1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Projection pushdown
use differential_dataflow::trace::Description;
use mz_dyncfg::{Config, ConfigSet};
use mz_ore::cast::CastFrom;
use mz_persist::indexed::columnar::ColumnarRecordsBuilder;
use mz_persist::indexed::encoding::BlobTraceUpdates;
use mz_persist_types::stats::PartStats;
use mz_persist_types::Codec64;
use mz_proto::RustType;
use timely::progress::{Antichain, Timestamp};
use tracing::debug;
use crate::internal::encoding::LazyInlineBatchPart;
use crate::internal::metrics::Metrics;
use crate::internal::state::{BatchPart, ProtoInlineBatchPart};
pub(crate) const OPTIMIZE_IGNORED_DATA_FETCH: Config<bool> = Config::new(
"persist_optimize_ignored_data_fetch",
true,
"CYA to allow opt-out of a performance optimization to skip fetching ignored data",
);
pub(crate) const OPTIMIZE_IGNORED_DATA_DECODE: Config<bool> = Config::new(
"persist_optimize_ignored_data_decode",
true,
"CYA to allow opt-out of a performance optimization to skip decoding ignored data",
);
/// Information about which columns of persist-stored data may not be needed.
///
/// TODO: This is mostly a placeholder for real projection pushdown, but in the
/// short-term it allows us a special case of projection pushdown: ignoring all
/// non-`Err` data. See [ProjectionPushdown::try_optimize_ignored_data_fetch].
#[derive(Debug, Clone)]
#[allow(rustdoc::private_intra_doc_links)]
pub enum ProjectionPushdown {
/// Fetch all columns.
FetchAll,
/// For data with a top-level error column in the structured representation,
/// ignore all columns except for data in parts that may contain an error.
/// This may seem like a peculiar set of requirements, but it enables the
/// aggressive [Self::try_optimize_ignored_data_fetch] optimization and it
/// corresponds to a common query shape: `SELECT count(*)`.
///
/// This error bit is certainly a bit of an abstraction breakage in the
/// "persist is independent of mz" story, but it should go away when we
/// implement full projection pushdown.
IgnoreAllNonErr {
/// The name of the top-level error column.
err_col_name: &'static str,
/// The `Codec` encoded key corresponding to ignored data.
key_bytes: Vec<u8>,
/// The `Codec` encoded val corresponding to ignored data.
val_bytes: Vec<u8>,
},
}
impl Default for ProjectionPushdown {
fn default() -> Self {
ProjectionPushdown::FetchAll
}
}
impl ProjectionPushdown {
/// If relevant, applies the [Self::IgnoreAllNonErr] projection to a part
/// about to be fetched.
///
/// If a part contains data from entirely before a snapshot `as_of`, and the
/// pushed-down MFP projects to an empty list of columns, and we can prove
/// that the part is error free, then we can use the diff sum from stats
/// instead of loading the data. In this case, we return a `Some` with a
/// replacement [BatchPart]. In all other cases, a None.
///
/// - Summing the diffs in a part is equivalent to projecting the row in
/// each tuple to an empty row and then consolidating. (Which is pretty
/// much how `select count(*)` queries get compiled today.)
/// - If the as-of timestamp falls in the middle of a part, we can just
/// fetch and process the part as normal. The optimization can still
/// provide a speedup for other parts. TODO: We could improve this by
/// keeping track in metadata of the largest timestamp(s) in a hollow
/// part.
pub(crate) fn try_optimize_ignored_data_fetch<T: Timestamp + Codec64>(
&self,
cfg: &ConfigSet,
metrics: &Metrics,
as_of: &Antichain<T>,
desc: &Description<T>,
part: &BatchPart<T>,
) -> Option<BatchPart<T>> {
if !OPTIMIZE_IGNORED_DATA_FETCH.get(cfg) {
return None;
}
let (err_col_name, key_bytes, val_bytes) = match self {
ProjectionPushdown::FetchAll => return None,
ProjectionPushdown::IgnoreAllNonErr {
err_col_name,
key_bytes,
val_bytes,
} => (*err_col_name, key_bytes.as_slice(), val_bytes.as_slice()),
};
let (diffs_sum, stats) = match &part {
BatchPart::Hollow(x) => (x.diffs_sum, x.stats.as_ref()),
BatchPart::Inline { .. } => return None,
};
debug!(
"try_optimize_ignored_data_fetch diffs_sum={:?} as_of={:?} lower={:?} upper={:?}",
// This is only used for debugging, so hack to assume that D is i64.
diffs_sum.map(i64::decode),
as_of.elements(),
desc.lower().elements(),
desc.upper().elements()
);
let as_of = match &as_of.elements() {
&[as_of] => as_of,
_ => return None,
};
let eligible = desc.upper().less_equal(as_of) && desc.since().less_equal(as_of);
if !eligible {
return None;
}
let Some(diffs_sum) = diffs_sum else {
return None;
};
let Some(true) = error_free(stats.map(|x| x.decode()), err_col_name) else {
return None;
};
debug!(
"try_optimize_ignored_data_fetch faked {:?} diffs at ts {:?} skipping fetch of {} bytes",
// This is only used for debugging, so hack to assume that D is i64.
i64::decode(diffs_sum),
as_of,
part.encoded_size_bytes(),
);
metrics.pushdown.parts_faked_count.inc();
metrics
.pushdown
.parts_faked_bytes
.inc_by(u64::cast_from(part.encoded_size_bytes()));
let mut faked_data = ColumnarRecordsBuilder::default();
assert!(faked_data.push(((key_bytes, val_bytes), T::encode(as_of), diffs_sum)));
let updates = BlobTraceUpdates::Row(faked_data.finish(&metrics.columnar)).into_proto();
let faked_data = LazyInlineBatchPart::from(&ProtoInlineBatchPart {
desc: Some(desc.into_proto()),
index: 0,
updates: Some(updates),
});
Some(BatchPart::Inline {
updates: faked_data,
ts_rewrite: None,
schema_id: None,
})
}
}
/// Returns whether the part is provably free of `SourceData(Err(_))`s.
///
/// Will return false if the part is known to contain errors or None if it's
/// unknown.
pub fn error_free(part_stats: Option<PartStats>, err_col_name: &str) -> Option<bool> {
let part_stats = part_stats?;
// Counter-intuitive: We can easily calculate the number of errors that
// were None from the column stats, but not how many were Some. So, what
// we do is count the number of Nones, which is the number of Oks, and
// then subtract that from the total.
let num_results = part_stats.key.len;
// The number of OKs is the number of rows whose error is None.
let num_oks = part_stats
.key
.col(err_col_name)?
.try_as_optional_bytes()
.expect("err column should be a Option<Vec<u8>>")
.none;
Some(num_results == num_oks)
}