1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Traits and types for reusable expression analysis
pub mod equivalences;
pub mod monotonic;
use mz_expr::MirRelationExpr;
pub use arity::Arity;
pub use cardinality::Cardinality;
pub use column_names::{ColumnName, ColumnNames};
pub use common::{Derived, DerivedBuilder, DerivedView};
pub use explain::annotate_plan;
pub use non_negative::NonNegative;
pub use subtree::SubtreeSize;
pub use types::RelationType;
pub use unique_keys::UniqueKeys;
/// An analysis that can be applied bottom-up to a `MirRelationExpr`.
pub trait Analysis: 'static {
/// The type of value this analysis associates with an expression.
type Value: std::fmt::Debug;
/// Announce any depencies this analysis has on other analyses.
///
/// The method should invoke `builder.require::<Foo>()` for each other
/// analysis `Foo` this analysis depends upon.
fn announce_dependencies(_builder: &mut DerivedBuilder) {}
/// The analysis value derived for an expression, given other analysis results.
///
/// The other analysis results include the results of this analysis for all children,
/// in `results`, and the results of other analyses this analysis has expressed a
/// dependence upon, in `depends`, for children and the expression itself.
/// The analysis results for `Self` can only be found in `results`, and are not
/// available in `depends`.
///
/// Implementors of this method must defensively check references into `results`, as
/// it may be invoked on `LetRec` bindings that have not yet been populated. It is up
/// to the analysis what to do in that case, but conservative behavior is recommended.
///
/// The `index` indicates the post-order index for the expression, for use in finding
/// the corresponding information in `results` and `depends`.
///
/// The return result will be associated with this expression for this analysis,
/// and the analyses will continue.
fn derive(
&self,
expr: &MirRelationExpr,
index: usize,
results: &[Self::Value],
depends: &Derived,
) -> Self::Value;
/// When available, provide a lattice interface to allow optimistic recursion.
///
/// Providing a non-`None` output indicates that the analysis intends re-iteration.
fn lattice() -> Option<Box<dyn Lattice<Self::Value>>> {
None
}
}
/// Lattice methods for repeated analysis
pub trait Lattice<T> {
/// An element greater than all other elements.
fn top(&self) -> T;
/// Set `a` to the greatest lower bound of `a` and `b`, and indicate if `a` changed as a result.
fn meet_assign(&self, a: &mut T, b: T) -> bool;
}
/// Types common across multiple analyses
pub mod common {
use std::any::{Any, TypeId};
use std::collections::BTreeMap;
use mz_expr::LocalId;
use mz_expr::MirRelationExpr;
use mz_ore::assert_none;
use mz_repr::optimize::OptimizerFeatures;
use super::subtree::SubtreeSize;
use super::Analysis;
/// Container for analysis state and binding context.
#[derive(Default)]
#[allow(missing_debug_implementations)]
pub struct Derived {
/// A record of active analyses and their results, indexed by their type id.
analyses: BTreeMap<TypeId, Box<dyn AnalysisBundle>>,
/// Analyses ordered where each depends only on strictly prior analyses.
order: Vec<TypeId>,
/// Map from local identifier to result offset for analysis values.
bindings: BTreeMap<LocalId, usize>,
}
impl Derived {
/// Return the analysis results derived so far.
pub fn results<A: Analysis>(&self) -> Option<&[A::Value]> {
let type_id = TypeId::of::<Bundle<A>>();
if let Some(bundle) = self.analyses.get(&type_id) {
if let Some(bundle) = bundle.as_any().downcast_ref::<Bundle<A>>() {
return Some(&bundle.results[..]);
}
}
None
}
/// Bindings from local identifiers to result offsets for analysis values.
pub fn bindings(&self) -> &BTreeMap<LocalId, usize> {
&self.bindings
}
/// Result offsets for the state of a various number of children of the current expression.
///
/// The integers are the zero-offset locations in the `SubtreeSize` analysis. The order of
/// the children is descending, from last child to first, because of how the information is
/// laid out, and the non-reversibility of the look-ups.
///
/// It is an error to call this method with more children than expression has.
pub fn children_of_rev<'a>(
&'a self,
start: usize,
count: usize,
) -> impl Iterator<Item = usize> + 'a {
let sizes = self.results::<SubtreeSize>().expect("SubtreeSize missing");
let offset = 1;
(0..count).scan(offset, move |offset, _| {
let result = start - *offset;
*offset += sizes[result];
Some(result)
})
}
/// Recast the derived data as a view that can be subdivided into views over child state.
pub fn as_view<'a>(&'a self) -> DerivedView<'a> {
DerivedView {
derived: self,
lower: 0,
upper: self
.results::<SubtreeSize>()
.expect("SubtreeSize missing")
.len(),
}
}
}
/// The subset of a `Derived` corresponding to an expression and its children.
///
/// Specifically, bounds an interval `[lower, upper)` that ends with the state
/// of an expression, at `upper-1`, and is preceded by the state of descendents.
///
/// This is best thought of as a node in a tree rather
#[allow(missing_debug_implementations)]
#[derive(Copy, Clone)]
pub struct DerivedView<'a> {
derived: &'a Derived,
lower: usize,
upper: usize,
}
impl<'a> DerivedView<'a> {
/// The value associated with the expression.
pub fn value<A: Analysis>(&self) -> Option<&'a A::Value> {
self.results::<A>().and_then(|slice| slice.last())
}
/// The post-order traversal index for the expression.
///
/// This can be used to index into the full set of results, as provided by an
/// instance of `Derived`.
pub fn index(&self) -> usize {
self.upper - 1
}
/// The value bound to an identifier, if it has been derived.
///
/// There are several reasons the value could not be derived, and this method
/// does not distinguish between them.
pub fn bound<A: Analysis>(&self, id: LocalId) -> Option<&'a A::Value> {
self.derived
.bindings
.get(&id)
.and_then(|index| self.derived.results::<A>().and_then(|r| r.get(*index)))
}
/// The results for expression and its children.
///
/// The results for the expression itself will be the last element.
pub fn results<A: Analysis>(&self) -> Option<&'a [A::Value]> {
self.derived
.results::<A>()
.map(|slice| &slice[self.lower..self.upper])
}
/// Bindings from local identifiers to result offsets for analysis values.
///
/// This method returns all bindings, which may include bindings not in scope for
/// the expression and its children; they should be ignored.
pub fn bindings(&self) -> &'a BTreeMap<LocalId, usize> {
self.derived.bindings()
}
/// Subviews over `self` corresponding to the children of the expression, in reverse order.
///
/// These views should disjointly cover the same interval as `self`, except for the last element
/// which corresponds to the expression itself.
///
/// The number of produced items should exactly match the number of children, which need not
/// be provided as an argument. This relies on the well-formedness of the view, which should
/// exhaust itself just as it enumerates its last (the first) child view.
pub fn children_rev(&self) -> impl Iterator<Item = DerivedView<'a>> + 'a {
// This logic is copy/paste from `Derived::children_of_rev` but it was annoying to layer
// it over the output of that function, and perhaps clearer to rewrite in any case.
// Discard the last element (the size of the expression's subtree).
// Repeatedly read out the last element, then peel off that many elements.
// Each extracted slice corresponds to a child of the current expression.
// We should end cleanly with an empty slice, otherwise there is an issue.
let sizes = self.results::<SubtreeSize>().expect("SubtreeSize missing");
let sizes = &sizes[..sizes.len() - 1];
let offset = self.lower;
let derived = self.derived;
(0..).scan(sizes, move |sizes, _| {
if let Some(size) = sizes.last() {
*sizes = &sizes[..sizes.len() - size];
Some(Self {
derived,
lower: offset + sizes.len(),
upper: offset + sizes.len() + size,
})
} else {
None
}
})
}
/// A convenience method for the view over the expressions last child.
///
/// This method is appropriate to call on expressions with multiple children,
/// and in particular for `Let` and `LetRecv` variants where the body is the
/// last child.
///
/// It is an error to call this on a view for an expression with no children.
pub fn last_child(&self) -> DerivedView<'a> {
self.children_rev().next().unwrap()
}
}
/// A builder wrapper to accumulate announced dependencies and construct default state.
#[allow(missing_debug_implementations)]
pub struct DerivedBuilder<'a> {
result: Derived,
features: &'a OptimizerFeatures,
}
impl<'a> DerivedBuilder<'a> {
/// Create a new [`DerivedBuilder`] parameterized by [`OptimizerFeatures`].
pub fn new(features: &'a OptimizerFeatures) -> Self {
// The default builder should include `SubtreeSize` to facilitate navigation.
let mut builder = DerivedBuilder {
result: Derived::default(),
features,
};
builder.require(SubtreeSize);
builder
}
}
impl<'a> DerivedBuilder<'a> {
/// Announces a dependence on an analysis `A`.
///
/// This ensures that `A` will be performed, and before any analysis that
/// invokes this method.
pub fn require<A: Analysis>(&mut self, analysis: A) {
// The method recursively descends through required analyses, first
// installing each in `result.analyses` and second in `result.order`.
// The first is an obligation, and serves as an indication that we have
// found a cycle in dependencies.
let type_id = TypeId::of::<Bundle<A>>();
if !self.result.order.contains(&type_id) {
// If we have not sequenced `type_id` but have a bundle, it means
// we are in the process of fulfilling its requirements: a cycle.
if self.result.analyses.contains_key(&type_id) {
// TODO: Find a better way to identify `A`.
panic!("Cyclic dependency detected: {:?}", type_id);
}
// Insert the analysis bundle first, so that we can detect cycles.
self.result.analyses.insert(
type_id,
Box::new(Bundle::<A> {
analysis,
results: Vec::new(),
fuel: 100,
allow_optimistic: self.features.enable_letrec_fixpoint_analysis,
}),
);
A::announce_dependencies(self);
// All dependencies are successfully sequenced; sequence `type_id`.
self.result.order.push(type_id);
}
}
/// Complete the building: perform analyses and return the resulting `Derivation`.
pub fn visit(mut self, expr: &MirRelationExpr) -> Derived {
// A stack of expressions to process (`Ok`) and let bindings to fill (`Err`).
let mut todo = vec![Ok(expr)];
// Expressions in reverse post-order: each expression, followed by its children in reverse order.
// We will reverse this to get the post order, but must form it in reverse.
let mut rev_post_order = Vec::new();
while let Some(command) = todo.pop() {
match command {
// An expression to visit.
Ok(expr) => {
match expr {
MirRelationExpr::Let { id, value, body } => {
todo.push(Ok(value));
todo.push(Err(*id));
todo.push(Ok(body));
}
MirRelationExpr::LetRec {
ids, values, body, ..
} => {
for (id, value) in ids.iter().zip(values) {
todo.push(Ok(value));
todo.push(Err(*id));
}
todo.push(Ok(body));
}
_ => {
todo.extend(expr.children().map(Ok));
}
}
rev_post_order.push(expr);
}
// A local id to install
Err(local_id) => {
// Capture the *remaining* work, which we'll need to flip around.
let prior = self.result.bindings.insert(local_id, rev_post_order.len());
assert_none!(prior, "Shadowing not allowed");
}
}
}
// Flip the offsets now that we know a length.
for value in self.result.bindings.values_mut() {
*value = rev_post_order.len() - *value - 1;
}
// Visit the pre-order in reverse order: post-order.
rev_post_order.reverse();
// Apply each analysis to `expr` in order.
for id in self.result.order.iter() {
if let Some(mut bundle) = self.result.analyses.remove(id) {
bundle.analyse(&rev_post_order[..], &self.result);
self.result.analyses.insert(*id, bundle);
}
}
self.result
}
}
/// An abstraction for an analysis and associated state.
trait AnalysisBundle: Any {
/// Populates internal state for all of `exprs`.
///
/// Result indicates whether new information was produced for `exprs.last()`.
fn analyse(&mut self, exprs: &[&MirRelationExpr], depends: &Derived) -> bool;
/// Upcasts `self` to a `&dyn Any`.
///
/// NOTE: This is required until <https://github.com/rust-lang/rfcs/issues/2765> is fixed
fn as_any(&self) -> &dyn std::any::Any;
}
/// A wrapper for analysis state.
struct Bundle<A: Analysis> {
/// The algorithm instance used to derive the results.
analysis: A,
/// A vector of results.
results: Vec<A::Value>,
/// Counts down with each `LetRec` re-iteration, to avoid unbounded effort.
/// Should it reach zero, the analysis should discard its results and restart as if pessimistic.
fuel: usize,
/// Allow optimistic analysis for `A` (otherwise we always do pesimistic
/// analysis, even if a [`crate::analysis::Lattice`] is available for `A`).
allow_optimistic: bool,
}
impl<A: Analysis> AnalysisBundle for Bundle<A> {
fn analyse(&mut self, exprs: &[&MirRelationExpr], depends: &Derived) -> bool {
self.results.clear();
// Attempt optimistic analysis, and if that fails go pessimistic.
let update = A::lattice()
.filter(|_| self.allow_optimistic)
.and_then(|lattice| {
for _ in exprs.iter() {
self.results.push(lattice.top());
}
self.analyse_optimistic(exprs, 0, exprs.len(), depends, &*lattice)
.ok()
})
.unwrap_or_else(|| {
self.results.clear();
self.analyse_pessimistic(exprs, depends)
});
assert_eq!(self.results.len(), exprs.len());
update
}
fn as_any(&self) -> &dyn std::any::Any {
self
}
}
impl<A: Analysis> Bundle<A> {
/// Analysis that starts optimistically but is only correct at a fixed point.
///
/// Will fail out to `analyse_pessimistic` if the lattice is missing, or `self.fuel` is exhausted.
fn analyse_optimistic(
&mut self,
exprs: &[&MirRelationExpr],
lower: usize,
upper: usize,
depends: &Derived,
lattice: &dyn crate::analysis::Lattice<A::Value>,
) -> Result<bool, ()> {
// Repeatedly re-evaluate the whole tree bottom up, until no changes of fuel spent.
let mut changed = true;
while changed {
changed = false;
// Bail out if we have done too many `LetRec` passes in this analysis.
self.fuel -= 1;
if self.fuel == 0 {
return Err(());
}
// Track if repetitions may be required, to avoid iteration if they are not.
let mut is_recursive = false;
// Update each derived value and track if any have changed.
for index in lower..upper {
let value = self.derive(exprs[index], index, depends);
changed = lattice.meet_assign(&mut self.results[index], value) || changed;
if let MirRelationExpr::LetRec { .. } = &exprs[index] {
is_recursive = true;
}
}
// Un-set the potential loop if there was no recursion.
if !is_recursive {
changed = false;
}
}
Ok(true)
}
/// Analysis that starts conservatively and can be stopped at any point.
fn analyse_pessimistic(&mut self, exprs: &[&MirRelationExpr], depends: &Derived) -> bool {
// TODO: consider making iterative, from some `bottom()` up using `join_assign()`.
self.results.clear();
for (index, expr) in exprs.iter().enumerate() {
self.results.push(self.derive(expr, index, depends));
}
true
}
#[inline]
fn derive(&self, expr: &MirRelationExpr, index: usize, depends: &Derived) -> A::Value {
self.analysis
.derive(expr, index, &self.results[..], depends)
}
}
}
/// Expression subtree sizes
///
/// This analysis counts the number of expressions in each subtree, and is most useful
/// for navigating the results of other analyses that are offset by subtree sizes.
pub mod subtree {
use super::{Analysis, Derived};
use mz_expr::MirRelationExpr;
/// Analysis that determines the size in child expressions of relation expressions.
#[derive(Debug)]
pub struct SubtreeSize;
impl Analysis for SubtreeSize {
type Value = usize;
fn derive(
&self,
expr: &MirRelationExpr,
index: usize,
results: &[Self::Value],
_depends: &Derived,
) -> Self::Value {
match expr {
MirRelationExpr::Constant { .. } | MirRelationExpr::Get { .. } => 1,
_ => {
let mut offset = 1;
for _ in expr.children() {
offset += results[index - offset];
}
offset
}
}
}
}
}
/// Expression arities
mod arity {
use super::{Analysis, Derived};
use mz_expr::MirRelationExpr;
/// Analysis that determines the number of columns of relation expressions.
#[derive(Debug)]
pub struct Arity;
impl Analysis for Arity {
type Value = usize;
fn derive(
&self,
expr: &MirRelationExpr,
index: usize,
results: &[Self::Value],
depends: &Derived,
) -> Self::Value {
let mut offsets = depends
.children_of_rev(index, expr.children().count())
.map(|child| results[child])
.collect::<Vec<_>>();
offsets.reverse();
expr.arity_with_input_arities(offsets.into_iter())
}
}
}
/// Expression types
mod types {
use super::{Analysis, Derived, Lattice};
use mz_expr::MirRelationExpr;
use mz_repr::ColumnType;
/// Analysis that determines the type of relation expressions.
///
/// The value is `Some` when it discovers column types, and `None` in the case that
/// it has discovered no constraining information on the column types. The `None`
/// variant should only occur in the course of iteration, and should not be revealed
/// as an output of the analysis. One can `unwrap()` the result, and if it errors then
/// either the expression is malformed or the analysis has a bug.
///
/// The analysis will panic if an expression is not well typed (i.e. if `try_col_with_input_cols`
/// returns an error).
#[derive(Debug)]
pub struct RelationType;
impl Analysis for RelationType {
type Value = Option<Vec<ColumnType>>;
fn derive(
&self,
expr: &MirRelationExpr,
index: usize,
results: &[Self::Value],
depends: &Derived,
) -> Self::Value {
let offsets = depends
.children_of_rev(index, expr.children().count())
.map(|child| &results[child])
.collect::<Vec<_>>();
// For most expressions we'll apply `try_col_with_input_cols`, but for `Get` expressions
// we'll want to combine what we know (iteratively) with the stated `Get::typ`.
match expr {
MirRelationExpr::Get {
id: mz_expr::Id::Local(i),
typ,
..
} => {
let mut result = typ.column_types.clone();
if let Some(o) = depends.bindings().get(i) {
if let Some(t) = results.get(*o) {
if let Some(rec_typ) = t {
// Reconcile nullability statements.
// Unclear if we should trust `typ`.
assert_eq!(result.len(), rec_typ.len());
result.clone_from(rec_typ);
for (res, col) in result.iter_mut().zip(typ.column_types.iter()) {
if !col.nullable {
res.nullable = false;
}
}
} else {
// Our `None` information indicates that we are optimistically
// assuming the best, including that all columns are non-null.
// This should only happen in the first visit to a `Get` expr.
// Use `typ`, but flatten nullability.
for col in result.iter_mut() {
col.nullable = false;
}
}
}
}
Some(result)
}
_ => {
// Every expression with inputs should have non-`None` inputs at this point.
let input_cols = offsets.into_iter().rev().map(|o| {
o.as_ref()
.expect("RelationType analysis discovered type-less expression")
});
Some(expr.try_col_with_input_cols(input_cols).unwrap())
}
}
}
fn lattice() -> Option<Box<dyn Lattice<Self::Value>>> {
Some(Box::new(RTLattice))
}
}
struct RTLattice;
impl Lattice<Option<Vec<ColumnType>>> for RTLattice {
fn top(&self) -> Option<Vec<ColumnType>> {
None
}
fn meet_assign(&self, a: &mut Option<Vec<ColumnType>>, b: Option<Vec<ColumnType>>) -> bool {
match (a, b) {
(_, None) => false,
(Some(a), Some(b)) => {
let mut changed = false;
assert_eq!(a.len(), b.len());
for (at, bt) in a.iter_mut().zip(b.iter()) {
assert_eq!(at.scalar_type, bt.scalar_type);
if !at.nullable && bt.nullable {
at.nullable = true;
changed = true;
}
}
changed
}
(a, b) => {
*a = b;
true
}
}
}
}
}
/// Expression unique keys
mod unique_keys {
use super::arity::Arity;
use super::{Analysis, Derived, DerivedBuilder, Lattice};
use mz_expr::MirRelationExpr;
/// Analysis that determines the unique keys of relation expressions.
///
/// The analysis value is a `Vec<Vec<usize>>`, which should be interpreted as a list
/// of sets of column identifiers, each set of which has the property that there is at
/// most one instance of each assignment of values to those columns.
///
/// The sets are minimal, in that any superset of another set is removed from the list.
/// Any superset of unique key columns are also unique key columns.
#[derive(Debug)]
pub struct UniqueKeys;
impl Analysis for UniqueKeys {
type Value = Vec<Vec<usize>>;
fn announce_dependencies(builder: &mut DerivedBuilder) {
builder.require(Arity);
}
fn derive(
&self,
expr: &MirRelationExpr,
index: usize,
results: &[Self::Value],
depends: &Derived,
) -> Self::Value {
let mut offsets = depends
.children_of_rev(index, expr.children().count())
.collect::<Vec<_>>();
offsets.reverse();
match expr {
MirRelationExpr::Get {
id: mz_expr::Id::Local(i),
typ,
..
} => {
// We have information from `typ` and from the analysis.
// We should "join" them, unioning and reducing the keys.
let mut keys = typ.keys.clone();
if let Some(o) = depends.bindings().get(i) {
if let Some(ks) = results.get(*o) {
for k in ks.iter() {
antichain_insert(&mut keys, k.clone());
}
keys.extend(ks.iter().cloned());
keys.sort();
keys.dedup();
}
}
keys
}
_ => {
let arity = depends.results::<Arity>().unwrap();
expr.keys_with_input_keys(
offsets.iter().map(|o| arity[*o]),
offsets.iter().map(|o| &results[*o]),
)
}
}
}
fn lattice() -> Option<Box<dyn Lattice<Self::Value>>> {
Some(Box::new(UKLattice))
}
}
fn antichain_insert(into: &mut Vec<Vec<usize>>, item: Vec<usize>) {
// Insert only if there is not a dominating element of `into`.
if into.iter().all(|key| !key.iter().all(|k| item.contains(k))) {
into.retain(|key| !key.iter().all(|k| item.contains(k)));
into.push(item);
}
}
/// Lattice for sets of columns that define a unique key.
///
/// An element `Vec<Vec<usize>>` describes all sets of columns `Vec<usize>` that are a
/// superset of some set of columns in the lattice element.
struct UKLattice;
impl Lattice<Vec<Vec<usize>>> for UKLattice {
fn top(&self) -> Vec<Vec<usize>> {
vec![vec![]]
}
fn meet_assign(&self, a: &mut Vec<Vec<usize>>, b: Vec<Vec<usize>>) -> bool {
a.sort();
a.dedup();
let mut c = Vec::new();
for cols_a in a.iter_mut() {
cols_a.sort();
cols_a.dedup();
for cols_b in b.iter() {
let mut cols_c = cols_a.iter().chain(cols_b).cloned().collect::<Vec<_>>();
cols_c.sort();
cols_c.dedup();
antichain_insert(&mut c, cols_c);
}
}
c.sort();
c.dedup();
std::mem::swap(a, &mut c);
a != &mut c
}
}
}
/// Determines if accumulated frequences can be negative.
///
/// This analysis assumes that globally identified collection have the property, and it is
/// incorrect to apply it to expressions that reference external collections that may have
/// negative accumulations.
mod non_negative {
use super::{Analysis, Derived, Lattice};
use crate::analysis::common_lattice::BoolLattice;
use mz_expr::{Id, MirRelationExpr};
/// Analysis that determines if all accumulations at all times are non-negative.
///
/// The analysis assumes that `Id::Global` references only refer to non-negative collections.
#[derive(Debug)]
pub struct NonNegative;
impl Analysis for NonNegative {
type Value = bool;
fn derive(
&self,
expr: &MirRelationExpr,
index: usize,
results: &[Self::Value],
depends: &Derived,
) -> Self::Value {
match expr {
MirRelationExpr::Constant { rows, .. } => rows
.as_ref()
.map(|r| r.iter().all(|(_, diff)| diff >= &0))
.unwrap_or(true),
MirRelationExpr::Get { id, .. } => match id {
Id::Local(id) => {
let index = *depends
.bindings()
.get(id)
.expect("Dependency info not found");
*results.get(index).unwrap_or(&false)
}
Id::Global(_) => true,
},
// Negate must be false unless input is "non-positive".
MirRelationExpr::Negate { .. } => false,
// Threshold ensures non-negativity.
MirRelationExpr::Threshold { .. } => true,
// Reduce errors on negative input.
MirRelationExpr::Reduce { .. } => true,
MirRelationExpr::Join { .. } => {
// If all inputs are non-negative, the join is non-negative.
depends
.children_of_rev(index, expr.children().count())
.all(|off| results[off])
}
MirRelationExpr::Union { base, inputs } => {
// If all inputs are non-negative, the union is non-negative.
let all_non_negative = depends
.children_of_rev(index, expr.children().count())
.all(|off| results[off]);
if all_non_negative {
return true;
}
// We look for the pattern `Union { base, Negate(Subset(base)) }`.
// TODO: take some care to ensure that union fusion does not introduce a regression.
if inputs.len() == 1 {
if let MirRelationExpr::Negate { input } = &inputs[0] {
// If `base` is non-negative, and `is_superset_of(base, input)`, return true.
// TODO: this is not correct until we have `is_superset_of` validate non-negativity
// as it goes, but it matches the current implementation.
let mut children = depends.children_of_rev(index, 2);
let _negate = children.next().unwrap();
let base_id = children.next().unwrap();
debug_assert_eq!(children.next(), None);
if results[base_id] && is_superset_of(&*base, &*input) {
return true;
}
}
}
false
}
_ => results[index - 1],
}
}
fn lattice() -> Option<Box<dyn Lattice<Self::Value>>> {
Some(Box::new(BoolLattice))
}
}
/// Returns true only if `rhs.negate().union(lhs)` contains only non-negative multiplicities
/// once consolidated.
///
/// Informally, this happens when `rhs` is a multiset subset of `lhs`, meaning the multiplicity
/// of any record in `rhs` is at most the multiplicity of the same record in `lhs`.
///
/// This method recursively descends each of `lhs` and `rhs` and performs a great many equality
/// tests, which has the potential to be quadratic. We should consider restricting its attention
/// to `Get` identifiers, under the premise that equal AST nodes would necessarily be identified
/// by common subexpression elimination. This requires care around recursively bound identifiers.
///
/// These rules are .. somewhat arbitrary, and likely reflect observed opportunities. For example,
/// while we do relate `distinct(filter(A)) <= distinct(A)`, we do not relate `distinct(A) <= A`.
/// Further thoughts about the class of optimizations, and whether there should be more or fewer,
/// can be found here: <https://github.com/MaterializeInc/database-issues/issues/4044>.
fn is_superset_of(mut lhs: &MirRelationExpr, mut rhs: &MirRelationExpr) -> bool {
// This implementation is iterative.
// Before converting this implementation to recursive (e.g. to improve its accuracy)
// make sure to use the `CheckedRecursion` struct to avoid blowing the stack.
while lhs != rhs {
match rhs {
MirRelationExpr::Filter { input, .. } => rhs = &**input,
MirRelationExpr::TopK { input, .. } => rhs = &**input,
// Descend in both sides if the current roots are
// projections with the same `outputs` vector.
MirRelationExpr::Project {
input: rhs_input,
outputs: rhs_outputs,
} => match lhs {
MirRelationExpr::Project {
input: lhs_input,
outputs: lhs_outputs,
} if lhs_outputs == rhs_outputs => {
rhs = &**rhs_input;
lhs = &**lhs_input;
}
_ => return false,
},
// Descend in both sides if the current roots are reduces with empty aggregates
// on the same set of keys (that is, a distinct operation on those keys).
MirRelationExpr::Reduce {
input: rhs_input,
group_key: rhs_group_key,
aggregates: rhs_aggregates,
monotonic: _,
expected_group_size: _,
} if rhs_aggregates.is_empty() => match lhs {
MirRelationExpr::Reduce {
input: lhs_input,
group_key: lhs_group_key,
aggregates: lhs_aggregates,
monotonic: _,
expected_group_size: _,
} if lhs_aggregates.is_empty() && lhs_group_key == rhs_group_key => {
rhs = &**rhs_input;
lhs = &**lhs_input;
}
_ => return false,
},
_ => {
// TODO: Imagine more complex reasoning here!
return false;
}
}
}
true
}
}
mod column_names {
use std::ops::Range;
use super::Analysis;
use mz_expr::{AggregateFunc, Id, MirRelationExpr, MirScalarExpr};
use mz_repr::explain::ExprHumanizer;
use mz_repr::GlobalId;
/// An abstract type denoting an inferred column name.
#[derive(Debug, Clone)]
pub enum ColumnName {
/// A column with name inferred to be equal to a GlobalId schema column.
Global(GlobalId, usize),
/// An anonymous expression named after the top-level function name.
Aggregate(AggregateFunc, Box<ColumnName>),
/// An column with an unknown name.
Unknown,
}
impl ColumnName {
/// Return `true` iff this the variant is not unknown.
pub fn is_known(&self) -> bool {
matches!(self, Self::Global(..) | Self::Aggregate(..))
}
/// Humanize the column to a [`String`], returns an empty [`String`] for
/// unknown columns.
pub fn humanize(&self, humanizer: &dyn ExprHumanizer) -> String {
match self {
Self::Global(id, c) => humanizer.humanize_column(*id, *c).unwrap_or_default(),
Self::Aggregate(func, expr) => {
let func = func.name();
let expr = expr.humanize(humanizer);
if expr.is_empty() {
String::from(func)
} else {
format!("{func}_{expr}")
}
}
Self::Unknown => String::new(),
}
}
}
/// Compute the column types of each subtree of a [MirRelationExpr] from the
/// bottom-up.
#[derive(Debug)]
pub struct ColumnNames;
impl ColumnNames {
/// fallback schema consisting of ordinal column names: #0, #1, ...
fn anonymous(range: Range<usize>) -> impl Iterator<Item = ColumnName> {
range.map(|_| ColumnName::Unknown)
}
/// fallback schema consisting of ordinal column names: #0, #1, ...
fn extend_with_scalars(column_names: &mut Vec<ColumnName>, scalars: &Vec<MirScalarExpr>) {
for scalar in scalars {
column_names.push(match scalar {
MirScalarExpr::Column(c) => column_names[*c].clone(),
_ => ColumnName::Unknown,
});
}
}
}
impl Analysis for ColumnNames {
type Value = Vec<ColumnName>;
fn derive(
&self,
expr: &MirRelationExpr,
index: usize,
results: &[Self::Value],
depends: &crate::analysis::Derived,
) -> Self::Value {
use MirRelationExpr::*;
match expr {
Constant { rows: _, typ } => {
// Fallback to an anonymous schema for constants.
ColumnNames::anonymous(0..typ.arity()).collect()
}
Get {
id: Id::Global(id),
typ,
access_strategy: _,
} => {
// Emit ColumnName::Global instanceds for each column in the
// `Get` type. Those can be resolved to real names later when an
// ExpressionHumanizer is available.
(0..typ.columns().len())
.map(|c| ColumnName::Global(*id, c))
.collect()
}
Get {
id: Id::Local(id),
typ,
access_strategy: _,
} => {
let index_child = *depends.bindings().get(id).expect("id in scope");
if index_child < results.len() {
results[index_child].clone()
} else {
// Possible because we infer LetRec bindings in order. This
// can be improved by introducing a fixpoint loop in the
// Env<A>::schedule_tasks LetRec handling block.
ColumnNames::anonymous(0..typ.arity()).collect()
}
}
Let {
id: _,
value: _,
body: _,
} => {
// Return the column names of the `body`.
results[index - 1].clone()
}
LetRec {
ids: _,
values: _,
limits: _,
body: _,
} => {
// Return the column names of the `body`.
results[index - 1].clone()
}
Project { input: _, outputs } => {
// Permute the column names of the input.
let input_column_names = &results[index - 1];
let mut column_names = vec![];
for col in outputs {
column_names.push(input_column_names[*col].clone());
}
column_names
}
Map { input: _, scalars } => {
// Extend the column names of the input with anonymous columns.
let mut column_names = results[index - 1].clone();
Self::extend_with_scalars(&mut column_names, scalars);
column_names
}
FlatMap {
input: _,
func,
exprs: _,
} => {
// Extend the column names of the input with anonymous columns.
let mut column_names = results[index - 1].clone();
let func_output_start = column_names.len();
let func_output_end = column_names.len() + func.output_arity();
column_names.extend(Self::anonymous(func_output_start..func_output_end));
column_names
}
Filter {
input: _,
predicates: _,
} => {
// Return the column names of the `input`.
results[index - 1].clone()
}
Join {
inputs: _,
equivalences: _,
implementation: _,
} => {
let mut input_results = depends
.children_of_rev(index, expr.children().count())
.map(|child| &results[child])
.collect::<Vec<_>>();
input_results.reverse();
let mut column_names = vec![];
for input_column_names in input_results {
column_names.extend(input_column_names.iter().cloned());
}
column_names
}
Reduce {
input: _,
group_key,
aggregates,
monotonic: _,
expected_group_size: _,
} => {
// We clone and extend the input vector and then remove the part
// associated with the input at the end.
let mut column_names = results[index - 1].clone();
let input_arity = column_names.len();
// Infer the group key part.
Self::extend_with_scalars(&mut column_names, group_key);
// Infer the aggregates part.
for aggregate in aggregates.iter() {
// The inferred name will consist of (1) the aggregate
// function name and (2) the aggregate expression (iff
// it is a simple column reference).
let func = aggregate.func.clone();
let expr = match aggregate.expr.as_column() {
Some(c) => column_names.get(c).unwrap_or(&ColumnName::Unknown).clone(),
None => ColumnName::Unknown,
};
column_names.push(ColumnName::Aggregate(func, Box::new(expr)));
}
// Remove the prefix associated with the input
column_names.drain(0..input_arity);
column_names
}
TopK {
input: _,
group_key: _,
order_key: _,
limit: _,
offset: _,
monotonic: _,
expected_group_size: _,
} => {
// Return the column names of the `input`.
results[index - 1].clone()
}
Negate { input: _ } => {
// Return the column names of the `input`.
results[index - 1].clone()
}
Threshold { input: _ } => {
// Return the column names of the `input`.
results[index - 1].clone()
}
Union { base: _, inputs: _ } => {
// Use the first non-empty column across all inputs.
let mut column_names = vec![];
let mut inputs_results = depends
.children_of_rev(index, expr.children().count())
.map(|child| &results[child])
.collect::<Vec<_>>();
let base_results = inputs_results.pop().unwrap();
inputs_results.reverse();
for (i, mut column_name) in base_results.iter().cloned().enumerate() {
for input_results in inputs_results.iter() {
if !column_name.is_known() && input_results[i].is_known() {
column_name = input_results[i].clone();
break;
}
}
column_names.push(column_name);
}
column_names
}
ArrangeBy { input: _, keys: _ } => {
// Return the column names of the `input`.
results[index - 1].clone()
}
}
}
}
}
mod explain {
//! Derived attributes framework and definitions.
use std::collections::BTreeMap;
use mz_expr::explain::ExplainContext;
use mz_expr::MirRelationExpr;
use mz_ore::stack::RecursionLimitError;
use mz_repr::explain::{AnnotatedPlan, Attributes};
// Attributes should have shortened paths when exported.
use super::DerivedBuilder;
impl<'c> From<&ExplainContext<'c>> for DerivedBuilder<'c> {
fn from(context: &ExplainContext<'c>) -> DerivedBuilder<'c> {
let mut builder = DerivedBuilder::new(context.features);
if context.config.subtree_size {
builder.require(super::SubtreeSize);
}
if context.config.non_negative {
builder.require(super::NonNegative);
}
if context.config.types {
builder.require(super::RelationType);
}
if context.config.arity {
builder.require(super::Arity);
}
if context.config.keys {
builder.require(super::UniqueKeys);
}
if context.config.cardinality {
builder.require(super::Cardinality::with_stats(
context.cardinality_stats.clone(),
));
}
if context.config.column_names || context.config.humanized_exprs {
builder.require(super::ColumnNames);
}
builder
}
}
/// Produce an [`AnnotatedPlan`] wrapping the given [`MirRelationExpr`] along
/// with [`Attributes`] derived from the given context configuration.
pub fn annotate_plan<'a>(
plan: &'a MirRelationExpr,
context: &'a ExplainContext,
) -> Result<AnnotatedPlan<'a, MirRelationExpr>, RecursionLimitError> {
let mut annotations = BTreeMap::<&MirRelationExpr, Attributes>::default();
let config = context.config;
// We want to annotate the plan with attributes in the following cases:
// 1. An attribute was explicitly requested in the ExplainConfig.
// 2. Humanized expressions were requested in the ExplainConfig (in which
// case we need to derive the ColumnNames attribute).
if config.requires_attributes() || config.humanized_exprs {
// get the annotation keys
let subtree_refs = plan.post_order_vec();
// get the annotation values
let builder = DerivedBuilder::from(context);
let derived = builder.visit(plan);
if config.subtree_size {
for (expr, subtree_size) in std::iter::zip(
subtree_refs.iter(),
derived.results::<super::SubtreeSize>().unwrap().into_iter(),
) {
let attrs = annotations.entry(expr).or_default();
attrs.subtree_size = Some(*subtree_size);
}
}
if config.non_negative {
for (expr, non_negative) in std::iter::zip(
subtree_refs.iter(),
derived.results::<super::NonNegative>().unwrap().into_iter(),
) {
let attrs = annotations.entry(expr).or_default();
attrs.non_negative = Some(*non_negative);
}
}
if config.arity {
for (expr, arity) in std::iter::zip(
subtree_refs.iter(),
derived.results::<super::Arity>().unwrap().into_iter(),
) {
let attrs = annotations.entry(expr).or_default();
attrs.arity = Some(*arity);
}
}
if config.types {
for (expr, types) in std::iter::zip(
subtree_refs.iter(),
derived
.results::<super::RelationType>()
.unwrap()
.into_iter(),
) {
let attrs = annotations.entry(expr).or_default();
attrs.types = Some(types.clone());
}
}
if config.keys {
for (expr, keys) in std::iter::zip(
subtree_refs.iter(),
derived.results::<super::UniqueKeys>().unwrap().into_iter(),
) {
let attrs = annotations.entry(expr).or_default();
attrs.keys = Some(keys.clone());
}
}
if config.cardinality {
for (expr, card) in std::iter::zip(
subtree_refs.iter(),
derived.results::<super::Cardinality>().unwrap().into_iter(),
) {
let attrs = annotations.entry(expr).or_default();
attrs.cardinality = Some(card.to_string());
}
}
if config.column_names || config.humanized_exprs {
for (expr, column_names) in std::iter::zip(
subtree_refs.iter(),
derived.results::<super::ColumnNames>().unwrap().into_iter(),
) {
let attrs = annotations.entry(expr).or_default();
let value = column_names
.iter()
.map(|column_name| column_name.humanize(context.humanizer))
.collect();
attrs.column_names = Some(value);
}
}
}
Ok(AnnotatedPlan { plan, annotations })
}
}
/// Definition and helper structs for the [`Cardinality`] attribute.
mod cardinality {
use std::collections::{BTreeMap, BTreeSet};
use mz_expr::{
BinaryFunc, Id, JoinImplementation, MirRelationExpr, MirScalarExpr, TableFunc, UnaryFunc,
VariadicFunc,
};
use mz_ore::cast::{CastFrom, CastLossy, TryCastFrom};
use mz_repr::GlobalId;
use ordered_float::OrderedFloat;
use super::{Analysis, Arity, SubtreeSize, UniqueKeys};
/// Compute the estimated cardinality of each subtree of a [MirRelationExpr] from the bottom up.
#[allow(missing_debug_implementations)]
pub struct Cardinality {
/// Cardinalities for globally named entities
pub stats: BTreeMap<GlobalId, usize>,
}
impl Cardinality {
/// A cardinality estimator with provided statistics for the given global identifiers
pub fn with_stats(stats: BTreeMap<GlobalId, usize>) -> Self {
Cardinality { stats }
}
}
impl Default for Cardinality {
fn default() -> Self {
Cardinality {
stats: BTreeMap::new(),
}
}
}
/// Cardinality estimates
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum CardinalityEstimate {
Unknown,
Estimate(OrderedFloat<f64>),
}
impl CardinalityEstimate {
pub fn max(lhs: CardinalityEstimate, rhs: CardinalityEstimate) -> CardinalityEstimate {
use CardinalityEstimate::*;
match (lhs, rhs) {
(Estimate(lhs), Estimate(rhs)) => Estimate(std::cmp::max(lhs, rhs)),
_ => Unknown,
}
}
pub fn rounded(&self) -> Option<usize> {
match self {
CardinalityEstimate::Estimate(OrderedFloat(f)) => {
let rounded = f.ceil();
let flattened = usize::cast_from(
u64::try_cast_from(rounded)
.expect("positive and representable cardinality estimate"),
);
Some(flattened)
}
CardinalityEstimate::Unknown => None,
}
}
}
impl std::ops::Add for CardinalityEstimate {
type Output = CardinalityEstimate;
fn add(self, rhs: Self) -> Self::Output {
use CardinalityEstimate::*;
match (self, rhs) {
(Estimate(lhs), Estimate(rhs)) => Estimate(lhs + rhs),
_ => Unknown,
}
}
}
impl std::ops::Sub for CardinalityEstimate {
type Output = CardinalityEstimate;
fn sub(self, rhs: Self) -> Self::Output {
use CardinalityEstimate::*;
match (self, rhs) {
(Estimate(lhs), Estimate(rhs)) => Estimate(lhs - rhs),
_ => Unknown,
}
}
}
impl std::ops::Sub<CardinalityEstimate> for f64 {
type Output = CardinalityEstimate;
fn sub(self, rhs: CardinalityEstimate) -> Self::Output {
use CardinalityEstimate::*;
if let Estimate(OrderedFloat(rhs)) = rhs {
Estimate(OrderedFloat(self - rhs))
} else {
Unknown
}
}
}
impl std::ops::Mul for CardinalityEstimate {
type Output = CardinalityEstimate;
fn mul(self, rhs: Self) -> Self::Output {
use CardinalityEstimate::*;
match (self, rhs) {
(Estimate(lhs), Estimate(rhs)) => Estimate(lhs * rhs),
_ => Unknown,
}
}
}
impl std::ops::Mul<f64> for CardinalityEstimate {
type Output = CardinalityEstimate;
fn mul(self, rhs: f64) -> Self::Output {
if let CardinalityEstimate::Estimate(OrderedFloat(lhs)) = self {
CardinalityEstimate::Estimate(OrderedFloat(lhs * rhs))
} else {
CardinalityEstimate::Unknown
}
}
}
impl std::ops::Div for CardinalityEstimate {
type Output = CardinalityEstimate;
fn div(self, rhs: Self) -> Self::Output {
use CardinalityEstimate::*;
match (self, rhs) {
(Estimate(lhs), Estimate(rhs)) => Estimate(lhs / rhs),
_ => Unknown,
}
}
}
impl std::ops::Div<f64> for CardinalityEstimate {
type Output = CardinalityEstimate;
fn div(self, rhs: f64) -> Self::Output {
use CardinalityEstimate::*;
if let Estimate(lhs) = self {
Estimate(lhs / OrderedFloat(rhs))
} else {
Unknown
}
}
}
impl std::iter::Sum for CardinalityEstimate {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(CardinalityEstimate::from(0.0), |acc, elt| acc + elt)
}
}
impl std::iter::Product for CardinalityEstimate {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(CardinalityEstimate::from(1.0), |acc, elt| acc * elt)
}
}
impl From<usize> for CardinalityEstimate {
fn from(value: usize) -> Self {
Self::Estimate(OrderedFloat(f64::cast_lossy(value)))
}
}
impl From<f64> for CardinalityEstimate {
fn from(value: f64) -> Self {
Self::Estimate(OrderedFloat(value))
}
}
/// The default selectivity for predicates we know nothing about.
///
/// But see also expr/src/scalar.rs for `FilterCharacteristics::worst_case_scaling_factor()` for a more nuanced take.
pub const WORST_CASE_SELECTIVITY: OrderedFloat<f64> = OrderedFloat(0.1);
// This section defines how we estimate cardinality for each syntactic construct.
//
// We split it up into functions to make it all a bit more tractable to work with.
impl Cardinality {
fn flat_map(&self, tf: &TableFunc, input: CardinalityEstimate) -> CardinalityEstimate {
match tf {
TableFunc::Wrap { types, width } => {
input * (f64::cast_lossy(types.len()) / f64::cast_lossy(*width))
}
_ => {
// TODO(mgree) what explosion factor should we make up?
input * CardinalityEstimate::from(4.0)
}
}
}
fn predicate(
&self,
predicate_expr: &MirScalarExpr,
unique_columns: &BTreeSet<usize>,
) -> OrderedFloat<f64> {
let index_selectivity = |expr: &MirScalarExpr| -> Option<OrderedFloat<f64>> {
match expr {
MirScalarExpr::Column(col) => {
if unique_columns.contains(col) {
// TODO(mgree): when we have index cardinality statistics, they should go here when `expr` is a `MirScalarExpr::Column` that's in `unique_columns`
None
} else {
None
}
}
_ => None,
}
};
match predicate_expr {
MirScalarExpr::Column(_)
| MirScalarExpr::Literal(_, _)
| MirScalarExpr::CallUnmaterializable(_) => OrderedFloat(1.0),
MirScalarExpr::CallUnary { func, expr } => match func {
UnaryFunc::Not(_) => OrderedFloat(1.0) - self.predicate(expr, unique_columns),
UnaryFunc::IsTrue(_) | UnaryFunc::IsFalse(_) => OrderedFloat(0.5),
UnaryFunc::IsNull(_) => {
if let Some(icard) = index_selectivity(expr) {
icard
} else {
WORST_CASE_SELECTIVITY
}
}
_ => WORST_CASE_SELECTIVITY,
},
MirScalarExpr::CallBinary { func, expr1, expr2 } => {
match func {
BinaryFunc::Eq => {
match (index_selectivity(expr1), index_selectivity(expr2)) {
(Some(isel1), Some(isel2)) => std::cmp::max(isel1, isel2),
(Some(isel), None) | (None, Some(isel)) => isel,
(None, None) => WORST_CASE_SELECTIVITY,
}
}
// 1.0 - the Eq case
BinaryFunc::NotEq => {
match (index_selectivity(expr1), index_selectivity(expr2)) {
(Some(isel1), Some(isel2)) => {
OrderedFloat(1.0) - std::cmp::max(isel1, isel2)
}
(Some(isel), None) | (None, Some(isel)) => OrderedFloat(1.0) - isel,
(None, None) => OrderedFloat(1.0) - WORST_CASE_SELECTIVITY,
}
}
BinaryFunc::Lt | BinaryFunc::Lte | BinaryFunc::Gt | BinaryFunc::Gte => {
// TODO(mgree) if we have high/low key values and one of the columns is an index, we can do better
OrderedFloat(0.33)
}
_ => OrderedFloat(1.0), // TOOD(mgree): are there other interesting cases?
}
}
MirScalarExpr::CallVariadic { func, exprs } => match func {
VariadicFunc::And => exprs
.iter()
.map(|expr| self.predicate(expr, unique_columns))
.product(),
VariadicFunc::Or => {
// TODO(mgree): BETWEEN will get compiled down to an AND of appropriate bounds---we could try to detect it and be clever
// F(expr1 OR expr2) = F(expr1) + F(expr2) - F(expr1) * F(expr2), but generalized
let mut exprs = exprs.into_iter();
let mut expr1;
if let Some(first) = exprs.next() {
expr1 = self.predicate(first, unique_columns);
} else {
return OrderedFloat(1.0);
}
for expr2 in exprs {
let expr2 = self.predicate(expr2, unique_columns);
expr1 = expr1 + expr2 - expr1 * expr2;
}
expr1
}
_ => OrderedFloat(1.0),
},
MirScalarExpr::If { cond: _, then, els } => std::cmp::max(
self.predicate(then, unique_columns),
self.predicate(els, unique_columns),
),
}
}
fn filter(
&self,
predicates: &Vec<MirScalarExpr>,
keys: &Vec<Vec<usize>>,
input: CardinalityEstimate,
) -> CardinalityEstimate {
// TODO(mgree): should we try to do something for indices built on multiple columns?
let mut unique_columns = BTreeSet::new();
for key in keys {
if key.len() == 1 {
unique_columns.insert(key[0]);
}
}
let mut estimate = input;
for expr in predicates {
let selectivity = self.predicate(expr, &unique_columns);
debug_assert!(
OrderedFloat(0.0) <= selectivity && selectivity <= OrderedFloat(1.0),
"predicate selectivity {selectivity} should be in the range [0,1]"
);
estimate = estimate * selectivity.0;
}
estimate
}
fn join(
&self,
equivalences: &Vec<Vec<MirScalarExpr>>,
_implementation: &JoinImplementation,
unique_columns: BTreeMap<usize, usize>,
mut inputs: Vec<CardinalityEstimate>,
) -> CardinalityEstimate {
if inputs.is_empty() {
return CardinalityEstimate::from(0.0);
}
for equiv in equivalences {
// those sources which have a unique key
let mut unique_sources = BTreeSet::new();
let mut all_unique = true;
for expr in equiv {
if let MirScalarExpr::Column(col) = expr {
if let Some(idx) = unique_columns.get(col) {
unique_sources.insert(*idx);
} else {
all_unique = false;
}
} else {
all_unique = false;
}
}
// no unique columns in this equivalence
if unique_sources.is_empty() {
continue;
}
// ALL unique columns in this equivalence
if all_unique {
// these inputs have unique keys for _all_ of the equivalence, so they're a bound on how many rows we'll get from those sources
// we'll find the leftmost such input and use it to hold the minimum; the other sources we set to 1.0 (so they have no effect)
let mut sources = unique_sources.iter();
let lhs_idx = *sources.next().unwrap();
let mut lhs =
std::mem::replace(&mut inputs[lhs_idx], CardinalityEstimate::from(1.0));
for &rhs_idx in sources {
let rhs =
std::mem::replace(&mut inputs[rhs_idx], CardinalityEstimate::from(1.0));
lhs = CardinalityEstimate::min(lhs, rhs);
}
inputs[lhs_idx] = lhs;
// best option! go look at the next equivalence
continue;
}
// some unique columns in this equivalence
for idx in unique_sources {
// when joining R and S on R.x = S.x, if R.x is unique and S.x is not, we're bounded above by the cardinality of S
inputs[idx] = CardinalityEstimate::from(1.0);
}
}
let mut product = CardinalityEstimate::from(1.0);
for input in inputs {
product = product * input;
}
product
}
fn reduce(
&self,
group_key: &Vec<MirScalarExpr>,
expected_group_size: &Option<u64>,
input: CardinalityEstimate,
) -> CardinalityEstimate {
// TODO(mgree): if no `group_key` is present, we can do way better
if let Some(group_size) = expected_group_size {
input / f64::cast_lossy(*group_size)
} else if group_key.is_empty() {
CardinalityEstimate::from(1.0)
} else {
// in the worst case, every row is its own group
input
}
}
fn topk(
&self,
group_key: &Vec<usize>,
limit: &Option<MirScalarExpr>,
expected_group_size: &Option<u64>,
input: CardinalityEstimate,
) -> CardinalityEstimate {
// TODO: support simple arithmetic expressions
let k = limit
.as_ref()
.and_then(|l| l.as_literal_int64())
.map_or(1, |l| std::cmp::max(0, l));
if let Some(group_size) = expected_group_size {
input * (f64::cast_lossy(k) / f64::cast_lossy(*group_size))
} else if group_key.is_empty() {
CardinalityEstimate::from(f64::cast_lossy(k))
} else {
// in the worst case, every row is its own group
input.clone()
}
}
fn threshold(&self, input: CardinalityEstimate) -> CardinalityEstimate {
// worst case scaling factor is 1
input.clone()
}
}
impl Analysis for Cardinality {
type Value = CardinalityEstimate;
fn announce_dependencies(builder: &mut crate::analysis::DerivedBuilder) {
builder.require(crate::analysis::Arity);
builder.require(crate::analysis::UniqueKeys);
}
fn derive(
&self,
expr: &MirRelationExpr,
index: usize,
results: &[Self::Value],
depends: &crate::analysis::Derived,
) -> Self::Value {
use MirRelationExpr::*;
let sizes = depends
.as_view()
.results::<SubtreeSize>()
.expect("SubtreeSize analysis results missing");
let arity = depends
.as_view()
.results::<Arity>()
.expect("Arity analysis results missing");
let keys = depends
.as_view()
.results::<UniqueKeys>()
.expect("UniqueKeys analysis results missing");
match expr {
Constant { rows, .. } => {
CardinalityEstimate::from(rows.as_ref().map_or_else(|_| 0, |v| v.len()))
}
Get { id, .. } => match id {
Id::Local(id) => depends
.bindings()
.get(id)
.and_then(|id| results.get(*id))
.copied()
.unwrap_or(CardinalityEstimate::Unknown),
Id::Global(id) => self
.stats
.get(id)
.copied()
.map(CardinalityEstimate::from)
.unwrap_or(CardinalityEstimate::Unknown),
},
Let { .. } | Project { .. } | Map { .. } | ArrangeBy { .. } | Negate { .. } => {
results[index - 1].clone()
}
LetRec { .. } =>
// TODO(mgree): implement a recurrence-based approach (or at least identify common idioms, e.g. transitive closure)
{
CardinalityEstimate::Unknown
}
Union { base: _, inputs: _ } => depends
.children_of_rev(index, expr.children().count())
.map(|off| results[off].clone())
.sum(),
FlatMap { func, .. } => {
let input = results[index - 1];
self.flat_map(func, input)
}
Filter { predicates, .. } => {
let input = results[index - 1];
let keys = depends.results::<UniqueKeys>().expect("UniqueKeys missing");
let keys = &keys[index - 1];
self.filter(predicates, keys, input)
}
Join {
equivalences,
implementation,
inputs,
..
} => {
let mut input_results = Vec::with_capacity(inputs.len());
// maps a column to the index in `inputs` that it belongs to
let mut unique_columns = BTreeMap::new();
let mut key_offset = 0;
let mut offset = 1;
for idx in 0..inputs.len() {
let input = results[index - offset];
input_results.push(input);
let arity = arity[index - offset];
let keys = &keys[index - offset];
for key in keys {
if key.len() == 1 {
unique_columns.insert(key_offset + key[0], idx);
}
}
key_offset += arity;
offset += &sizes[index - offset];
}
self.join(equivalences, implementation, unique_columns, input_results)
}
Reduce {
group_key,
expected_group_size,
..
} => {
let input = results[index - 1];
self.reduce(group_key, expected_group_size, input)
}
TopK {
group_key,
limit,
expected_group_size,
..
} => {
let input = results[index - 1];
self.topk(group_key, limit, expected_group_size, input)
}
Threshold { .. } => {
let input = results[index - 1];
self.threshold(input)
}
}
}
}
impl std::fmt::Display for CardinalityEstimate {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
CardinalityEstimate::Estimate(OrderedFloat(estimate)) => write!(f, "{estimate}"),
CardinalityEstimate::Unknown => write!(f, "<UNKNOWN>"),
}
}
}
}
mod common_lattice {
use crate::analysis::Lattice;
pub struct BoolLattice;
impl Lattice<bool> for BoolLattice {
// `true` > `false`.
fn top(&self) -> bool {
true
}
// `false` is the greatest lower bound. `into` changes if it's true and `item` is false.
fn meet_assign(&self, into: &mut bool, item: bool) -> bool {
let changed = *into && !item;
*into = *into && item;
changed
}
}
}