seahash/buffer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
//! A highly optimized version of SeaHash.
use std::slice;
use helper;
/// A SeaHash state.
#[derive(Clone)]
pub struct State {
/// `a`
a: u64,
/// `b`
b: u64,
/// `c`
c: u64,
/// `d`
d: u64,
/// The number of written bytes.
written: u64,
}
impl State {
/// Create a new state vector with some initial values.
pub fn new(a: u64, b: u64, c: u64, d: u64) -> State {
State {
a: a,
b: b,
c: c,
d: d,
written: 0,
}
}
/// Hash a buffer with some seed.
pub fn hash(buf: &[u8], (mut a, mut b, mut c, mut d): (u64, u64, u64, u64)) -> State {
unsafe {
// We use 4 different registers to store seperate hash states, because this allows us
// to update them seperately, and consequently exploiting ILP to update the states in
// parallel.
// The pointer to the current bytes.
let mut ptr = buf.as_ptr();
// The end of the "main segment", i.e. the biggest buffer s.t. the length is divisible
// by 32.
let end_ptr = buf.as_ptr().offset(buf.len() as isize & !0x1F);
while end_ptr > ptr {
// Modern CPUs allow the pointer arithmetic to be done in place, hence not
// introducing tmpvars.
a ^= helper::read_u64(ptr);
b ^= helper::read_u64(ptr.offset(8));
c ^= helper::read_u64(ptr.offset(16));
d ^= helper::read_u64(ptr.offset(24));
// Increment the pointer.
ptr = ptr.offset(32);
// Diffuse the updated registers. We hope that each of these are executed in
// parallel.
a = helper::diffuse(a);
b = helper::diffuse(b);
c = helper::diffuse(c);
d = helper::diffuse(d);
}
// Calculate the number of excessive bytes. These are bytes that could not be handled
// in the loop above.
let mut excessive = buf.len() as usize + buf.as_ptr() as usize - end_ptr as usize;
// Handle the excessive bytes.
match excessive {
0 => {}
1..=7 => {
// 1 or more excessive.
// Write the last excessive bytes (<8 bytes).
a ^= helper::read_int(slice::from_raw_parts(ptr as *const u8, excessive));
// Diffuse.
a = helper::diffuse(a);
}
8 => {
// 8 bytes excessive.
// Mix in the partial block.
a ^= helper::read_u64(ptr);
// Diffuse.
a = helper::diffuse(a);
}
9..=15 => {
// More than 8 bytes excessive.
// Mix in the partial block.
a ^= helper::read_u64(ptr);
// Write the last excessive bytes (<8 bytes).
excessive = excessive - 8;
b ^= helper::read_int(slice::from_raw_parts(ptr.offset(8), excessive));
// Diffuse.
a = helper::diffuse(a);
b = helper::diffuse(b);
}
16 => {
// 16 bytes excessive.
// Mix in the partial block.
a = helper::diffuse(a ^ helper::read_u64(ptr));
b = helper::diffuse(b ^ helper::read_u64(ptr.offset(8)));
}
17..=23 => {
// 16 bytes or more excessive.
// Mix in the partial block.
a ^= helper::read_u64(ptr);
b ^= helper::read_u64(ptr.offset(8));
// Write the last excessive bytes (<8 bytes).
excessive = excessive - 16;
c ^= helper::read_int(slice::from_raw_parts(ptr.offset(16), excessive));
// Diffuse.
a = helper::diffuse(a);
b = helper::diffuse(b);
c = helper::diffuse(c);
}
24 => {
// 24 bytes excessive.
// Mix in the partial block.
a ^= helper::read_u64(ptr);
b ^= helper::read_u64(ptr.offset(8));
c ^= helper::read_u64(ptr.offset(16));
// Diffuse.
a = helper::diffuse(a);
b = helper::diffuse(b);
c = helper::diffuse(c);
}
_ => {
// More than 24 bytes excessive.
// Mix in the partial block.
a ^= helper::read_u64(ptr);
b ^= helper::read_u64(ptr.offset(8));
c ^= helper::read_u64(ptr.offset(16));
// Write the last excessive bytes (<8 bytes).
excessive = excessive - 24;
d ^= helper::read_int(slice::from_raw_parts(ptr.offset(24), excessive));
// Diffuse.
a = helper::diffuse(a);
b = helper::diffuse(b);
c = helper::diffuse(c);
d = helper::diffuse(d);
}
}
}
State {
a: a,
b: b,
c: c,
d: d,
written: buf.len() as u64,
}
}
/// Write another 64-bit integer into the state.
pub fn push(&mut self, x: u64) {
// Mix `x` into `a`.
let a = helper::diffuse(self.a ^ x);
// Rotate around.
// _______________________
// | v
// a <---- b <---- c <---- d
self.a = self.b;
self.b = self.c;
self.c = self.d;
self.d = a;
// Increase the written bytes counter.
self.written += 8;
}
/// Remove the most recently written 64-bit integer from the state.
///
/// Given the value of the most recently written u64 `last`, remove it from the state.
pub fn pop(&mut self, last: u64) {
// Un-mix `last` from `d`. Removes the recently written data.
let d = helper::undiffuse(self.d) ^ last;
// Rotate back.
// _______________________
// v |
// a ----> b ----> c ----> d
self.d = self.c;
self.c = self.b;
self.b = self.a;
self.a = d;
// Decrese the written bytes counter.
self.written -= 8;
}
/// Finalize the state.
#[inline]
pub fn finalize(self) -> u64 {
let State {
written,
mut a,
b,
mut c,
d,
} = self;
// XOR the states together. Even though XOR is commutative, it doesn't matter, because the
// state vector's initial components are mutually distinct, and thus swapping even and odd
// chunks will affect the result, because it is sensitive to the initial condition.
a ^= b;
c ^= d;
a ^= c;
// XOR the number of written bytes in order to make the excessive bytes zero-sensitive
// (without this, two excessive zeros would be equivalent to three excessive zeros). This
// is know as length padding.
a ^= written;
// We diffuse to make the excessive bytes discrete (i.e. small changes shouldn't give small
// changes in the output).
helper::diffuse(a)
}
}
/// Hash some buffer.
///
/// This is a highly optimized implementation of SeaHash. It implements numerous techniques to
/// improve performance:
///
/// - Register allocation: This makes a great deal out of making sure everything fits into
/// registers such that minimal memory accesses are needed. This works quite successfully on most
/// CPUs, and the only time it reads from memory is when it fetches the data of the buffer.
/// - Bulk reads: Like most other good hash functions, we read 8 bytes a time. This obviously
/// improves performance a lot
/// - Independent updates: We make sure very few statements next to each other depends on the
/// other. This means that almost always the CPU will be able to run the instructions in parallel.
/// - Loop unrolling: The hot loop is unrolled such that very little branches (one every 32 bytes)
/// are needed.
///
/// and more.
///
/// The seed of this hash function is prechosen.
pub fn hash(buf: &[u8]) -> u64 {
hash_seeded(
buf,
0x16f11fe89b0d677c,
0xb480a793d8e6c86c,
0x6fe2e5aaf078ebc9,
0x14f994a4c5259381,
)
}
/// Hash some buffer according to a chosen seed.
///
/// The keys are expected to be chosen from a uniform distribution. The keys should be mutually
/// distinct to avoid issues with collisions if the lanes are permuted.
///
/// This is not secure, as [the key can be extracted with a bit of computational
/// work](https://github.com/ticki/tfs/issues/5), as such, it is recommended to have a fallback
/// hash function (adaptive hashing) in the case of hash flooding. It can be considered unbroken if
/// the output is not known (i.e. no malicious party has access to the raw values of the keys, only
/// a permutation thereof).), however I absolutely do not recommend using it for this. If you want
/// to be strict, this should only be used as a layer of obfuscation, such that the fallback (e.g.
/// SipHash) is harder to trigger.
///
/// In the future, I might strengthen the security if possible while having backward compatibility
/// with the default initialization vector.
pub fn hash_seeded(buf: &[u8], a: u64, b: u64, c: u64, d: u64) -> u64 {
State::hash(buf, (a, b, c, d)).finalize()
}
#[cfg(test)]
mod tests {
use super::*;
use reference;
fn hash_match(a: &[u8]) {
assert_eq!(hash(a), reference::hash(a));
assert_eq!(
hash_seeded(a, 1, 1, 1, 1),
reference::hash_seeded(a, 1, 1, 1, 1)
);
assert_eq!(
hash_seeded(a, 500, 2873, 2389, 9283),
reference::hash_seeded(a, 500, 2873, 2389, 9283)
);
assert_eq!(
hash_seeded(a, 238945723984, 872894734, 239478243, 28937498234),
reference::hash_seeded(a, 238945723984, 872894734, 239478243, 28937498234)
);
assert_eq!(
hash_seeded(a, !0, !0, !0, !0),
reference::hash_seeded(a, !0, !0, !0, !0)
);
assert_eq!(
hash_seeded(a, 0, 0, 0, 0),
reference::hash_seeded(a, 0, 0, 0, 0)
);
}
#[test]
#[cfg_attr(miri, ignore)] // very slow to run on miri
fn zero() {
let arr = [0; 4096];
for n in 0..4096 {
hash_match(&arr[0..n]);
}
}
#[test]
fn seq() {
let mut buf = [0; 4096];
for i in 0..4096 {
buf[i] = i as u8;
}
hash_match(&buf);
}
#[test]
fn position_depedent() {
let mut buf1 = [0; 4098];
for i in 0..4098 {
buf1[i] = i as u8;
}
let mut buf2 = [0; 4098];
for i in 0..4098 {
buf2[i] = i as u8 ^ 1;
}
assert!(hash(&buf1) != hash(&buf2));
}
#[test]
fn shakespear() {
hash_match(b"to be or not to be");
hash_match(b"love is a wonderful terrible thing");
}
#[test]
fn zero_senitive() {
assert_ne!(hash(&[1, 2, 3, 4]), hash(&[1, 0, 2, 3, 4]));
assert_ne!(hash(&[1, 2, 3, 4]), hash(&[1, 0, 0, 2, 3, 4]));
assert_ne!(hash(&[1, 2, 3, 4]), hash(&[1, 2, 3, 4, 0]));
assert_ne!(hash(&[1, 2, 3, 4]), hash(&[0, 1, 2, 3, 4]));
assert_ne!(hash(&[0, 0, 0]), hash(&[0, 0, 0, 0, 0]));
}
#[test]
fn not_equal() {
assert_ne!(hash(b"to be or not to be "), hash(b"to be or not to be"));
assert_ne!(hash(b"jkjke"), hash(b"jkjk"));
assert_ne!(hash(b"ijkjke"), hash(b"ijkjk"));
assert_ne!(hash(b"iijkjke"), hash(b"iijkjk"));
assert_ne!(hash(b"iiijkjke"), hash(b"iiijkjk"));
assert_ne!(hash(b"iiiijkjke"), hash(b"iiiijkjk"));
assert_ne!(hash(b"iiiiijkjke"), hash(b"iiiiijkjk"));
assert_ne!(hash(b"iiiiiijkjke"), hash(b"iiiiiijkjk"));
assert_ne!(hash(b"iiiiiiijkjke"), hash(b"iiiiiiijkjk"));
assert_ne!(hash(b"iiiiiiiijkjke"), hash(b"iiiiiiiijkjk"));
assert_ne!(hash(b"ab"), hash(b"bb"));
}
#[test]
fn push() {
let mut state = State::new(1, 2, 3, 4);
state.push(!0);
state.push(0);
assert_eq!(
hash_seeded(
&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0],
1,
2,
3,
4
),
state.finalize()
);
}
#[test]
fn pop() {
let mut state = State::new(1, 2, 3, 4);
state.push(!0);
state.push(0);
state.pop(0);
assert_eq!(
hash_seeded(
&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF],
1,
2,
3,
4
),
state.finalize()
);
}
}