lz4_flex/block/decompress.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
//! The block decompression algorithm.
use crate::block::{DecompressError, MINMATCH};
use crate::fastcpy_unsafe;
use crate::sink::SliceSink;
use crate::sink::{PtrSink, Sink};
#[allow(unused_imports)]
use alloc::vec::Vec;
/// Copies data to output_ptr by self-referential copy from start and match_length
#[inline]
unsafe fn duplicate(
output_ptr: &mut *mut u8,
output_end: *mut u8,
start: *const u8,
match_length: usize,
) {
// We cannot simply use memcpy or `extend_from_slice`, because these do not allow
// self-referential copies: http://ticki.github.io/img/lz4_runs_encoding_diagram.svg
// Considering that `wild_copy_match_16` can copy up to `16 - 1` extra bytes.
// Defer to `duplicate_overlapping` in case of an overlapping match
// OR the if the wild copy would copy beyond the end of the output.
if (output_ptr.offset_from(start) as usize) < match_length + 16 - 1
|| (output_end.offset_from(*output_ptr) as usize) < match_length + 16 - 1
{
duplicate_overlapping(output_ptr, start, match_length);
} else {
debug_assert!(
output_ptr.add(match_length / 16 * 16 + ((match_length % 16) != 0) as usize * 16)
<= output_end
);
wild_copy_from_src_16(start, *output_ptr, match_length);
*output_ptr = output_ptr.add(match_length);
}
}
#[inline]
fn wild_copy_from_src_16(mut source: *const u8, mut dst_ptr: *mut u8, num_items: usize) {
// Note: if the compiler auto-vectorizes this it'll hurt performance!
// It's not the case for 16 bytes stepsize, but for 8 bytes.
unsafe {
let dst_ptr_end = dst_ptr.add(num_items);
loop {
core::ptr::copy_nonoverlapping(source, dst_ptr, 16);
source = source.add(16);
dst_ptr = dst_ptr.add(16);
if dst_ptr >= dst_ptr_end {
break;
}
}
}
}
/// Copy function, if the data start + match_length overlaps into output_ptr
#[inline]
#[cfg_attr(nightly, optimize(size))] // to avoid loop unrolling
unsafe fn duplicate_overlapping(
output_ptr: &mut *mut u8,
mut start: *const u8,
match_length: usize,
) {
// There is an edge case when output_ptr == start, which causes the decoder to potentially
// expose up to match_length bytes of uninitialized data in the decompression buffer.
// To prevent that we write a dummy zero to output, which will zero out output in such cases.
// This is the same strategy used by the reference C implementation https://github.com/lz4/lz4/pull/772
output_ptr.write(0u8);
let dst_ptr_end = output_ptr.add(match_length);
while output_ptr.add(1) < dst_ptr_end {
// Note that this loop unrolling is done, so that the compiler doesn't do it in a awful
// way.
// Without that the compiler will unroll/auto-vectorize the copy with a lot of branches.
// This is not what we want, as large overlapping copies are not that common.
core::ptr::copy(start, *output_ptr, 1);
start = start.add(1);
*output_ptr = output_ptr.add(1);
core::ptr::copy(start, *output_ptr, 1);
start = start.add(1);
*output_ptr = output_ptr.add(1);
}
if *output_ptr < dst_ptr_end {
core::ptr::copy(start, *output_ptr, 1);
*output_ptr = output_ptr.add(1);
}
}
#[inline]
unsafe fn copy_from_dict(
output_base: *mut u8,
output_ptr: &mut *mut u8,
ext_dict: &[u8],
offset: usize,
match_length: usize,
) -> usize {
// If we're here we know offset > output pos, so we have at least 1 byte to copy from dict
debug_assert!(output_ptr.offset_from(output_base) >= 0);
debug_assert!(offset > output_ptr.offset_from(output_base) as usize);
// If unchecked-decode is not disabled we also know that the offset falls within ext_dict
debug_assert!(ext_dict.len() + output_ptr.offset_from(output_base) as usize >= offset);
let dict_offset = ext_dict.len() + output_ptr.offset_from(output_base) as usize - offset;
// Can't copy past ext_dict len, the match may cross dict and output
let dict_match_length = match_length.min(ext_dict.len() - dict_offset);
// TODO test fastcpy_unsafe
core::ptr::copy_nonoverlapping(
ext_dict.as_ptr().add(dict_offset),
*output_ptr,
dict_match_length,
);
*output_ptr = output_ptr.add(dict_match_length);
dict_match_length
}
/// Read an integer.
///
/// In LZ4, we encode small integers in a way that we can have an arbitrary number of bytes. In
/// particular, we add the bytes repeatedly until we hit a non-0xFF byte. When we do, we add
/// this byte to our sum and terminate the loop.
///
/// # Example
///
/// ```notest
/// 255, 255, 255, 4, 2, 3, 4, 6, 7
/// ```
///
/// is encoded to _255 + 255 + 255 + 4 = 769_. The bytes after the first 4 is ignored, because
/// 4 is the first non-0xFF byte.
#[inline]
fn read_integer_ptr(
input_ptr: &mut *const u8,
_input_ptr_end: *const u8,
) -> Result<u32, DecompressError> {
// We start at zero and count upwards.
let mut n: u32 = 0;
// If this byte takes value 255 (the maximum value it can take), another byte is read
// and added to the sum. This repeats until a byte lower than 255 is read.
loop {
// We add the next byte until we get a byte which we add to the counting variable.
#[cfg(not(feature = "unchecked-decode"))]
{
if *input_ptr >= _input_ptr_end {
return Err(DecompressError::ExpectedAnotherByte);
}
}
let extra = unsafe { input_ptr.read() };
*input_ptr = unsafe { input_ptr.add(1) };
n += extra as u32;
// We continue if we got 255, break otherwise.
if extra != 0xFF {
break;
}
}
// 255, 255, 255, 8
// 111, 111, 111, 101
Ok(n)
}
/// Read a little-endian 16-bit integer from the input stream.
#[inline]
fn read_u16_ptr(input_ptr: &mut *const u8) -> u16 {
let mut num: u16 = 0;
unsafe {
core::ptr::copy_nonoverlapping(*input_ptr, &mut num as *mut u16 as *mut u8, 2);
*input_ptr = input_ptr.add(2);
}
u16::from_le(num)
}
const FIT_TOKEN_MASK_LITERAL: u8 = 0b00001111;
const FIT_TOKEN_MASK_MATCH: u8 = 0b11110000;
#[test]
fn check_token() {
assert!(!does_token_fit(15));
assert!(does_token_fit(14));
assert!(does_token_fit(114));
assert!(!does_token_fit(0b11110000));
assert!(does_token_fit(0b10110000));
}
/// The token consists of two parts, the literal length (upper 4 bits) and match_length (lower 4
/// bits) if the literal length and match_length are both below 15, we don't need to read additional
/// data, so the token does fit the metadata in a single u8.
#[inline]
fn does_token_fit(token: u8) -> bool {
!((token & FIT_TOKEN_MASK_LITERAL) == FIT_TOKEN_MASK_LITERAL
|| (token & FIT_TOKEN_MASK_MATCH) == FIT_TOKEN_MASK_MATCH)
}
/// Decompress all bytes of `input` into `output`.
///
/// Returns the number of bytes written (decompressed) into `output`.
#[inline]
pub(crate) fn decompress_internal<const USE_DICT: bool, S: Sink>(
input: &[u8],
output: &mut S,
ext_dict: &[u8],
) -> Result<usize, DecompressError> {
// Prevent segfault for empty input
if input.is_empty() {
return Err(DecompressError::ExpectedAnotherByte);
}
let ext_dict = if USE_DICT {
ext_dict
} else {
// ensure optimizer knows ext_dict length is 0 if !USE_DICT
debug_assert!(ext_dict.is_empty());
&[]
};
let output_base = unsafe { output.base_mut_ptr() };
let output_end = unsafe { output_base.add(output.capacity()) };
let output_start_pos_ptr = unsafe { output.base_mut_ptr().add(output.pos()) as *mut u8 };
let mut output_ptr = output_start_pos_ptr;
let mut input_ptr = input.as_ptr();
let input_ptr_end = unsafe { input.as_ptr().add(input.len()) };
let safe_distance_from_end = (16 /* literal copy */ + 2 /* u16 match offset */ + 1 /* The next token to read (we can skip the check) */).min(input.len()) ;
let input_ptr_safe = unsafe { input_ptr_end.sub(safe_distance_from_end) };
let safe_output_ptr = unsafe {
let mut output_num_safe_bytes = output
.capacity()
.saturating_sub(16 /* literal copy */ + 18 /* match copy */);
if USE_DICT {
// In the dictionary case the output pointer is moved by the match length in the dictionary.
// This may be up to 17 bytes without exiting the loop. So we need to ensure that we have
// at least additional 17 bytes of space left in the output buffer in the fast loop.
output_num_safe_bytes = output_num_safe_bytes.saturating_sub(17);
};
output_base.add(output_num_safe_bytes)
};
// Exhaust the decoder by reading and decompressing all blocks until the remaining buffer is
// empty.
loop {
// Read the token. The token is the first byte in a block. It is divided into two 4-bit
// subtokens, the higher and the lower.
// This token contains to 4-bit "fields", a higher and a lower, representing the literals'
// length and the back reference's length, respectively.
let token = unsafe { input_ptr.read() };
input_ptr = unsafe { input_ptr.add(1) };
// Checking for hot-loop.
// In most cases the metadata does fit in a single 1byte token (statistically) and we are in
// a safe-distance to the end. This enables some optimized handling.
//
// Ideally we want to check for safe output pos like: output.pos() <= safe_output_pos; But
// that doesn't work when the safe_output_ptr is == output_ptr due to insufficient
// capacity. So we use `<` instead of `<=`, which covers that case.
if does_token_fit(token)
&& (input_ptr as usize) <= input_ptr_safe as usize
&& output_ptr < safe_output_ptr
{
let literal_length = (token >> 4) as usize;
let mut match_length = MINMATCH + (token & 0xF) as usize;
// output_ptr <= safe_output_ptr should guarantee we have enough space in output
debug_assert!(
unsafe { output_ptr.add(literal_length + match_length) } <= output_end,
"{literal_length} + {match_length} {} wont fit ",
literal_length + match_length
);
// Copy the literal
// The literal is at max 16 bytes, and the is_safe_distance check assures
// that we are far away enough from the end so we can safely copy 16 bytes
unsafe {
core::ptr::copy_nonoverlapping(input_ptr, output_ptr, 16);
input_ptr = input_ptr.add(literal_length);
output_ptr = output_ptr.add(literal_length);
}
// input_ptr <= input_ptr_safe should guarantee we have enough space in input
debug_assert!(input_ptr_end as usize - input_ptr as usize >= 2);
let offset = read_u16_ptr(&mut input_ptr) as usize;
let output_len = unsafe { output_ptr.offset_from(output_base) as usize };
let offset = offset.min(output_len + ext_dict.len());
// Check if part of the match is in the external dict
if USE_DICT && offset > output_len {
let copied = unsafe {
copy_from_dict(output_base, &mut output_ptr, ext_dict, offset, match_length)
};
if copied == match_length {
continue;
}
// match crosses ext_dict and output
match_length -= copied;
}
// Calculate the start of this duplicate segment. At this point offset was already
// checked to be in bounds and the external dictionary copy, if any, was
// already copied and subtracted from match_length.
let start_ptr = unsafe { output_ptr.sub(offset) };
debug_assert!(start_ptr >= output_base);
debug_assert!(start_ptr < output_end);
debug_assert!(unsafe { output_end.offset_from(start_ptr) as usize } >= match_length);
// In this branch we know that match_length is at most 18 (14 + MINMATCH).
// But the blocks can overlap, so make sure they are at least 18 bytes apart
// to enable an optimized copy of 18 bytes.
if offset >= match_length {
unsafe {
// _copy_, not copy_non_overlaping, as it may overlap.
// Compiles to the same assembly on x68_64.
core::ptr::copy(start_ptr, output_ptr, 18);
output_ptr = output_ptr.add(match_length);
}
} else {
unsafe {
duplicate_overlapping(&mut output_ptr, start_ptr, match_length);
}
}
continue;
}
// Now, we read the literals section.
// Literal Section
// If the initial value is 15, it is indicated that another byte will be read and added to
// it
let mut literal_length = (token >> 4) as usize;
if literal_length != 0 {
if literal_length == 15 {
// The literal_length length took the maximal value, indicating that there is more
// than 15 literal_length bytes. We read the extra integer.
literal_length += read_integer_ptr(&mut input_ptr, input_ptr_end)? as usize;
}
#[cfg(not(feature = "unchecked-decode"))]
{
// Check if literal is out of bounds for the input, and if there is enough space on
// the output
if literal_length > input_ptr_end as usize - input_ptr as usize {
return Err(DecompressError::LiteralOutOfBounds);
}
if literal_length > unsafe { output_end.offset_from(output_ptr) as usize } {
return Err(DecompressError::OutputTooSmall {
expected: unsafe { output_ptr.offset_from(output_base) as usize }
+ literal_length,
actual: output.capacity(),
});
}
}
unsafe {
fastcpy_unsafe::slice_copy(input_ptr, output_ptr, literal_length);
output_ptr = output_ptr.add(literal_length);
input_ptr = input_ptr.add(literal_length);
}
}
// If the input stream is emptied, we break out of the loop. This is only the case
// in the end of the stream, since the block is intact otherwise.
if input_ptr >= input_ptr_end {
break;
}
// Read duplicate section
#[cfg(not(feature = "unchecked-decode"))]
{
if (input_ptr_end as usize) - (input_ptr as usize) < 2 {
return Err(DecompressError::ExpectedAnotherByte);
}
}
let offset = read_u16_ptr(&mut input_ptr) as usize;
// Obtain the initial match length. The match length is the length of the duplicate segment
// which will later be copied from data previously decompressed into the output buffer. The
// initial length is derived from the second part of the token (the lower nibble), we read
// earlier. Since having a match length of less than 4 would mean negative compression
// ratio, we start at 4 (MINMATCH).
// The initial match length can maximally be 19 (MINMATCH + 15). As with the literal length,
// this indicates that there are more bytes to read.
let mut match_length = MINMATCH + (token & 0xF) as usize;
if match_length == MINMATCH + 15 {
// The match length took the maximal value, indicating that there is more bytes. We
// read the extra integer.
match_length += read_integer_ptr(&mut input_ptr, input_ptr_end)? as usize;
}
// We now copy from the already decompressed buffer. This allows us for storing duplicates
// by simply referencing the other location.
let output_len = unsafe { output_ptr.offset_from(output_base) as usize };
// We'll do a bounds check except unchecked-decode is enabled.
#[cfg(not(feature = "unchecked-decode"))]
{
if offset > output_len + ext_dict.len() {
return Err(DecompressError::OffsetOutOfBounds);
}
if match_length > unsafe { output_end.offset_from(output_ptr) as usize } {
return Err(DecompressError::OutputTooSmall {
expected: output_len + match_length,
actual: output.capacity(),
});
}
}
if USE_DICT && offset > output_len {
let copied = unsafe {
copy_from_dict(output_base, &mut output_ptr, ext_dict, offset, match_length)
};
if copied == match_length {
#[cfg(not(feature = "unchecked-decode"))]
{
if input_ptr >= input_ptr_end {
return Err(DecompressError::ExpectedAnotherByte);
}
}
continue;
}
// match crosses ext_dict and output
match_length -= copied;
}
// Calculate the start of this duplicate segment. At this point offset was already checked
// to be in bounds and the external dictionary copy, if any, was already copied and
// subtracted from match_length.
let start_ptr = unsafe { output_ptr.sub(offset) };
debug_assert!(start_ptr >= output_base);
debug_assert!(start_ptr < output_end);
debug_assert!(unsafe { output_end.offset_from(start_ptr) as usize } >= match_length);
unsafe {
duplicate(&mut output_ptr, output_end, start_ptr, match_length);
}
#[cfg(not(feature = "unchecked-decode"))]
{
if input_ptr >= input_ptr_end {
return Err(DecompressError::ExpectedAnotherByte);
}
}
}
unsafe {
output.set_pos(output_ptr.offset_from(output_base) as usize);
Ok(output_ptr.offset_from(output_start_pos_ptr) as usize)
}
}
/// Decompress all bytes of `input` into `output`.
/// `output` should be preallocated with a size of of the uncompressed data.
#[inline]
pub fn decompress_into(input: &[u8], output: &mut [u8]) -> Result<usize, DecompressError> {
decompress_internal::<false, _>(input, &mut SliceSink::new(output, 0), b"")
}
/// Decompress all bytes of `input` into `output`.
///
/// Returns the number of bytes written (decompressed) into `output`.
#[inline]
pub fn decompress_into_with_dict(
input: &[u8],
output: &mut [u8],
ext_dict: &[u8],
) -> Result<usize, DecompressError> {
decompress_internal::<true, _>(input, &mut SliceSink::new(output, 0), ext_dict)
}
/// Decompress all bytes of `input` into a new vec.
/// The passed parameter `min_uncompressed_size` needs to be equal or larger than the uncompressed size.
///
/// # Panics
/// May panic if the parameter `min_uncompressed_size` is smaller than the
/// uncompressed data.
#[inline]
pub fn decompress_with_dict(
input: &[u8],
min_uncompressed_size: usize,
ext_dict: &[u8],
) -> Result<Vec<u8>, DecompressError> {
// Allocate a vector to contain the decompressed stream.
let mut vec = Vec::with_capacity(min_uncompressed_size);
let decomp_len =
decompress_internal::<true, _>(input, &mut PtrSink::from_vec(&mut vec, 0), ext_dict)?;
unsafe {
vec.set_len(decomp_len);
}
Ok(vec)
}
/// Decompress all bytes of `input` into a new vec. The first 4 bytes are the uncompressed size in
/// little endian. Can be used in conjunction with `compress_prepend_size`
#[inline]
pub fn decompress_size_prepended(input: &[u8]) -> Result<Vec<u8>, DecompressError> {
let (uncompressed_size, input) = super::uncompressed_size(input)?;
decompress(input, uncompressed_size)
}
/// Decompress all bytes of `input` into a new vec.
/// The passed parameter `min_uncompressed_size` needs to be equal or larger than the uncompressed size.
///
/// # Panics
/// May panic if the parameter `min_uncompressed_size` is smaller than the
/// uncompressed data.
#[inline]
pub fn decompress(input: &[u8], min_uncompressed_size: usize) -> Result<Vec<u8>, DecompressError> {
// Allocate a vector to contain the decompressed stream.
let mut vec = Vec::with_capacity(min_uncompressed_size);
let decomp_len =
decompress_internal::<true, _>(input, &mut PtrSink::from_vec(&mut vec, 0), b"")?;
unsafe {
vec.set_len(decomp_len);
}
Ok(vec)
}
/// Decompress all bytes of `input` into a new vec. The first 4 bytes are the uncompressed size in
/// little endian. Can be used in conjunction with `compress_prepend_size_with_dict`
#[inline]
pub fn decompress_size_prepended_with_dict(
input: &[u8],
ext_dict: &[u8],
) -> Result<Vec<u8>, DecompressError> {
let (uncompressed_size, input) = super::uncompressed_size(input)?;
decompress_with_dict(input, uncompressed_size, ext_dict)
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn all_literal() {
assert_eq!(decompress(&[0x30, b'a', b'4', b'9'], 3).unwrap(), b"a49");
}
// this error test is only valid with checked-decode.
#[cfg(not(feature = "unchecked-decode"))]
#[test]
fn offset_oob() {
decompress(&[0x10, b'a', 2, 0], 4).unwrap_err();
decompress(&[0x40, b'a', 1, 0], 4).unwrap_err();
}
}