1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Projection pushdown

use differential_dataflow::trace::Description;
use mz_dyncfg::{Config, ConfigSet};
use mz_ore::cast::CastFrom;
use mz_persist::indexed::columnar::ColumnarRecordsBuilder;
use mz_persist::indexed::encoding::BlobTraceUpdates;
use mz_persist_types::stats::PartStats;
use mz_persist_types::Codec64;
use mz_proto::RustType;
use timely::progress::{Antichain, Timestamp};
use tracing::debug;

use crate::internal::encoding::LazyInlineBatchPart;
use crate::internal::metrics::Metrics;
use crate::internal::state::{BatchPart, ProtoInlineBatchPart};

pub(crate) const OPTIMIZE_IGNORED_DATA_FETCH: Config<bool> = Config::new(
    "persist_optimize_ignored_data_fetch",
    true,
    "CYA to allow opt-out of a performance optimization to skip fetching ignored data",
);

pub(crate) const OPTIMIZE_IGNORED_DATA_DECODE: Config<bool> = Config::new(
    "persist_optimize_ignored_data_decode",
    true,
    "CYA to allow opt-out of a performance optimization to skip decoding ignored data",
);

/// Information about which columns of persist-stored data may not be needed.
///
/// TODO: This is mostly a placeholder for real projection pushdown, but in the
/// short-term it allows us a special case of projection pushdown: ignoring all
/// non-`Err` data. See [ProjectionPushdown::try_optimize_ignored_data_fetch].
#[derive(Debug, Clone)]
#[allow(rustdoc::private_intra_doc_links)]
pub enum ProjectionPushdown {
    /// Fetch all columns.
    FetchAll,
    /// For data with a top-level error column in the structured representation,
    /// ignore all columns except for data in parts that may contain an error.
    /// This may seem like a peculiar set of requirements, but it enables the
    /// aggressive [Self::try_optimize_ignored_data_fetch] optimization and it
    /// corresponds to a common query shape: `SELECT count(*)`.
    ///
    /// This error bit is certainly a bit of an abstraction breakage in the
    /// "persist is independent of mz" story, but it should go away when we
    /// implement full projection pushdown.
    IgnoreAllNonErr {
        /// The name of the top-level error column.
        err_col_name: &'static str,
        /// The `Codec` encoded key corresponding to ignored data.
        key_bytes: Vec<u8>,
        /// The `Codec` encoded val corresponding to ignored data.
        val_bytes: Vec<u8>,
    },
}

impl Default for ProjectionPushdown {
    fn default() -> Self {
        ProjectionPushdown::FetchAll
    }
}

impl ProjectionPushdown {
    /// If relevant, applies the [Self::IgnoreAllNonErr] projection to a part
    /// about to be fetched.
    ///
    /// If a part contains data from entirely before a snapshot `as_of`, and the
    /// pushed-down MFP projects to an empty list of columns, and we can prove
    /// that the part is error free, then we can use the diff sum from stats
    /// instead of loading the data. In this case, we return a `Some` with a
    /// replacement [BatchPart]. In all other cases, a None.
    ///
    /// - Summing the diffs in a part is equivalent to projecting the row in
    ///   each tuple to an empty row and then consolidating. (Which is pretty
    ///   much how `select count(*)` queries get compiled today.)
    /// - If the as-of timestamp falls in the middle of a part, we can just
    ///   fetch and process the part as normal. The optimization can still
    ///   provide a speedup for other parts. TODO: We could improve this by
    ///   keeping track in metadata of the largest timestamp(s) in a hollow
    ///   part.
    pub(crate) fn try_optimize_ignored_data_fetch<T: Timestamp + Codec64>(
        &self,
        cfg: &ConfigSet,
        metrics: &Metrics,
        as_of: &Antichain<T>,
        desc: &Description<T>,
        part: &BatchPart<T>,
    ) -> Option<BatchPart<T>> {
        if !OPTIMIZE_IGNORED_DATA_FETCH.get(cfg) {
            return None;
        }
        let (err_col_name, key_bytes, val_bytes) = match self {
            ProjectionPushdown::FetchAll => return None,
            ProjectionPushdown::IgnoreAllNonErr {
                err_col_name,
                key_bytes,
                val_bytes,
            } => (*err_col_name, key_bytes.as_slice(), val_bytes.as_slice()),
        };
        let (diffs_sum, stats) = match &part {
            BatchPart::Hollow(x) => (x.diffs_sum, x.stats.as_ref()),
            BatchPart::Inline { .. } => return None,
        };
        debug!(
            "try_optimize_ignored_data_fetch diffs_sum={:?} as_of={:?} lower={:?} upper={:?}",
            // This is only used for debugging, so hack to assume that D is i64.
            diffs_sum.map(i64::decode),
            as_of.elements(),
            desc.lower().elements(),
            desc.upper().elements()
        );
        let as_of = match &as_of.elements() {
            &[as_of] => as_of,
            _ => return None,
        };
        let eligible = desc.upper().less_equal(as_of) && desc.since().less_equal(as_of);
        if !eligible {
            return None;
        }
        let Some(diffs_sum) = diffs_sum else {
            return None;
        };
        let Some(true) = error_free(stats.map(|x| x.decode()), err_col_name) else {
            return None;
        };

        debug!(
            "try_optimize_ignored_data_fetch faked {:?} diffs at ts {:?} skipping fetch of {} bytes",
            // This is only used for debugging, so hack to assume that D is i64.
            i64::decode(diffs_sum),
            as_of,
            part.encoded_size_bytes(),
        );
        metrics.pushdown.parts_faked_count.inc();
        metrics
            .pushdown
            .parts_faked_bytes
            .inc_by(u64::cast_from(part.encoded_size_bytes()));

        let mut faked_data = ColumnarRecordsBuilder::default();
        assert!(faked_data.push(((key_bytes, val_bytes), T::encode(as_of), diffs_sum)));
        let updates = BlobTraceUpdates::Row(faked_data.finish(&metrics.columnar)).into_proto();
        let faked_data = LazyInlineBatchPart::from(&ProtoInlineBatchPart {
            desc: Some(desc.into_proto()),
            index: 0,
            updates: Some(updates),
        });
        Some(BatchPart::Inline {
            updates: faked_data,
            ts_rewrite: None,
            schema_id: None,
        })
    }
}

/// Returns whether the part is provably free of `SourceData(Err(_))`s.
///
/// Will return false if the part is known to contain errors or None if it's
/// unknown.
pub fn error_free(part_stats: Option<PartStats>, err_col_name: &str) -> Option<bool> {
    let part_stats = part_stats?;
    // Counter-intuitive: We can easily calculate the number of errors that
    // were None from the column stats, but not how many were Some. So, what
    // we do is count the number of Nones, which is the number of Oks, and
    // then subtract that from the total.
    let num_results = part_stats.key.len;
    // The number of OKs is the number of rows whose error is None.
    let num_oks = part_stats
        .key
        .col(err_col_name)?
        .try_as_optional_bytes()
        .expect("err column should be a Option<Vec<u8>>")
        .none;
    Some(num_results == num_oks)
}