flatbuffers/endian_scalar.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
* Copyright 2018 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#![allow(clippy::wrong_self_convention)]
use core::mem::size_of;
mod private {
/// Types that are trivially transmutable are those where any combination of bits
/// represents a valid value of that type
///
/// For example integral types are TriviallyTransmutable as all bit patterns are valid,
/// however, `bool` is not trivially transmutable as only `0` and `1` are valid
pub trait TriviallyTransmutable {}
impl TriviallyTransmutable for i8 {}
impl TriviallyTransmutable for i16 {}
impl TriviallyTransmutable for i32 {}
impl TriviallyTransmutable for i64 {}
impl TriviallyTransmutable for u8 {}
impl TriviallyTransmutable for u16 {}
impl TriviallyTransmutable for u32 {}
impl TriviallyTransmutable for u64 {}
}
/// Trait for values that must be stored in little-endian byte order, but
/// might be represented in memory as big-endian. Every type that implements
/// EndianScalar is a valid FlatBuffers scalar value.
///
/// The Rust stdlib does not provide a trait to represent scalars, so this trait
/// serves that purpose, too.
///
/// Note that we do not use the num-traits crate for this, because it provides
/// "too much". For example, num-traits provides i128 support, but that is an
/// invalid FlatBuffers type.
pub trait EndianScalar: Sized + PartialEq + Copy + Clone {
type Scalar: private::TriviallyTransmutable;
fn to_little_endian(self) -> Self::Scalar;
fn from_little_endian(v: Self::Scalar) -> Self;
}
/// Macro for implementing an endian conversion using the stdlib `to_le` and
/// `from_le` functions. This is used for integer types. It is not used for
/// floats, because the `to_le` and `from_le` are not implemented for them in
/// the stdlib.
macro_rules! impl_endian_scalar {
($ty:ident) => {
impl EndianScalar for $ty {
type Scalar = Self;
#[inline]
fn to_little_endian(self) -> Self::Scalar {
Self::to_le(self)
}
#[inline]
fn from_little_endian(v: Self::Scalar) -> Self {
Self::from_le(v)
}
}
};
}
impl_endian_scalar!(u8);
impl_endian_scalar!(i8);
impl_endian_scalar!(u16);
impl_endian_scalar!(u32);
impl_endian_scalar!(u64);
impl_endian_scalar!(i16);
impl_endian_scalar!(i32);
impl_endian_scalar!(i64);
impl EndianScalar for bool {
type Scalar = u8;
fn to_little_endian(self) -> Self::Scalar {
self as u8
}
fn from_little_endian(v: Self::Scalar) -> Self {
v != 0
}
}
impl EndianScalar for f32 {
type Scalar = u32;
/// Convert f32 from host endian-ness to little-endian.
#[inline]
fn to_little_endian(self) -> u32 {
// Floats and Ints have the same endianness on all supported platforms.
// <https://doc.rust-lang.org/std/primitive.f32.html#method.from_bits>
self.to_bits().to_le()
}
/// Convert f32 from little-endian to host endian-ness.
#[inline]
fn from_little_endian(v: u32) -> Self {
// Floats and Ints have the same endianness on all supported platforms.
// <https://doc.rust-lang.org/std/primitive.f32.html#method.from_bits>
f32::from_bits(u32::from_le(v))
}
}
impl EndianScalar for f64 {
type Scalar = u64;
/// Convert f64 from host endian-ness to little-endian.
#[inline]
fn to_little_endian(self) -> u64 {
// Floats and Ints have the same endianness on all supported platforms.
// <https://doc.rust-lang.org/std/primitive.f64.html#method.from_bits>
self.to_bits().to_le()
}
/// Convert f64 from little-endian to host endian-ness.
#[inline]
fn from_little_endian(v: u64) -> Self {
// Floats and Ints have the same endianness on all supported platforms.
// <https://doc.rust-lang.org/std/primitive.f64.html#method.from_bits>
f64::from_bits(u64::from_le(v))
}
}
/// Place an EndianScalar into the provided mutable byte slice. Performs
/// endian conversion, if necessary.
/// # Safety
/// Caller must ensure `s.len() >= size_of::<T>()`
#[inline]
pub unsafe fn emplace_scalar<T: EndianScalar>(s: &mut [u8], x: T) {
let size = size_of::<T::Scalar>();
debug_assert!(
s.len() >= size,
"insufficient capacity for emplace_scalar, needed {} got {}",
size,
s.len()
);
let x_le = x.to_little_endian();
core::ptr::copy_nonoverlapping(
&x_le as *const T::Scalar as *const u8,
s.as_mut_ptr() as *mut u8,
size,
);
}
/// Read an EndianScalar from the provided byte slice at the specified location.
/// Performs endian conversion, if necessary.
/// # Safety
/// Caller must ensure `s.len() >= loc + size_of::<T>()`.
#[inline]
pub unsafe fn read_scalar_at<T: EndianScalar>(s: &[u8], loc: usize) -> T {
read_scalar(&s[loc..])
}
/// Read an EndianScalar from the provided byte slice. Performs endian
/// conversion, if necessary.
/// # Safety
/// Caller must ensure `s.len() > size_of::<T>()`.
#[inline]
pub unsafe fn read_scalar<T: EndianScalar>(s: &[u8]) -> T {
let size = size_of::<T::Scalar>();
debug_assert!(
s.len() >= size,
"insufficient capacity for emplace_scalar, needed {} got {}",
size,
s.len()
);
let mut mem = core::mem::MaybeUninit::<T::Scalar>::uninit();
// Since [u8] has alignment 1, we copy it into T which may have higher alignment.
core::ptr::copy_nonoverlapping(s.as_ptr(), mem.as_mut_ptr() as *mut u8, size);
T::from_little_endian(mem.assume_init())
}