1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
//! The [`Instant`] struct and its associated `impl`s.
use core::borrow::Borrow;
use core::cmp::{Ord, Ordering, PartialEq, PartialOrd};
use core::ops::{Add, Sub};
use core::time::Duration as StdDuration;
use std::time::Instant as StdInstant;
use crate::Duration;
/// A measurement of a monotonically non-decreasing clock. Opaque and useful only with [`Duration`].
///
/// Instants are always guaranteed to be no less than any previously measured instant when created,
/// and are often useful for tasks such as measuring benchmarks or timing how long an operation
/// takes.
///
/// Note, however, that instants are not guaranteed to be **steady**. In other words, each tick of
/// the underlying clock may not be the same length (e.g. some seconds may be longer than others).
/// An instant may jump forwards or experience time dilation (slow down or speed up), but it will
/// never go backwards.
///
/// Instants are opaque types that can only be compared to one another. There is no method to get
/// "the number of seconds" from an instant. Instead, it only allows measuring the duration between
/// two instants (or comparing two instants).
///
/// This implementation allows for operations with signed [`Duration`]s, but is otherwise identical
/// to [`std::time::Instant`].
#[repr(transparent)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Instant(pub StdInstant);
impl Instant {
// region: delegation
/// Returns an `Instant` corresponding to "now".
///
/// ```rust
/// # use time::Instant;
/// println!("{:?}", Instant::now());
/// ```
pub fn now() -> Self {
Self(StdInstant::now())
}
/// Returns the amount of time elapsed since this instant was created. The duration will always
/// be nonnegative if the instant is not synthetically created.
///
/// ```rust
/// # use time::{Instant, ext::{NumericalStdDuration, NumericalDuration}};
/// # use std::thread;
/// let instant = Instant::now();
/// thread::sleep(1.std_milliseconds());
/// assert!(instant.elapsed() >= 1.milliseconds());
/// ```
pub fn elapsed(self) -> Duration {
Self::now() - self
}
// endregion delegation
// region: checked arithmetic
/// Returns `Some(t)` where `t` is the time `self + duration` if `t` can be represented as
/// `Instant` (which means it's inside the bounds of the underlying data structure), `None`
/// otherwise.
///
/// ```rust
/// # use time::{Instant, ext::NumericalDuration};
/// let now = Instant::now();
/// assert_eq!(now.checked_add(5.seconds()), Some(now + 5.seconds()));
/// assert_eq!(now.checked_add((-5).seconds()), Some(now + (-5).seconds()));
/// ```
pub fn checked_add(self, duration: Duration) -> Option<Self> {
if duration.is_zero() {
Some(self)
} else if duration.is_positive() {
self.0.checked_add(duration.unsigned_abs()).map(Self)
} else {
debug_assert!(duration.is_negative());
self.0.checked_sub(duration.unsigned_abs()).map(Self)
}
}
/// Returns `Some(t)` where `t` is the time `self - duration` if `t` can be represented as
/// `Instant` (which means it's inside the bounds of the underlying data structure), `None`
/// otherwise.
///
/// ```rust
/// # use time::{Instant, ext::NumericalDuration};
/// let now = Instant::now();
/// assert_eq!(now.checked_sub(5.seconds()), Some(now - 5.seconds()));
/// assert_eq!(now.checked_sub((-5).seconds()), Some(now - (-5).seconds()));
/// ```
pub fn checked_sub(self, duration: Duration) -> Option<Self> {
if duration.is_zero() {
Some(self)
} else if duration.is_positive() {
self.0.checked_sub(duration.unsigned_abs()).map(Self)
} else {
debug_assert!(duration.is_negative());
self.0.checked_add(duration.unsigned_abs()).map(Self)
}
}
// endregion checked arithmetic
/// Obtain the inner [`std::time::Instant`].
///
/// ```rust
/// # use time::Instant;
/// let now = Instant::now();
/// assert_eq!(now.into_inner(), now.0);
/// ```
pub const fn into_inner(self) -> StdInstant {
self.0
}
}
// region: trait impls
impl From<StdInstant> for Instant {
fn from(instant: StdInstant) -> Self {
Self(instant)
}
}
impl From<Instant> for StdInstant {
fn from(instant: Instant) -> Self {
instant.0
}
}
impl Sub for Instant {
type Output = Duration;
fn sub(self, other: Self) -> Self::Output {
match self.0.cmp(&other.0) {
Ordering::Equal => Duration::ZERO,
Ordering::Greater => (self.0 - other.0)
.try_into()
.expect("overflow converting `std::time::Duration` to `time::Duration`"),
Ordering::Less => -Duration::try_from(other.0 - self.0)
.expect("overflow converting `std::time::Duration` to `time::Duration`"),
}
}
}
impl Sub<StdInstant> for Instant {
type Output = Duration;
fn sub(self, other: StdInstant) -> Self::Output {
self - Self(other)
}
}
impl Sub<Instant> for StdInstant {
type Output = Duration;
fn sub(self, other: Instant) -> Self::Output {
Instant(self) - other
}
}
impl Add<Duration> for Instant {
type Output = Self;
fn add(self, duration: Duration) -> Self::Output {
if duration.is_positive() {
Self(self.0 + duration.unsigned_abs())
} else if duration.is_negative() {
Self(self.0 - duration.unsigned_abs())
} else {
debug_assert!(duration.is_zero());
self
}
}
}
impl Add<Duration> for StdInstant {
type Output = Self;
fn add(self, duration: Duration) -> Self::Output {
(Instant(self) + duration).0
}
}
impl Add<StdDuration> for Instant {
type Output = Self;
fn add(self, duration: StdDuration) -> Self::Output {
Self(self.0 + duration)
}
}
impl_add_assign!(Instant: Duration, StdDuration);
impl_add_assign!(StdInstant: Duration);
impl Sub<Duration> for Instant {
type Output = Self;
fn sub(self, duration: Duration) -> Self::Output {
if duration.is_positive() {
Self(self.0 - duration.unsigned_abs())
} else if duration.is_negative() {
Self(self.0 + duration.unsigned_abs())
} else {
debug_assert!(duration.is_zero());
self
}
}
}
impl Sub<Duration> for StdInstant {
type Output = Self;
fn sub(self, duration: Duration) -> Self::Output {
(Instant(self) - duration).0
}
}
impl Sub<StdDuration> for Instant {
type Output = Self;
fn sub(self, duration: StdDuration) -> Self::Output {
Self(self.0 - duration)
}
}
impl_sub_assign!(Instant: Duration, StdDuration);
impl_sub_assign!(StdInstant: Duration);
impl PartialEq<StdInstant> for Instant {
fn eq(&self, rhs: &StdInstant) -> bool {
self.0.eq(rhs)
}
}
impl PartialEq<Instant> for StdInstant {
fn eq(&self, rhs: &Instant) -> bool {
self.eq(&rhs.0)
}
}
impl PartialOrd<StdInstant> for Instant {
fn partial_cmp(&self, rhs: &StdInstant) -> Option<Ordering> {
self.0.partial_cmp(rhs)
}
}
impl PartialOrd<Instant> for StdInstant {
fn partial_cmp(&self, rhs: &Instant) -> Option<Ordering> {
self.partial_cmp(&rhs.0)
}
}
impl AsRef<StdInstant> for Instant {
fn as_ref(&self) -> &StdInstant {
&self.0
}
}
impl Borrow<StdInstant> for Instant {
fn borrow(&self) -> &StdInstant {
&self.0
}
}
// endregion trait impls