1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
//! A collection of updates of the form `(T, i64)`.
use serde::{Deserialize, Serialize};
use smallvec::SmallVec;
/// A collection of updates of the form `(T, i64)`.
///
/// A `ChangeBatch` accumulates updates of the form `(T, i64)`, where it is capable of consolidating
/// the representation and removing elements whose `i64` field accumulates to zero.
///
/// The implementation is designed to be as lazy as possible, simply appending to a list of updates
/// until they are required. This means that several seemingly simple operations may be expensive, in
/// that they may provoke a compaction. I've tried to prevent exposing methods that allow surprisingly
/// expensive operations; all operations should take an amortized constant or logarithmic time.
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct ChangeBatch<T, const X: usize = 2> {
// A list of updates to which we append.
updates: SmallVec<[(T, i64); X]>,
// The length of the prefix of `self.updates` known to be compact.
clean: usize,
}
impl<T, const X: usize> ChangeBatch<T, X> {
/// Allocates a new empty `ChangeBatch`.
///
/// # Examples
///
///```
/// use timely::progress::ChangeBatch;
///
/// let mut batch = ChangeBatch::<usize>::new();
/// assert!(batch.is_empty());
///```
pub fn new() -> Self {
ChangeBatch {
updates: SmallVec::new(),
clean: 0,
}
}
/// Allocates a new empty `ChangeBatch` with space for `capacity` updates.
///
/// # Examples
///
///```
/// use timely::progress::ChangeBatch;
///
/// let mut batch = ChangeBatch::<usize>::with_capacity(10);
/// assert!(batch.is_empty());
///```
pub fn with_capacity(capacity: usize) -> Self {
ChangeBatch {
updates: SmallVec::with_capacity(capacity),
clean: 0,
}
}
/// Returns `true` if the change batch is not guaranteed compact.
pub fn is_dirty(&self) -> bool {
self.updates.len() > self.clean
}
/// Expose the internal vector of updates.
pub fn unstable_internal_updates(&self) -> &SmallVec<[(T, i64); X]> { &self.updates }
/// Expose the internal value of `clean`.
pub fn unstable_internal_clean(&self) -> usize { self.clean }
/// Clears the map.
///
/// # Examples
///
///```
/// use timely::progress::ChangeBatch;
///
/// let mut batch = ChangeBatch::<usize>::new_from(17, 1);
/// batch.clear();
/// assert!(batch.is_empty());
///```
#[inline]
pub fn clear(&mut self) {
self.updates.clear();
self.clean = 0;
}
}
impl<T, const X: usize> ChangeBatch<T, X>
where
T: Ord,
{
/// Allocates a new `ChangeBatch` with a single entry.
///
/// # Examples
///
///```
/// use timely::progress::ChangeBatch;
///
/// let mut batch = ChangeBatch::<usize>::new_from(17, 1);
/// assert!(!batch.is_empty());
///```
pub fn new_from(key: T, val: i64) -> Self {
let mut result = ChangeBatch::new();
result.update(key, val);
result
}
/// Adds a new update, for `item` with `value`.
///
/// This could be optimized to perform compaction when the number of "dirty" elements exceeds
/// half the length of the list, which would keep the total footprint within reasonable bounds
/// even under an arbitrary number of updates. This has a cost, and it isn't clear whether it
/// is worth paying without some experimentation.
///
/// # Examples
///
///```
/// use timely::progress::ChangeBatch;
///
/// let mut batch = ChangeBatch::<usize>::new();
/// batch.update(17, 1);
/// assert!(!batch.is_empty());
///```
#[inline]
pub fn update(&mut self, item: T, value: i64) {
self.updates.push((item, value));
self.maintain_bounds();
}
/// Performs a sequence of updates described by `iterator`.
///
/// # Examples
///
///```
/// use timely::progress::ChangeBatch;
///
/// let mut batch = ChangeBatch::<usize>::new_from(17, 1);
/// batch.extend(vec![(17, -1)].into_iter());
/// assert!(batch.is_empty());
///```
#[inline]
pub fn extend<I: Iterator<Item=(T, i64)>>(&mut self, iterator: I) {
self.updates.extend(iterator);
self.maintain_bounds();
}
/// Extracts the `Vec<(T, i64)>` from the map, consuming it.
///
/// # Examples
///
///```
/// use timely::progress::ChangeBatch;
///
/// let batch = ChangeBatch::<usize>::new_from(17, 1);
/// assert_eq!(batch.into_inner().to_vec(), vec![(17, 1)]);
///```
pub fn into_inner(mut self) -> SmallVec<[(T, i64); X]> {
self.compact();
self.updates
}
/// Iterates over the contents of the map.
///
/// # Examples
///
///```
/// use timely::progress::ChangeBatch;
///
/// let mut batch = ChangeBatch::<usize>::new_from(17, 1);
/// { // scope allows borrow of `batch` to drop.
/// let mut iter = batch.iter();
/// assert_eq!(iter.next(), Some(&(17, 1)));
/// assert_eq!(iter.next(), None);
/// }
/// assert!(!batch.is_empty());
///```
#[inline]
pub fn iter(&mut self) -> ::std::slice::Iter<(T, i64)> {
self.compact();
self.updates.iter()
}
/// Drains the set of updates.
///
/// This operation first compacts the set of updates so that the drained results
/// have at most one occurrence of each item.
///
/// # Examples
///
///```
/// use timely::progress::ChangeBatch;
///
/// let mut batch = ChangeBatch::<usize>::new_from(17, 1);
/// { // scope allows borrow of `batch` to drop.
/// let mut iter = batch.drain();
/// assert_eq!(iter.next(), Some((17, 1)));
/// assert_eq!(iter.next(), None);
/// }
/// assert!(batch.is_empty());
///```
#[inline]
pub fn drain(&mut self) -> smallvec::Drain<[(T, i64); X]> {
self.compact();
self.clean = 0;
self.updates.drain(..)
}
/// Returns `true` iff all keys have value zero.
///
/// This method requires mutable access to `self` because it may need to compact the representation
/// to determine if the batch of updates is indeed empty. We could also implement a weaker form of
/// `is_empty` which just checks the length of `self.updates`, and which could confirm the absence of
/// any updates, but could report false negatives if there are updates which would cancel.
///
/// # Examples
///
///```
/// use timely::progress::ChangeBatch;
///
/// let mut batch = ChangeBatch::<usize>::new_from(17, 1);
/// batch.update(17, -1);
/// assert!(batch.is_empty());
///```
#[inline]
pub fn is_empty(&mut self) -> bool {
if self.clean > self.updates.len() / 2 {
false
}
else {
self.compact();
self.updates.is_empty()
}
}
/// Number of compacted updates.
///
/// This method requires mutable access to `self` because it may need to compact the
/// representation to determine the number of actual updates.
///
/// # Examples
///
///```
/// use timely::progress::ChangeBatch;
///
/// let mut batch = ChangeBatch::<usize>::new_from(17, 1);
/// batch.update(17, -1);
/// batch.update(14, -1);
/// assert_eq!(batch.len(), 1);
///```
#[inline]
pub fn len(&mut self) -> usize {
self.compact();
self.updates.len()
}
/// Drains `self` into `other`.
///
/// This method has similar a effect to calling `other.extend(self.drain())`, but has the
/// opportunity to optimize this to a `::std::mem::swap(self, other)` when `other` is empty.
/// As many uses of this method are to propagate updates, this optimization can be quite
/// handy.
///
/// # Examples
///
///```
/// use timely::progress::ChangeBatch;
///
/// let mut batch1 = ChangeBatch::<usize>::new_from(17, 1);
/// let mut batch2 = ChangeBatch::new();
/// batch1.drain_into(&mut batch2);
/// assert!(batch1.is_empty());
/// assert!(!batch2.is_empty());
///```
#[inline]
pub fn drain_into(&mut self, other: &mut ChangeBatch<T, X>) where T: Clone {
if other.updates.is_empty() {
::std::mem::swap(self, other);
}
else {
other.extend(self.updates.drain(..));
self.clean = 0;
}
}
/// Compact the internal representation.
///
/// This method sort `self.updates` and consolidates elements with equal item, discarding
/// any whose accumulation is zero. It is optimized to only do this if the number of dirty
/// elements is non-zero.
#[inline]
pub fn compact(&mut self) {
if self.clean < self.updates.len() && self.updates.len() > 1 {
self.updates.sort_by(|x,y| x.0.cmp(&y.0));
for i in 0 .. self.updates.len() - 1 {
if self.updates[i].0 == self.updates[i+1].0 {
self.updates[i+1].1 += self.updates[i].1;
self.updates[i].1 = 0;
}
}
self.updates.retain(|x| x.1 != 0);
}
self.clean = self.updates.len();
}
/// Maintain the bounds of pending (non-compacted) updates versus clean (compacted) data.
/// This function tries to minimize work by only compacting if enough work has accumulated.
fn maintain_bounds(&mut self) {
// if we have more than 32 elements and at least half of them are not clean, compact
if self.updates.len() > 32 && self.updates.len() >> 1 >= self.clean {
self.compact()
}
}
}
impl<T, const X: usize> Default for ChangeBatch<T, X> {
fn default() -> Self {
Self::new()
}
}