx: &mut ResponseSender, cmd: ComputeCommand) {
match &cmd {
ComputeCommand::CreateInstance(_) => {
self.compute_state = Some(ComputeState::new(
self.timely_worker.index(),
Arc::clone(&self.persist_clients),
self.txns_ctx.clone(),
self.metrics.clone(),
Arc::clone(&self.tracing_handle),
self.context.clone(),
));
}
_ => (),
}
self.activate_compute(response_tx)
.unwrap()
.handle_compute_command(cmd);
}
fn activate_compute<'a>(
&'a mut self,
response_tx: &'a mut ResponseSender,
) -> Option<ActiveComputeState<'a, A>> {
if let Some(compute_state) = &mut self.compute_state {
Some(ActiveComputeState {
timely_worker: &mut *self.timely_worker,
compute_state,
response_tx,
})
} else {
None
}
}
/// Extract commands until `InitializationComplete`, and make the worker reflect those commands.
///
/// This method is meant to be a function of the commands received thus far (as recorded in the
/// compute state command history) and the new commands from `command_rx`. It should not be a
/// function of other characteristics, like whether the worker has managed to respond to a peek
/// or not. Some effort goes in to narrowing our view to only the existing commands we can be sure
/// are live at all other workers.
///
/// The methodology here is to drain `command_rx` until an `InitializationComplete`, at which point
/// the prior commands are "reconciled" in. Reconciliation takes each goal dataflow and looks for an
/// existing "compatible" dataflow (per `compatible()`) it can repurpose, with some additional tests
/// to be sure that we can cut over from one to the other (no additional compaction, no tails/sinks).
/// With any connections established, old orphaned dataflows are allow to compact away, and any new
/// dataflows are created from scratch. "Kept" dataflows are allowed to compact up to any new `as_of`.
///
/// Some additional tidying happens, cleaning up pending peeks, reported frontiers, and creating a new
/// subscribe response buffer. We will need to be vigilant with future modifications to `ComputeState` to
/// line up changes there with clean resets here.
fn reconcile(
&mut self,
command_rx: &CommandReceiverQueue,
response_tx: &mut ResponseSender,
) -> Result<(), RecvError> {
let worker_id = self.timely_worker.index();
// To initialize the connection, we want to drain all commands until we receive a
// `ComputeCommand::InitializationComplete` command to form a target command state.
let mut new_commands = Vec::new();
loop {
match command_rx.recv(self)? {
ComputeCommand::InitializationComplete => break,
command => new_commands.push(command),
}
}
// Commands we will need to apply before entering normal service.
// These commands may include dropping existing dataflows, compacting existing dataflows,
// and creating new dataflows, in addition to standard peek and compaction commands.
// The result should be the same as if dropping all dataflows and running `new_commands`.
let mut todo_commands = Vec::new();
// We only have a compute history if we are in an initialized state
// (i.e. after a `CreateInstance`).
// If this is not the case, just copy `new_commands` into `todo_commands`.
if let Some(compute_state) = &mut self.compute_state {
// Reduce the installed commands.
// Importantly, act as if all peeks may have been retired (as we cannot know otherwise).
compute_state.command_history.discard_peeks();
compute_state.command_history.reduce();
// At this point, we need to sort out which of the *certainly installed* dataflows are
// suitable replacements for the requested dataflows. A dataflow is "certainly installed"
// as of a frontier if its compaction allows it to go no further. We ignore peeks for this
// reasoning, as we cannot be certain that peeks still exist at any other worker.
// Having reduced our installed command history retaining no peeks (above), we should be able
// to use track down installed dataflows we can use as surrogates for requested dataflows (which
// have retained all of their peeks, creating a more demanding `as_of` requirement).
// NB: installed dataflows may still be allowed to further compact, and we should double check
// this before being too confident. It should be rare without peeks, but could happen with e.g.
// multiple outputs of a dataflow.
// The values with which a prior `CreateInstance` was called, if it was.
let mut old_instance_config = None;
// Index dataflows by `export_ids().collect()`, as this is a precondition for their compatibility.
let mut old_dataflows = BTreeMap::default();
// Maintain allowed compaction, in case installed identifiers may have been allowed to compact.
let mut old_frontiers = BTreeMap::default();
for command in compute_state.command_history.iter() {
match command {
ComputeCommand::CreateInstance(config) => {
old_instance_config = Some(config);
}
ComputeCommand::CreateDataflow(dataflow) => {
let export_ids = dataflow.export_ids().collect::<BTreeSet<_>>();
old_dataflows.insert(export_ids, dataflow);
}
ComputeCommand::AllowCompaction { id, frontier } => {
old_frontiers.insert(id, frontier);
}
_ => {
// Nothing to do in these cases.
}
}
}
// Compaction commands that can be applied to existing dataflows.
let mut old_compaction = BTreeMap::default();
// Exported identifiers from dataflows we retain.
let mut retain_ids = BTreeSet::default();
// Traverse new commands, sorting out what remediation we can do.
for command in new_commands.iter() {
match command {
ComputeCommand::CreateDataflow(dataflow) => {
// Attempt to find an existing match for the dataflow.
let as_of = dataflow.as_of.as_ref().unwrap();
let export_ids = dataflow.export_ids().collect::<BTreeSet<_>>();
if let Some(old_dataflow) = old_dataflows.get(&export_ids) {
let compatible = old_dataflow.compatible_with(dataflow);
let uncompacted = !export_ids
.iter()
.flat_map(|id| old_frontiers.get(id))
.any(|frontier| {
!timely::PartialOrder::less_equal(
*frontier,
dataflow.as_of.as_ref().unwrap(),
)
});
// We cannot reconcile subscriptions at the moment, because the
// response buffer is shared, and to a first approximation must be
// completely reformed.
let subscribe_free = dataflow.subscribe_ids().next().is_none();
// If we have replaced any dependency of this dataflow, we need to
// replace this dataflow, to make it use the replacement.
let dependencies_retained = dataflow
.imported_index_ids()
.all(|id| retain_ids.contains(&id));
if compatible && uncompacted && subscribe_free && dependencies_retained
{
// Match found; remove the match from the deletion queue,
// and compact its outputs to the dataflow's `as_of`.
old_dataflows.remove(&export_ids);
for id in export_ids.iter() {
old_compaction.insert(*id, as_of.clone());
}
retain_ids.extend(export_ids);
} else {
warn!(
?export_ids,
?compatible,
?uncompacted,
?subscribe_free,
?dependencies_retained,
old_as_of = ?old_dataflow.as_of,
new_as_of = ?as_of,
"dataflow reconciliation failed",
);
todo_commands
.push(ComputeCommand::CreateDataflow(dataflow.clone()));
}
compute_state.metrics.record_dataflow_reconciliation(
worker_id,
compatible,
uncompacted,
subscribe_free,
dependencies_retained,
);
} else {
todo_commands.push(ComputeCommand::CreateDataflow(dataflow.clone()));
}
}
ComputeCommand::CreateInstance(config) => {
// Cluster creation should not be performed again!
if old_instance_config.map_or(false, |old| !old.compatible_with(config)) {
halt!(
"new instance configuration not compatible with existing instance configuration:\n{:?}\nvs\n{:?}",
config,
old_instance_config,
);
}
}
// All other commands we apply as requested.
command => {
todo_commands.push(command.clone());
}
}
}
// Issue compaction commands first to reclaim resources.
for (_, dataflow) in old_dataflows.iter() {
for id in dataflow.export_ids() {
// We want to drop anything that has not yet been dropped,
// and nothing that has already been dropped.
if old_frontiers.get(&id) != Some(&&Antichain::new()) {
old_compaction.insert(id, Antichain::new());
}
}
}
for (&id, frontier) in &old_compaction {
let frontier = frontier.clone();
todo_commands.insert(0, ComputeCommand::AllowCompaction { id, frontier });
}
// Clean up worker-local state.
//
// Various aspects of `ComputeState` need to be either uninstalled, or return to a blank slate.
// All dropped dataflows should clean up after themselves, as we plan to install new dataflows
// re-using the same identifiers.
// All re-used dataflows should roll back any believed communicated information (e.g. frontiers)
// so that they recommunicate that information as if from scratch.
// Remove all pending peeks.
for (_, peek) in std::mem::take(&mut compute_state.pending_peeks) {
// Log dropping the peek request.
if let Some(logger) = compute_state.compute_logger.as_mut() {
logger.log(peek.as_log_event(false));
}
}
// Clear the list of dropped collections.
// We intended to report their dropping, but the controller does not expect to hear
// about them anymore.
compute_state.dropped_collections = Default::default();
for (&id, collection) in compute_state.collections.iter_mut() {
// Adjust reported frontiers:
// * For dataflows we continue to use, reset to ensure we report something not
// before the new `as_of` next.
// * For dataflows we drop, set to the empty frontier, to ensure we don't report
// anything for them.
let retained = retain_ids.contains(&id);
let compaction = old_compaction.remove(&id);
let new_reported_frontier = match (retained, compaction) {
(true, Some(new_as_of)) => ReportedFrontier::NotReported { lower: new_as_of },
(true, None) => {
unreachable!("retained dataflows are compacted to the new as_of")
}
(false, Some(new_frontier)) => {
assert!(new_frontier.is_empty());
ReportedFrontier::Reported(new_frontier)
}
(false, None) => {
// Logging dataflows are implicitly retained and don't have a new as_of.
// Reset them to the minimal frontier.
ReportedFrontier::new()
}
};
collection.reset_reported_frontiers(new_reported_frontier);
// Sink tokens should be retained for retained dataflows, and dropped for dropped
// dataflows.
//
// Dropping the tokens of active subscribes makes them place `DroppedAt` responses
// into the subscribe response buffer. We drop that buffer in the next step, which
// ensures that we don't send out `DroppedAt` responses for subscribes dropped
// during reconciliation.
if !retained {
collection.sink_token = None;
}
}
// We must drop the subscribe response buffer as it is global across all subscribes.
// If it were broken out by `GlobalId` then we could drop only those of dataflows we drop.
compute_state.subscribe_response_buffer = Rc::new(RefCell::new(Vec::new()));
// The controller expects the logging collections to be readable from the minimum time
// initially. We cannot recreate the logging arrangements without restarting the
// instance, but we can pad the compacted times with empty data. Doing so is sound
// because logging collections from different replica incarnations are considered
// distinct TVCs, so the controller doesn't expect any historical consistency from
// these collections when it reconnects to a replica.
//
// TODO(database-issues#8152): Consider resolving this with controller-side reconciliation instead.
if let Some(config) = old_instance_config {
for id in config.logging.index_logs.values() {
let trace = compute_state
.traces
.remove(id)
.expect("logging trace exists");
let padded = trace.into_padded();
compute_state.traces.set(*id, padded);
}
}
} else {
todo_commands.clone_from(&new_commands);
}
// Execute the commands to bring us to `new_commands`.
for command in todo_commands.into_iter() {
self.handle_command(response_tx, command);
}
// Overwrite `self.command_history` to reflect `new_commands`.
// It is possible that there still isn't a compute state yet.
if let Some(compute_state) = &mut self.compute_state {
let mut command_history =
ComputeCommandHistory::new(self.metrics.for_history(worker_id));
for command in new_commands.iter() {
command_history.push(command.clone());
}
compute_state.command_history = command_history;
}
Ok(())
}
}