criterion/
routine.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
use crate::benchmark::BenchmarkConfig;
use crate::connection::OutgoingMessage;
use crate::measurement::Measurement;
use crate::report::{BenchmarkId, Report, ReportContext};
use crate::{black_box, ActualSamplingMode, Bencher, Criterion};
use std::marker::PhantomData;
use std::time::Duration;

/// PRIVATE
pub(crate) trait Routine<M: Measurement, T: ?Sized> {
    /// PRIVATE
    fn bench(&mut self, m: &M, iters: &[u64], parameter: &T) -> Vec<f64>;
    /// PRIVATE
    fn warm_up(&mut self, m: &M, how_long: Duration, parameter: &T) -> (u64, u64);

    /// PRIVATE
    fn test(&mut self, m: &M, parameter: &T) {
        self.bench(m, &[1u64], parameter);
    }

    /// Iterates the benchmarked function for a fixed length of time, but takes no measurements.
    /// This keeps the overall benchmark suite runtime constant-ish even when running under a
    /// profiler with an unknown amount of overhead. Since no measurements are taken, it also
    /// reduces the amount of time the execution spends in Criterion.rs code, which should help
    /// show the performance of the benchmarked code more clearly as well.
    fn profile(
        &mut self,
        measurement: &M,
        id: &BenchmarkId,
        criterion: &Criterion<M>,
        report_context: &ReportContext,
        time: Duration,
        parameter: &T,
    ) {
        criterion
            .report
            .profile(id, report_context, time.as_nanos() as f64);

        let mut profile_path = report_context.output_directory.clone();
        if (*crate::CARGO_CRITERION_CONNECTION).is_some() {
            // If connected to cargo-criterion, generate a cargo-criterion-style path.
            // This is kind of a hack.
            profile_path.push("profile");
            profile_path.push(id.as_directory_name());
        } else {
            profile_path.push(id.as_directory_name());
            profile_path.push("profile");
        }
        criterion
            .profiler
            .borrow_mut()
            .start_profiling(id.id(), &profile_path);

        let time = time.as_nanos() as u64;

        // TODO: Some profilers will show the two batches of iterations as
        // being different code-paths even though they aren't really.

        // Get the warmup time for one second
        let (wu_elapsed, wu_iters) = self.warm_up(measurement, Duration::from_secs(1), parameter);
        if wu_elapsed < time {
            // Initial guess for the mean execution time
            let met = wu_elapsed as f64 / wu_iters as f64;

            // Guess how many iterations will be required for the remaining time
            let remaining = (time - wu_elapsed) as f64;

            let iters = remaining / met;
            let iters = iters as u64;

            self.bench(measurement, &[iters], parameter);
        }

        criterion
            .profiler
            .borrow_mut()
            .stop_profiling(id.id(), &profile_path);

        criterion.report.terminated(id, report_context);
    }

    fn sample(
        &mut self,
        measurement: &M,
        id: &BenchmarkId,
        config: &BenchmarkConfig,
        criterion: &Criterion<M>,
        report_context: &ReportContext,
        parameter: &T,
    ) -> (ActualSamplingMode, Box<[f64]>, Box<[f64]>) {
        if config.quick_mode {
            let minimum_bench_duration = Duration::from_millis(100);
            let maximum_bench_duration = config.measurement_time; // default: 5 seconds
            let target_rel_stdev = config.significance_level; // default: 5%, 0.05

            use std::time::Instant;
            let time_start = Instant::now();

            let sq = |val| val * val;
            let mut n = 1;
            let mut t_prev = *self.bench(measurement, &[n], parameter).first().unwrap();

            // Early exit for extremely long running benchmarks:
            if time_start.elapsed() > maximum_bench_duration {
                let iters = vec![n as f64, n as f64].into_boxed_slice();
                // prevent gnuplot bug when all values are equal
                let elapsed = vec![t_prev, t_prev + 0.000001].into_boxed_slice();
                return (ActualSamplingMode::Flat, iters, elapsed);
            }

            // Main data collection loop.
            loop {
                let t_now = *self
                    .bench(measurement, &[n * 2], parameter)
                    .first()
                    .unwrap();
                let t = (t_prev + 2. * t_now) / 5.;
                let stdev = (sq(t_prev - t) + sq(t_now - 2. * t)).sqrt();
                // println!("Sample: {} {:.2}", n, stdev / t);
                let elapsed = time_start.elapsed();
                if (stdev < target_rel_stdev * t && elapsed > minimum_bench_duration)
                    || elapsed > maximum_bench_duration
                {
                    let iters = vec![n as f64, (n * 2) as f64].into_boxed_slice();
                    let elapsed = vec![t_prev, t_now].into_boxed_slice();
                    return (ActualSamplingMode::Linear, iters, elapsed);
                }
                n *= 2;
                t_prev = t_now;
            }
        }
        let wu = config.warm_up_time;
        let m_ns = config.measurement_time.as_nanos();

        criterion
            .report
            .warmup(id, report_context, wu.as_nanos() as f64);

        if let Some(conn) = &criterion.connection {
            conn.send(&OutgoingMessage::Warmup {
                id: id.into(),
                nanos: wu.as_nanos() as f64,
            })
            .unwrap();
        }

        let (wu_elapsed, wu_iters) = self.warm_up(measurement, wu, parameter);
        if crate::debug_enabled() {
            println!(
                "\nCompleted {} iterations in {} nanoseconds, estimated execution time is {} ns",
                wu_iters,
                wu_elapsed,
                wu_elapsed as f64 / wu_iters as f64
            );
        }

        // Initial guess for the mean execution time
        let met = wu_elapsed as f64 / wu_iters as f64;

        let n = config.sample_size as u64;

        let actual_sampling_mode = config
            .sampling_mode
            .choose_sampling_mode(met, n, m_ns as f64);

        let m_iters = actual_sampling_mode.iteration_counts(met, n, &config.measurement_time);

        let expected_ns = m_iters
            .iter()
            .copied()
            .map(|count| count as f64 * met)
            .sum();

        // Use saturating_add to handle overflow.
        let mut total_iters = 0u64;
        for count in m_iters.iter().copied() {
            total_iters = total_iters.saturating_add(count);
        }

        criterion
            .report
            .measurement_start(id, report_context, n, expected_ns, total_iters);

        if let Some(conn) = &criterion.connection {
            conn.send(&OutgoingMessage::MeasurementStart {
                id: id.into(),
                sample_count: n,
                estimate_ns: expected_ns,
                iter_count: total_iters,
            })
            .unwrap();
        }

        let m_elapsed = self.bench(measurement, &m_iters, parameter);

        let m_iters_f: Vec<f64> = m_iters.iter().map(|&x| x as f64).collect();

        (
            actual_sampling_mode,
            m_iters_f.into_boxed_slice(),
            m_elapsed.into_boxed_slice(),
        )
    }
}

pub struct Function<M: Measurement, F, T>
where
    F: FnMut(&mut Bencher<'_, M>, &T),
    T: ?Sized,
{
    f: F,
    // TODO: Is there some way to remove these?
    _phantom: PhantomData<T>,
    _phamtom2: PhantomData<M>,
}
impl<M: Measurement, F, T> Function<M, F, T>
where
    F: FnMut(&mut Bencher<'_, M>, &T),
    T: ?Sized,
{
    pub fn new(f: F) -> Function<M, F, T> {
        Function {
            f,
            _phantom: PhantomData,
            _phamtom2: PhantomData,
        }
    }
}

impl<M: Measurement, F, T> Routine<M, T> for Function<M, F, T>
where
    F: FnMut(&mut Bencher<'_, M>, &T),
    T: ?Sized,
{
    fn bench(&mut self, m: &M, iters: &[u64], parameter: &T) -> Vec<f64> {
        let f = &mut self.f;

        let mut b = Bencher {
            iterated: false,
            iters: 0,
            value: m.zero(),
            measurement: m,
            elapsed_time: Duration::from_millis(0),
        };

        iters
            .iter()
            .map(|iters| {
                b.iters = *iters;
                (*f)(&mut b, black_box(parameter));
                b.assert_iterated();
                m.to_f64(&b.value)
            })
            .collect()
    }

    fn warm_up(&mut self, m: &M, how_long: Duration, parameter: &T) -> (u64, u64) {
        let f = &mut self.f;
        let mut b = Bencher {
            iterated: false,
            iters: 1,
            value: m.zero(),
            measurement: m,
            elapsed_time: Duration::from_millis(0),
        };

        let mut total_iters = 0;
        let mut elapsed_time = Duration::from_millis(0);
        loop {
            (*f)(&mut b, black_box(parameter));

            b.assert_iterated();

            total_iters += b.iters;
            elapsed_time += b.elapsed_time;
            if elapsed_time > how_long {
                return (elapsed_time.as_nanos() as u64, total_iters);
            }

            b.iters = b.iters.wrapping_mul(2);
        }
    }
}