seahash/
buffer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
//! A highly optimized version of SeaHash.

use std::slice;

use helper;

/// A SeaHash state.
#[derive(Clone)]
pub struct State {
    /// `a`
    a: u64,
    /// `b`
    b: u64,
    /// `c`
    c: u64,
    /// `d`
    d: u64,
    /// The number of written bytes.
    written: u64,
}

impl State {
    /// Create a new state vector with some initial values.
    pub fn new(a: u64, b: u64, c: u64, d: u64) -> State {
        State {
            a: a,
            b: b,
            c: c,
            d: d,
            written: 0,
        }
    }

    /// Hash a buffer with some seed.
    pub fn hash(buf: &[u8], (mut a, mut b, mut c, mut d): (u64, u64, u64, u64)) -> State {
        unsafe {
            // We use 4 different registers to store seperate hash states, because this allows us
            // to update them seperately, and consequently exploiting ILP to update the states in
            // parallel.

            // The pointer to the current bytes.
            let mut ptr = buf.as_ptr();
            // The end of the "main segment", i.e. the biggest buffer s.t. the length is divisible
            // by 32.
            let end_ptr = buf.as_ptr().offset(buf.len() as isize & !0x1F);

            while end_ptr > ptr {
                // Modern CPUs allow the pointer arithmetic to be done in place, hence not
                // introducing tmpvars.
                a ^= helper::read_u64(ptr);
                b ^= helper::read_u64(ptr.offset(8));
                c ^= helper::read_u64(ptr.offset(16));
                d ^= helper::read_u64(ptr.offset(24));

                // Increment the pointer.
                ptr = ptr.offset(32);

                // Diffuse the updated registers. We hope that each of these are executed in
                // parallel.
                a = helper::diffuse(a);
                b = helper::diffuse(b);
                c = helper::diffuse(c);
                d = helper::diffuse(d);
            }

            // Calculate the number of excessive bytes. These are bytes that could not be handled
            // in the loop above.
            let mut excessive = buf.len() as usize + buf.as_ptr() as usize - end_ptr as usize;
            // Handle the excessive bytes.
            match excessive {
                0 => {}
                1..=7 => {
                    // 1 or more excessive.

                    // Write the last excessive bytes (<8 bytes).
                    a ^= helper::read_int(slice::from_raw_parts(ptr as *const u8, excessive));

                    // Diffuse.
                    a = helper::diffuse(a);
                }
                8 => {
                    // 8 bytes excessive.

                    // Mix in the partial block.
                    a ^= helper::read_u64(ptr);

                    // Diffuse.
                    a = helper::diffuse(a);
                }
                9..=15 => {
                    // More than 8 bytes excessive.

                    // Mix in the partial block.
                    a ^= helper::read_u64(ptr);

                    // Write the last excessive bytes (<8 bytes).
                    excessive = excessive - 8;
                    b ^= helper::read_int(slice::from_raw_parts(ptr.offset(8), excessive));

                    // Diffuse.
                    a = helper::diffuse(a);
                    b = helper::diffuse(b);
                }
                16 => {
                    // 16 bytes excessive.

                    // Mix in the partial block.
                    a = helper::diffuse(a ^ helper::read_u64(ptr));
                    b = helper::diffuse(b ^ helper::read_u64(ptr.offset(8)));
                }
                17..=23 => {
                    // 16 bytes or more excessive.

                    // Mix in the partial block.
                    a ^= helper::read_u64(ptr);
                    b ^= helper::read_u64(ptr.offset(8));

                    // Write the last excessive bytes (<8 bytes).
                    excessive = excessive - 16;
                    c ^= helper::read_int(slice::from_raw_parts(ptr.offset(16), excessive));

                    // Diffuse.
                    a = helper::diffuse(a);
                    b = helper::diffuse(b);
                    c = helper::diffuse(c);
                }
                24 => {
                    // 24 bytes excessive.

                    // Mix in the partial block.
                    a ^= helper::read_u64(ptr);
                    b ^= helper::read_u64(ptr.offset(8));
                    c ^= helper::read_u64(ptr.offset(16));

                    // Diffuse.
                    a = helper::diffuse(a);
                    b = helper::diffuse(b);
                    c = helper::diffuse(c);
                }
                _ => {
                    // More than 24 bytes excessive.

                    // Mix in the partial block.
                    a ^= helper::read_u64(ptr);
                    b ^= helper::read_u64(ptr.offset(8));
                    c ^= helper::read_u64(ptr.offset(16));

                    // Write the last excessive bytes (<8 bytes).
                    excessive = excessive - 24;
                    d ^= helper::read_int(slice::from_raw_parts(ptr.offset(24), excessive));

                    // Diffuse.
                    a = helper::diffuse(a);
                    b = helper::diffuse(b);
                    c = helper::diffuse(c);
                    d = helper::diffuse(d);
                }
            }
        }

        State {
            a: a,
            b: b,
            c: c,
            d: d,
            written: buf.len() as u64,
        }
    }

    /// Write another 64-bit integer into the state.
    pub fn push(&mut self, x: u64) {
        // Mix `x` into `a`.
        let a = helper::diffuse(self.a ^ x);

        //  Rotate around.
        //  _______________________
        // |                       v
        // a <---- b <---- c <---- d
        self.a = self.b;
        self.b = self.c;
        self.c = self.d;
        self.d = a;

        // Increase the written bytes counter.
        self.written += 8;
    }

    /// Remove the most recently written 64-bit integer from the state.
    ///
    /// Given the value of the most recently written u64 `last`, remove it from the state.
    pub fn pop(&mut self, last: u64) {
        // Un-mix `last` from `d`. Removes the recently written data.
        let d = helper::undiffuse(self.d) ^ last;

        //  Rotate back.
        //  _______________________
        // v                       |
        // a ----> b ----> c ----> d
        self.d = self.c;
        self.c = self.b;
        self.b = self.a;
        self.a = d;

        // Decrese the written bytes counter.
        self.written -= 8;
    }

    /// Finalize the state.
    #[inline]
    pub fn finalize(self) -> u64 {
        let State {
            written,
            mut a,
            b,
            mut c,
            d,
        } = self;

        // XOR the states together. Even though XOR is commutative, it doesn't matter, because the
        // state vector's initial components are mutually distinct, and thus swapping even and odd
        // chunks will affect the result, because it is sensitive to the initial condition.
        a ^= b;
        c ^= d;
        a ^= c;
        // XOR the number of written bytes in order to make the excessive bytes zero-sensitive
        // (without this, two excessive zeros would be equivalent to three excessive zeros). This
        // is know as length padding.
        a ^= written;

        // We diffuse to make the excessive bytes discrete (i.e. small changes shouldn't give small
        // changes in the output).
        helper::diffuse(a)
    }
}

/// Hash some buffer.
///
/// This is a highly optimized implementation of SeaHash. It implements numerous techniques to
/// improve performance:
///
/// - Register allocation: This makes a great deal out of making sure everything fits into
///   registers such that minimal memory accesses are needed. This works quite successfully on most
///   CPUs, and the only time it reads from memory is when it fetches the data of the buffer.
/// - Bulk reads: Like most other good hash functions, we read 8 bytes a time. This obviously
///   improves performance a lot
/// - Independent updates: We make sure very few statements next to each other depends on the
///   other. This means that almost always the CPU will be able to run the instructions in parallel.
/// - Loop unrolling: The hot loop is unrolled such that very little branches (one every 32 bytes)
///   are needed.
///
/// and more.
///
/// The seed of this hash function is prechosen.
pub fn hash(buf: &[u8]) -> u64 {
    hash_seeded(
        buf,
        0x16f11fe89b0d677c,
        0xb480a793d8e6c86c,
        0x6fe2e5aaf078ebc9,
        0x14f994a4c5259381,
    )
}

/// Hash some buffer according to a chosen seed.
///
/// The keys are expected to be chosen from a uniform distribution. The keys should be mutually
/// distinct to avoid issues with collisions if the lanes are permuted.
///
/// This is not secure, as [the key can be extracted with a bit of computational
/// work](https://github.com/ticki/tfs/issues/5), as such, it is recommended to have a fallback
/// hash function (adaptive hashing) in the case of hash flooding. It can be considered unbroken if
/// the output is not known (i.e. no malicious party has access to the raw values of the keys, only
/// a permutation thereof).), however I absolutely do not recommend using it for this. If you want
/// to be strict, this should only be used as a layer of obfuscation, such that the fallback (e.g.
/// SipHash) is harder to trigger.
///
/// In the future, I might strengthen the security if possible while having backward compatibility
/// with the default initialization vector.
pub fn hash_seeded(buf: &[u8], a: u64, b: u64, c: u64, d: u64) -> u64 {
    State::hash(buf, (a, b, c, d)).finalize()
}

#[cfg(test)]
mod tests {
    use super::*;

    use reference;

    fn hash_match(a: &[u8]) {
        assert_eq!(hash(a), reference::hash(a));
        assert_eq!(
            hash_seeded(a, 1, 1, 1, 1),
            reference::hash_seeded(a, 1, 1, 1, 1)
        );
        assert_eq!(
            hash_seeded(a, 500, 2873, 2389, 9283),
            reference::hash_seeded(a, 500, 2873, 2389, 9283)
        );
        assert_eq!(
            hash_seeded(a, 238945723984, 872894734, 239478243, 28937498234),
            reference::hash_seeded(a, 238945723984, 872894734, 239478243, 28937498234)
        );
        assert_eq!(
            hash_seeded(a, !0, !0, !0, !0),
            reference::hash_seeded(a, !0, !0, !0, !0)
        );
        assert_eq!(
            hash_seeded(a, 0, 0, 0, 0),
            reference::hash_seeded(a, 0, 0, 0, 0)
        );
    }

    #[test]
    #[cfg_attr(miri, ignore)] // very slow to run on miri
    fn zero() {
        let arr = [0; 4096];
        for n in 0..4096 {
            hash_match(&arr[0..n]);
        }
    }

    #[test]
    fn seq() {
        let mut buf = [0; 4096];
        for i in 0..4096 {
            buf[i] = i as u8;
        }
        hash_match(&buf);
    }

    #[test]
    fn position_depedent() {
        let mut buf1 = [0; 4098];
        for i in 0..4098 {
            buf1[i] = i as u8;
        }
        let mut buf2 = [0; 4098];
        for i in 0..4098 {
            buf2[i] = i as u8 ^ 1;
        }

        assert!(hash(&buf1) != hash(&buf2));
    }

    #[test]
    fn shakespear() {
        hash_match(b"to be or not to be");
        hash_match(b"love is a wonderful terrible thing");
    }

    #[test]
    fn zero_senitive() {
        assert_ne!(hash(&[1, 2, 3, 4]), hash(&[1, 0, 2, 3, 4]));
        assert_ne!(hash(&[1, 2, 3, 4]), hash(&[1, 0, 0, 2, 3, 4]));
        assert_ne!(hash(&[1, 2, 3, 4]), hash(&[1, 2, 3, 4, 0]));
        assert_ne!(hash(&[1, 2, 3, 4]), hash(&[0, 1, 2, 3, 4]));
        assert_ne!(hash(&[0, 0, 0]), hash(&[0, 0, 0, 0, 0]));
    }

    #[test]
    fn not_equal() {
        assert_ne!(hash(b"to be or not to be "), hash(b"to be or not to be"));
        assert_ne!(hash(b"jkjke"), hash(b"jkjk"));
        assert_ne!(hash(b"ijkjke"), hash(b"ijkjk"));
        assert_ne!(hash(b"iijkjke"), hash(b"iijkjk"));
        assert_ne!(hash(b"iiijkjke"), hash(b"iiijkjk"));
        assert_ne!(hash(b"iiiijkjke"), hash(b"iiiijkjk"));
        assert_ne!(hash(b"iiiiijkjke"), hash(b"iiiiijkjk"));
        assert_ne!(hash(b"iiiiiijkjke"), hash(b"iiiiiijkjk"));
        assert_ne!(hash(b"iiiiiiijkjke"), hash(b"iiiiiiijkjk"));
        assert_ne!(hash(b"iiiiiiiijkjke"), hash(b"iiiiiiiijkjk"));
        assert_ne!(hash(b"ab"), hash(b"bb"));
    }

    #[test]
    fn push() {
        let mut state = State::new(1, 2, 3, 4);
        state.push(!0);
        state.push(0);

        assert_eq!(
            hash_seeded(
                &[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0],
                1,
                2,
                3,
                4
            ),
            state.finalize()
        );
    }

    #[test]
    fn pop() {
        let mut state = State::new(1, 2, 3, 4);
        state.push(!0);
        state.push(0);
        state.pop(0);

        assert_eq!(
            hash_seeded(
                &[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF],
                1,
                2,
                3,
                4
            ),
            state.finalize()
        );
    }
}