mz_orchestrator/lib.rs
1// Copyright Materialize, Inc. and contributors. All rights reserved.
2//
3// Use of this software is governed by the Business Source License
4// included in the LICENSE file.
5//
6// As of the Change Date specified in that file, in accordance with
7// the Business Source License, use of this software will be governed
8// by the Apache License, Version 2.0.
9
10use std::collections::BTreeMap;
11use std::fmt;
12use std::num::NonZero;
13use std::str::FromStr;
14use std::sync::Arc;
15
16use async_trait::async_trait;
17use bytesize::ByteSize;
18use chrono::{DateTime, Utc};
19use derivative::Derivative;
20use futures_core::stream::BoxStream;
21use mz_ore::cast::CastFrom;
22use serde::de::Unexpected;
23use serde::{Deserialize, Deserializer, Serialize};
24
25/// An orchestrator manages services.
26///
27/// A service is a set of one or more processes running the same image. See
28/// [`ServiceConfig`] for details.
29///
30/// All services live within a namespace. A namespace allows multiple users to
31/// share an orchestrator without conflicting: each user can only create,
32/// delete, and list the services within their namespace. Namespaces are not
33/// isolated at the network level, however: services in one namespace can
34/// communicate with services in another namespace with no restrictions.
35///
36/// Services **must** be tolerant of running as part of a distributed system. In
37/// particular, services **must** be prepared for the possibility that there are
38/// two live processes with the same identity. This can happen, for example,
39/// when the machine hosting a process *appears* to fail, from the perspective
40/// of the orchestrator, and so the orchestrator restarts the process on another
41/// machine, but in fact the original machine is still alive, just on the
42/// opposite side of a network partition. Be sure to design any communication
43/// with other services (e.g., an external database) to correctly handle
44/// competing communication from another incarnation of the service.
45///
46/// The intent is that you can implement `Orchestrator` with pods in Kubernetes,
47/// containers in Docker, or processes on your local machine.
48pub trait Orchestrator: fmt::Debug + Send + Sync {
49 /// Enter a namespace in the orchestrator.
50 fn namespace(&self, namespace: &str) -> Arc<dyn NamespacedOrchestrator>;
51}
52
53/// An orchestrator restricted to a single namespace.
54#[async_trait]
55pub trait NamespacedOrchestrator: fmt::Debug + Send + Sync {
56 /// Ensures that a service with the given configuration is running.
57 ///
58 /// If a service with the same ID already exists, its configuration is
59 /// updated to match `config`. This may or may not involve restarting the
60 /// service, depending on whether the existing service matches `config`.
61 fn ensure_service(
62 &self,
63 id: &str,
64 config: ServiceConfig,
65 ) -> Result<Box<dyn Service>, anyhow::Error>;
66
67 /// Drops the identified service, if it exists.
68 fn drop_service(&self, id: &str) -> Result<(), anyhow::Error>;
69
70 /// Lists the identifiers of all known services.
71 async fn list_services(&self) -> Result<Vec<String>, anyhow::Error>;
72
73 /// Watch for status changes of all known services.
74 fn watch_services(&self) -> BoxStream<'static, Result<ServiceEvent, anyhow::Error>>;
75
76 /// Gets resource usage metrics for all processes associated with a service.
77 ///
78 /// Returns `Err` if the entire process failed. Returns `Ok(v)` otherwise,
79 /// with one element in `v` for each process of the service,
80 /// even in not all metrics could be collected for all processes.
81 /// In such a case, the corresponding fields of `ServiceProcessMetrics` will be `None`.
82 async fn fetch_service_metrics(
83 &self,
84 id: &str,
85 ) -> Result<Vec<ServiceProcessMetrics>, anyhow::Error>;
86
87 fn update_scheduling_config(&self, config: scheduling_config::ServiceSchedulingConfig);
88}
89
90/// An event describing a status change of an orchestrated service.
91#[derive(Debug, Clone, Serialize)]
92pub struct ServiceEvent {
93 pub service_id: String,
94 pub process_id: u64,
95 pub status: ServiceStatus,
96 pub time: DateTime<Utc>,
97}
98
99/// Why the service is not ready, if known
100#[derive(Debug, Clone, Copy, Serialize, Eq, PartialEq)]
101pub enum OfflineReason {
102 OomKilled,
103 Initializing,
104}
105
106impl fmt::Display for OfflineReason {
107 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
108 match self {
109 OfflineReason::OomKilled => f.write_str("oom-killed"),
110 OfflineReason::Initializing => f.write_str("initializing"),
111 }
112 }
113}
114
115/// Describes the status of an orchestrated service.
116#[derive(Debug, Clone, Copy, Serialize, Eq, PartialEq)]
117pub enum ServiceStatus {
118 /// Service is ready to accept requests.
119 Online,
120 /// Service is not ready to accept requests.
121 /// The inner element is `None` if the reason
122 /// is unknown
123 Offline(Option<OfflineReason>),
124}
125
126impl ServiceStatus {
127 /// Returns the service status as a kebab-case string.
128 pub fn as_kebab_case_str(&self) -> &'static str {
129 match self {
130 ServiceStatus::Online => "online",
131 ServiceStatus::Offline(_) => "offline",
132 }
133 }
134}
135
136/// Describes a running service managed by an `Orchestrator`.
137pub trait Service: fmt::Debug + Send + Sync {
138 /// Given the name of a port, returns the addresses for each of the
139 /// service's processes, in order.
140 ///
141 /// Panics if `port` does not name a valid port.
142 fn addresses(&self, port: &str) -> Vec<String>;
143
144 /// Given the name of a port, returns TCP-accessible addresses for each of
145 /// the service's processes, in order.
146 ///
147 /// This method is used when HTTP/TCP connectivity is needed (e.g., for
148 /// proxying HTTP requests). For orchestrators that use Unix sockets
149 /// internally (like the process orchestrator), this returns the TCP proxy
150 /// addresses instead of the socket paths.
151 ///
152 /// The default implementation returns the same as `addresses()`, which is
153 /// appropriate for orchestrators that already use TCP addresses (like
154 /// Kubernetes).
155 ///
156 /// Panics if `port` does not name a valid port.
157 fn tcp_addresses(&self, port: &str) -> Vec<String> {
158 self.addresses(port)
159 }
160}
161
162#[derive(Copy, Clone, Debug, Default, Serialize, Deserialize, Eq, PartialEq)]
163pub struct ServiceProcessMetrics {
164 pub cpu_nano_cores: Option<u64>,
165 pub memory_bytes: Option<u64>,
166 pub disk_bytes: Option<u64>,
167 pub heap_bytes: Option<u64>,
168 pub heap_limit: Option<u64>,
169}
170
171/// A simple language for describing assertions about a label's existence and value.
172///
173/// Used by [`LabelSelector`].
174#[derive(Clone, Debug)]
175pub enum LabelSelectionLogic {
176 /// The label exists and its value equals the given value.
177 /// Equivalent to `InSet { values: vec![value] }`
178 Eq { value: String },
179 /// Either the label does not exist, or it exists
180 /// but its value does not equal the given value.
181 /// Equivalent to `NotInSet { values: vec![value] }`
182 NotEq { value: String },
183 /// The label exists.
184 Exists,
185 /// The label does not exist.
186 NotExists,
187 /// The label exists and its value is one of the given values.
188 InSet { values: Vec<String> },
189 /// Either the label does not exist, or it exists
190 /// but its value is not one of the given values.
191 NotInSet { values: Vec<String> },
192}
193
194/// A simple language for describing whether a label
195/// exists and whether the value corresponding to it is in some set.
196/// Intended to correspond to the capabilities offered by Kubernetes label selectors,
197/// but without directly exposing Kubernetes API code to consumers of this module.
198#[derive(Clone, Debug)]
199pub struct LabelSelector {
200 /// The name of the label
201 pub label_name: String,
202 /// An assertion about the existence and value of a label
203 /// named `label_name`
204 pub logic: LabelSelectionLogic,
205}
206
207/// Describes the desired state of a service.
208#[derive(Derivative)]
209#[derivative(Debug)]
210pub struct ServiceConfig {
211 /// An opaque identifier for the executable or container image to run.
212 ///
213 /// Often names a container on Docker Hub or a path on the local machine.
214 pub image: String,
215 /// For the Kubernetes orchestrator, this is an init container to
216 /// configure for the pod running the service.
217 pub init_container_image: Option<String>,
218 /// A function that generates the arguments for each process of the service
219 /// given the assigned listen addresses for each named port.
220 #[derivative(Debug = "ignore")]
221 pub args: Box<dyn Fn(ServiceAssignments) -> Vec<String> + Send + Sync>,
222 /// Ports to expose.
223 pub ports: Vec<ServicePort>,
224 /// An optional limit on the memory that the service can use.
225 pub memory_limit: Option<MemoryLimit>,
226 /// An optional request on the memory that the service can use. If unspecified,
227 /// use the same value as `memory_limit`.
228 pub memory_request: Option<MemoryLimit>,
229 /// An optional limit on the CPU that the service can use.
230 pub cpu_limit: Option<CpuLimit>,
231 /// The number of copies of this service to run.
232 pub scale: NonZero<u16>,
233 /// Arbitrary key–value pairs to attach to the service in the orchestrator
234 /// backend.
235 ///
236 /// The orchestrator backend may apply a prefix to the key if appropriate.
237 pub labels: BTreeMap<String, String>,
238 /// Arbitrary key–value pairs to attach to the service as annotations in the
239 /// orchestrator backend.
240 ///
241 /// The orchestrator backend may apply a prefix to the key if appropriate.
242 pub annotations: BTreeMap<String, String>,
243 /// The availability zones the service can be run in. If no availability
244 /// zones are specified, the orchestrator is free to choose one.
245 pub availability_zones: Option<Vec<String>>,
246 /// A set of label selectors selecting all _other_ services that are replicas of this one.
247 ///
248 /// This may be used to implement anti-affinity. If _all_ such selectors
249 /// match for a given service, this service should not be co-scheduled on
250 /// a machine with that service.
251 ///
252 /// The orchestrator backend may or may not actually implement anti-affinity functionality.
253 pub other_replicas_selector: Vec<LabelSelector>,
254 /// A set of label selectors selecting all services that are replicas of this one,
255 /// including itself.
256 ///
257 /// This may be used to implement placement spread.
258 ///
259 /// The orchestrator backend may or may not actually implement placement spread functionality.
260 pub replicas_selector: Vec<LabelSelector>,
261
262 /// The maximum amount of scratch disk space that the service is allowed to consume.
263 pub disk_limit: Option<DiskLimit>,
264 /// Node selector for this service.
265 pub node_selector: BTreeMap<String, String>,
266}
267
268/// A named port associated with a service.
269#[derive(Debug, Clone, PartialEq, Eq)]
270pub struct ServicePort {
271 /// A descriptive name for the port.
272 ///
273 /// Note that not all orchestrator backends make use of port names.
274 pub name: String,
275 /// The desired port number.
276 ///
277 /// Not all orchestrator backends will make use of the hint.
278 pub port_hint: u16,
279}
280
281/// Assignments that the orchestrator has made for a process in a service.
282#[derive(Clone, Debug)]
283pub struct ServiceAssignments<'a> {
284 /// For each specified [`ServicePort`] name, a listen address.
285 pub listen_addrs: &'a BTreeMap<String, String>,
286 /// The listen addresses of each peer in the service.
287 ///
288 /// The order of peers is significant. Each peer is uniquely identified by its position in the
289 /// list.
290 pub peer_addrs: &'a [BTreeMap<String, String>],
291}
292
293impl ServiceAssignments<'_> {
294 /// Return the peer addresses for the specified [`ServicePort`] name.
295 pub fn peer_addresses(&self, name: &str) -> Vec<String> {
296 self.peer_addrs.iter().map(|a| a[name].clone()).collect()
297 }
298}
299
300/// Describes a limit on memory.
301#[derive(Copy, Clone, Debug, PartialOrd, Eq, Ord, PartialEq)]
302pub struct MemoryLimit(pub ByteSize);
303
304impl MemoryLimit {
305 pub const MAX: Self = Self(ByteSize(u64::MAX));
306}
307
308impl<'de> Deserialize<'de> for MemoryLimit {
309 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
310 where
311 D: Deserializer<'de>,
312 {
313 <String as Deserialize>::deserialize(deserializer)
314 .and_then(|s| {
315 ByteSize::from_str(&s).map_err(|_e| {
316 use serde::de::Error;
317 D::Error::invalid_value(serde::de::Unexpected::Str(&s), &"valid size in bytes")
318 })
319 })
320 .map(MemoryLimit)
321 }
322}
323
324impl Serialize for MemoryLimit {
325 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
326 where
327 S: serde::Serializer,
328 {
329 <String as Serialize>::serialize(&self.0.to_string(), serializer)
330 }
331}
332
333/// Describes a limit on CPU resources.
334#[derive(Debug, Copy, Clone, Eq, Ord, PartialEq, PartialOrd)]
335pub struct CpuLimit {
336 millicpus: usize,
337}
338
339impl CpuLimit {
340 pub const MAX: Self = Self::from_millicpus(usize::MAX / 1_000_000);
341
342 /// Constructs a new CPU limit from a number of millicpus.
343 pub const fn from_millicpus(millicpus: usize) -> CpuLimit {
344 CpuLimit { millicpus }
345 }
346
347 /// Returns the CPU limit in millicpus.
348 pub fn as_millicpus(&self) -> usize {
349 self.millicpus
350 }
351
352 /// Returns the CPU limit in nanocpus.
353 pub fn as_nanocpus(&self) -> u64 {
354 // The largest possible value of a u64 is
355 // 18_446_744_073_709_551_615,
356 // so we won't overflow this
357 // unless we have an instance with
358 // ~18.45 billion cores.
359 //
360 // Such an instance seems unrealistic,
361 // at least until we raise another few rounds
362 // of funding ...
363
364 u64::cast_from(self.millicpus)
365 .checked_mul(1_000_000)
366 .expect("Nano-CPUs must be representable")
367 }
368}
369
370impl<'de> Deserialize<'de> for CpuLimit {
371 // TODO(benesch): remove this once this function no longer makes use of
372 // potentially dangerous `as` conversions.
373 #[allow(clippy::as_conversions)]
374 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
375 where
376 D: serde::Deserializer<'de>,
377 {
378 // Note -- we just round off any precision beyond 0.001 here.
379 let float = f64::deserialize(deserializer)?;
380 let millicpus = (float * 1000.).round();
381 if millicpus < 0. || millicpus > (std::usize::MAX as f64) {
382 use serde::de::Error;
383 Err(D::Error::invalid_value(
384 Unexpected::Float(float),
385 &"a float representing a plausible number of CPUs",
386 ))
387 } else {
388 Ok(Self {
389 millicpus: millicpus as usize,
390 })
391 }
392 }
393}
394
395impl Serialize for CpuLimit {
396 // TODO(benesch): remove this once this function no longer makes use of
397 // potentially dangerous `as` conversions.
398 #[allow(clippy::as_conversions)]
399 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
400 where
401 S: serde::Serializer,
402 {
403 <f64 as Serialize>::serialize(&(self.millicpus as f64 / 1000.0), serializer)
404 }
405}
406
407/// Describes a limit on disk usage.
408#[derive(Copy, Clone, Debug, PartialOrd, Eq, Ord, PartialEq)]
409pub struct DiskLimit(pub ByteSize);
410
411impl DiskLimit {
412 pub const ZERO: Self = Self(ByteSize(0));
413 pub const MAX: Self = Self(ByteSize(u64::MAX));
414 pub const ARBITRARY: Self = Self(ByteSize::gib(1));
415}
416
417impl<'de> Deserialize<'de> for DiskLimit {
418 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
419 where
420 D: Deserializer<'de>,
421 {
422 <String as Deserialize>::deserialize(deserializer)
423 .and_then(|s| {
424 ByteSize::from_str(&s).map_err(|_e| {
425 use serde::de::Error;
426 D::Error::invalid_value(serde::de::Unexpected::Str(&s), &"valid size in bytes")
427 })
428 })
429 .map(DiskLimit)
430 }
431}
432
433impl Serialize for DiskLimit {
434 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
435 where
436 S: serde::Serializer,
437 {
438 <String as Serialize>::serialize(&self.0.to_string(), serializer)
439 }
440}
441
442/// Configuration for how services are scheduled. These may be ignored by orchestrator
443/// implementations.
444pub mod scheduling_config {
445 #[derive(Debug, Clone)]
446 pub struct ServiceTopologySpreadConfig {
447 /// If `true`, enable spread for replicated services.
448 ///
449 /// Defaults to `true`.
450 pub enabled: bool,
451 /// If `true`, ignore services with `scale` > 1 when expressing
452 /// spread constraints.
453 ///
454 /// Default to `true`.
455 pub ignore_non_singular_scale: bool,
456 /// The `maxSkew` for spread constraints.
457 /// See
458 /// <https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/>
459 /// for more details.
460 ///
461 /// Defaults to `1`.
462 pub max_skew: i32,
463 /// The `minDomains` for spread constraints.
464 /// See
465 /// <https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/>
466 /// for more details.
467 ///
468 /// Defaults to None.
469 pub min_domains: Option<i32>,
470 /// If `true`, make the spread constraints into a preference.
471 ///
472 /// Defaults to `false`.
473 pub soft: bool,
474 }
475
476 #[derive(Debug, Clone)]
477 pub struct ServiceSchedulingConfig {
478 /// If `Some`, add a affinity preference with the given
479 /// weight for services that horizontally scale.
480 ///
481 /// Defaults to `Some(100)`.
482 pub multi_pod_az_affinity_weight: Option<i32>,
483 /// If `true`, make the node-scope anti-affinity between
484 /// replicated services a preference over a constraint.
485 ///
486 /// Defaults to `false`.
487 pub soften_replication_anti_affinity: bool,
488 /// The weight for `soften_replication_anti_affinity.
489 ///
490 /// Defaults to `100`.
491 pub soften_replication_anti_affinity_weight: i32,
492 /// Configuration for `TopologySpreadConstraint`'s
493 pub topology_spread: ServiceTopologySpreadConfig,
494 /// If `true`, make the az-scope node affinity soft.
495 ///
496 /// Defaults to `false`.
497 pub soften_az_affinity: bool,
498 /// The weight for `soften_replication_anti_affinity.
499 ///
500 /// Defaults to `100`.
501 pub soften_az_affinity_weight: i32,
502 // Whether to enable security context for the service.
503 pub security_context_enabled: bool,
504 }
505
506 pub const DEFAULT_POD_AZ_AFFINITY_WEIGHT: Option<i32> = Some(100);
507 pub const DEFAULT_SOFTEN_REPLICATION_ANTI_AFFINITY: bool = false;
508 pub const DEFAULT_SOFTEN_REPLICATION_ANTI_AFFINITY_WEIGHT: i32 = 100;
509
510 pub const DEFAULT_TOPOLOGY_SPREAD_ENABLED: bool = true;
511 pub const DEFAULT_TOPOLOGY_SPREAD_IGNORE_NON_SINGULAR_SCALE: bool = true;
512 pub const DEFAULT_TOPOLOGY_SPREAD_MAX_SKEW: i32 = 1;
513 pub const DEFAULT_TOPOLOGY_SPREAD_MIN_DOMAIN: Option<i32> = None;
514 pub const DEFAULT_TOPOLOGY_SPREAD_SOFT: bool = false;
515
516 pub const DEFAULT_SOFTEN_AZ_AFFINITY: bool = false;
517 pub const DEFAULT_SOFTEN_AZ_AFFINITY_WEIGHT: i32 = 100;
518 pub const DEFAULT_SECURITY_CONTEXT_ENABLED: bool = true;
519
520 impl Default for ServiceSchedulingConfig {
521 fn default() -> Self {
522 ServiceSchedulingConfig {
523 multi_pod_az_affinity_weight: DEFAULT_POD_AZ_AFFINITY_WEIGHT,
524 soften_replication_anti_affinity: DEFAULT_SOFTEN_REPLICATION_ANTI_AFFINITY,
525 soften_replication_anti_affinity_weight:
526 DEFAULT_SOFTEN_REPLICATION_ANTI_AFFINITY_WEIGHT,
527 topology_spread: ServiceTopologySpreadConfig {
528 enabled: DEFAULT_TOPOLOGY_SPREAD_ENABLED,
529 ignore_non_singular_scale: DEFAULT_TOPOLOGY_SPREAD_IGNORE_NON_SINGULAR_SCALE,
530 max_skew: DEFAULT_TOPOLOGY_SPREAD_MAX_SKEW,
531 min_domains: DEFAULT_TOPOLOGY_SPREAD_MIN_DOMAIN,
532 soft: DEFAULT_TOPOLOGY_SPREAD_SOFT,
533 },
534 soften_az_affinity: DEFAULT_SOFTEN_AZ_AFFINITY,
535 soften_az_affinity_weight: DEFAULT_SOFTEN_AZ_AFFINITY_WEIGHT,
536 security_context_enabled: DEFAULT_SECURITY_CONTEXT_ENABLED,
537 }
538 }
539 }
540}