1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! A continual task presents as something like a `TRIGGER`: it watches some
//! _input_ and whenever it changes at time `T`, executes a SQL txn, writing to
//! some _output_ at the same time `T`. It can also read anything in materialize
//! as a _reference_, most notably including the output.
//!
//! Only reacting to new inputs (and not the full history) makes a CT's
//! rehydration time independent of the size of the inputs (NB this is not true
//! for references), enabling things like writing UPSERT on top of an
//! append-only shard in SQL (ignore the obvious bug with my upsert impl):
//!
//! ```sql
//! CREATE CONTINUAL TASK upsert (key INT, val INT) ON INPUT append_only AS (
//! DELETE FROM upsert WHERE key IN (SELECT key FROM append_only);
//! INSERT INTO upsert SELECT key, max(val) FROM append_only GROUP BY key;
//! )
//! ```
//!
//! Unlike a materialized view, the continual task does not update outputs if
//! references later change. This enables things like auditing:
//!
//! ```sql
//! CREATE CONTINUAL TASK audit_log (count INT8) ON INPUT anomalies AS (
//! INSERT INTO audit_log SELECT * FROM anomalies;
//! )
//! ```
//!
//! Rough implementation overview:
//! - A CT is created and starts at some `start_ts` optionally later dropped and
//! stopped at some `end_ts`.
//! - A CT takes one or more _input_s. These must be persist shards (i.e. TABLE,
//! SOURCE, MV, but not VIEW).
//! - A CT has one or more _output_s. The outputs are (initially) owned by the
//! task and cannot be written to by other parts of the system.
//! - The task is run for each time one of the inputs changes starting at
//! `start_ts`.
//! - It is given the changes in its inputs at time `T` as diffs.
//! - These are presented as two SQL relations with just the inserts/deletes.
//! - NB: A full collection for the input can always be recovered by also
//! using the input as a "reference" (see below) and applying the diffs.
//! - The task logic is expressed as a SQL transaction that does all reads at
//! commits all writes at `T`
//! - The notable exception to this is self-referential reads of the CT
//! output. See below for how that works.
//! - This logic can _reference_ any nameable object in the system, not just the
//! inputs.
//! - However, the logic/transaction can mutate only the outputs.
//! - Summary of differences between inputs and references:
//! - The task receives snapshot + changes for references (like regular
//! dataflow inputs today) but only changes for inputs.
//! - The task only produces output in response to changes in the inputs but
//! not in response to changes in the references.
//! - Instead of re-evaluating the task logic from scratch for each input time,
//! we maintain the collection representing desired writes to the output(s) as
//! a dataflow.
//! - The task dataflow is tied to a `CLUSTER` and runs on each `REPLICA`.
//! - HA strategy: multi-replica clusters race to commit and the losers throw
//! away the result.
//!
//! ## Self-References
//!
//! Self-references must be handled differently from other reads. When computing
//! the proposed write to some output at `T`, we can only know the contents of
//! it through `T-1` (the exclusive upper is `T`).
//!
//! We address this by initially assuming that the output contains no changes at
//! `T`, then evaluating each of the statements in order, allowing them to see
//! the proposed output changes made by the previous statements. By default,
//! this is stopped after one iteration and proposed output diffs are committed
//! if possible. (We could also add options for iterating to a fixpoint,
//! stop/error after N iters, etc.) Then to compute the changes at `T+1`, we
//! read in what was actually written to the output at `T` (maybe some other
//! replica wrote something different) and begin again.
//!
//! The above is very similar to how timely/differential dataflow iteration
//! works, except that our feedback loop goes through persist and the loop
//! timestamp is already `mz_repr::Timestamp`.
//!
//! This is implemented as follows:
//! - `let I = persist_source(self-reference)`
//! - Transform `I` such that the contents at `T-1` are presented at `T` (i.e.
//! initially assume `T` is unchanged from `T-1`).
//! - TODO(ct3): Actually implement the following.
//! - In an iteration sub-scope:
//! - Bring `I` into the sub-scope and `let proposed = Variable`.
//! - We need a collection that at `(T, 0)` is always the contents of `I` at
//! `T`, but at `(T, 1...)` contains the proposed diffs by the CT logic. We
//! can construct it by concatenating `I` with `proposed` except that we
//! also need to retract everything in `proposed` for the next `(T+1, 0)`
//! (because `I` is the source of truth for what actually committed).
//! - `let R = retract_at_next_outer_ts(proposed)`
//! - `let result = logic(concat(I, proposed, R))`
//! - `proposed.set(result)`
//! - Then we return `proposed.leave()` for attempted write to persist.
//!
//! ## As Ofs and Output Uppers
//!
//! - A continual task is first created with an initial as_of `I`. It is
//! initially rendered at as_of `I==A` but as it makes progress, it may be
//! rendered at later as_ofs `I<A`.
//! - It is required that the output collection springs into existence at `I`
//! (i.e. receives the initial contents at `I`).
//! - For a snapshot CT, the full contents of the input at `I` are run through
//! the CT logic and written at `I`.
//! - For a non-snapshot CT, the collection is defined to be empty at `I`
//! (i.e. if the input happened to be written exactly at `I`, we'd ignore
//! it) and then start writing at `I+1`.
//! - As documented in [DataflowDescription::as_of], `A` is the time we render
//! the inputs.
//! - An MV with an as_of of `A` will both have inputs rendered at `A` and
//! also the first time it could write is also `A`.
//! - A CT is the same on the initial render (`I==A`), but on renders after it
//! has made progress (`I<A`) the first time that it could potentially
//! write is `A+1`. This is because a persist_source started with
//! SnapshotMode::Exclude can only start emitting diffs at `as_of+1`.
//! - As a result, we hold back the since on inputs to be strictly less than
//! the upper of the output. (This is only necessary for CTs, but we also do
//! it for MVs to avoid the special case.)
//! - For CT "inputs" (which are disallowed from being the output), we render
//! the persist_source with as_of `A`.
//! - When `I==A` we include the snapshot iff the snapshot option is used.
//! - When `I<A` we always exclude the snapshot. It would be unnecessary and
//! this is an absolutely critical performance optimization to make CT
//! rehydration times independent of input size.
//! - For CT "references", we render the persist_source with as_of `A` and
//! always include the snapshot.
//! - There is one subtlety: self-references on the initial render. We need
//! the contents to be available at `A-1`, so that we can do the
//! step_forward described above to get it at `A`. However, the collection
//! springs into existence at `I`, so we when `I==A`, we're not allowed to
//! read it as_of `A-1` (the since of the shard may have advanced past
//! that). We address this by rendering the persist_source as normal at
//! `A`. On startup, persist_source immediately downgrades its frontier to
//! `A` (making `A-1` readable). Combined with step_forward, this is
//! enough to unblock the CT self-reference. We do however have to tweak
//! the `suppress_early_progress` operator to use `A-1` instead of `A` for
//! this case.
//! - On subsequent renders, self-references work as normal.
use std::any::Any;
use std::cell::RefCell;
use std::collections::BTreeSet;
use std::rc::Rc;
use std::sync::Arc;
use differential_dataflow::consolidation::ConsolidatingContainerBuilder;
use differential_dataflow::difference::Semigroup;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::{AsCollection, Collection, Hashable};
use futures::{Future, FutureExt, StreamExt};
use mz_compute_types::dataflows::DataflowDescription;
use mz_compute_types::sinks::{ComputeSinkConnection, ComputeSinkDesc, ContinualTaskConnection};
use mz_ore::cast::CastFrom;
use mz_ore::collections::HashMap;
use mz_persist_client::error::UpperMismatch;
use mz_persist_client::operators::shard_source::SnapshotMode;
use mz_persist_client::write::WriteHandle;
use mz_persist_client::Diagnostics;
use mz_persist_types::codec_impls::UnitSchema;
use mz_repr::{Diff, GlobalId, Row, Timestamp};
use mz_storage_types::controller::CollectionMetadata;
use mz_storage_types::errors::DataflowError;
use mz_storage_types::sources::SourceData;
use mz_timely_util::builder_async::{Button, Event, OperatorBuilder as AsyncOperatorBuilder};
use mz_timely_util::operator::CollectionExt;
use timely::dataflow::channels::pact::{Exchange, Pipeline};
use timely::dataflow::operators::generic::builder_rc::OperatorBuilder;
use timely::dataflow::operators::{Filter, FrontierNotificator, Map, Operator};
use timely::dataflow::{ProbeHandle, Scope};
use timely::progress::frontier::AntichainRef;
use timely::progress::{Antichain, Timestamp as _};
use timely::{Data, PartialOrder};
use tracing::debug;
use crate::compute_state::ComputeState;
use crate::render::sinks::SinkRender;
use crate::render::StartSignal;
use crate::sink::ConsolidatingVec;
pub(crate) struct ContinualTaskCtx<G: Scope<Timestamp = Timestamp>> {
name: Option<String>,
dataflow_as_of: Option<Antichain<Timestamp>>,
inputs_with_snapshot: Option<bool>,
ct_inputs: BTreeSet<GlobalId>,
ct_outputs: BTreeSet<GlobalId>,
pub ct_times: Vec<Collection<G, (), Diff>>,
}
/// An encapsulation of the transformation logic necessary on data coming into a
/// continual task.
///
/// NB: In continual task jargon, an "input" contains diffs and a "reference" is
/// a normal source/collection.
pub(crate) enum ContinualTaskSourceTransformer {
/// A collection containing, at each time T, exactly the inserts at time T
/// in the transformed collection.
///
/// For example:
/// - Input: {} at 0, {1} at 1, {1} at 2, ...
/// - Output: {} at 0, {1} at 1, {} at 2, ...
///
/// We'll presumably have the same for deletes eventually, but it's not
/// exposed in the SQL frontend yet.
InsertsInput {
source_id: GlobalId,
with_snapshot: bool,
},
/// A self-reference to the continual task's output. This is essentially a
/// timely feedback loop via the persist shard. See module rustdoc for how
/// this works.
SelfReference { source_id: GlobalId },
/// A normal collection (no-op transformation).
NormalReference,
}
impl ContinualTaskSourceTransformer {
/// The persist_source `SnapshotMode` to use when reading this source.
pub fn snapshot_mode(&self) -> SnapshotMode {
use ContinualTaskSourceTransformer::*;
match self {
InsertsInput {
with_snapshot: false,
..
} => SnapshotMode::Exclude,
InsertsInput {
with_snapshot: true,
..
}
| SelfReference { .. }
| NormalReference => SnapshotMode::Include,
}
}
/// Returns the as_of to use with the suppress_early_progress operator for
/// this source. See the module rustdoc for context.
pub fn suppress_early_progress_as_of(
&self,
as_of: Antichain<Timestamp>,
) -> Antichain<Timestamp> {
use ContinualTaskSourceTransformer::*;
match self {
InsertsInput { .. } => as_of,
SelfReference { .. } => as_of
.iter()
.map(|x| x.step_back().unwrap_or_else(Timestamp::minimum))
.collect(),
NormalReference => as_of,
}
}
/// Performs the necessary transformation on the source collection.
///
/// Returns the transformed "oks" and "errs" collections. Also returns the
/// appropriate `ct_times` collection used to inform the sink which times
/// were changed in the inputs.
pub fn transform<S: Scope<Timestamp = Timestamp>>(
&self,
oks: Collection<S, Row, Diff>,
errs: Collection<S, DataflowError, Diff>,
) -> (
Collection<S, Row, Diff>,
Collection<S, DataflowError, Diff>,
Collection<S, (), Diff>,
) {
use ContinualTaskSourceTransformer::*;
match self {
// Make a collection s.t, for each time T in the input, the output
// contains the inserts at T.
InsertsInput { source_id, .. } => {
let name = source_id.to_string();
// Keep only the inserts.
let oks = oks.inner.filter(|(_, _, diff)| *diff > 0);
// Grab the original times for use in the sink operator.
let (oks, times) = oks.as_collection().times_extract(&name);
// Then retract everything at the next timestamp.
let oks = oks.inner.flat_map(|(row, ts, diff)| {
let retract_ts = ts.step_forward();
let negation = -diff;
[(row.clone(), ts, diff), (row, retract_ts, negation)]
});
(oks.as_collection(), errs, times)
}
NormalReference => {
let times = Collection::empty(&oks.scope());
(oks, errs, times)
}
// When computing an self-referential output at `T`, start by
// assuming there are no changes from the contents at `T-1`. See the
// module rustdoc for how this fits into the larger picture.
SelfReference { source_id } => {
let name = source_id.to_string();
let times = Collection::empty(&oks.scope());
// step_forward will panic at runtime if it receives a data or
// capability with a time that cannot be stepped forward (i.e.
// because it is already the max). We're safe here because this
// is stepping `T-1` forward to `T`.
let oks = oks.step_forward(&name);
let errs = errs.step_forward(&name);
(oks, errs, times)
}
}
}
}
impl<G: Scope<Timestamp = Timestamp>> ContinualTaskCtx<G> {
pub fn new<P, S>(dataflow: &DataflowDescription<P, S, Timestamp>) -> Self {
let mut name = None;
let mut ct_inputs = BTreeSet::new();
let mut ct_outputs = BTreeSet::new();
let mut inputs_with_snapshot = None;
for (sink_id, sink) in &dataflow.sink_exports {
match &sink.connection {
ComputeSinkConnection::ContinualTask(ContinualTaskConnection {
input_id, ..
}) => {
ct_outputs.insert(*sink_id);
ct_inputs.insert(*input_id);
// There's only one CT sink per dataflow at this point.
assert_eq!(name, None);
name = Some(sink_id.to_string());
assert_eq!(inputs_with_snapshot, None);
match (
sink.with_snapshot,
dataflow.as_of.as_ref(),
dataflow.initial_storage_as_of.as_ref(),
) {
// User specified no snapshot when creating the CT.
(false, _, _) => inputs_with_snapshot = Some(false),
// User specified a snapshot but we're past the initial
// as_of.
(true, Some(as_of), Some(initial_as_of))
if PartialOrder::less_than(initial_as_of, as_of) =>
{
inputs_with_snapshot = Some(false)
}
// User specified a snapshot and we're either at the
// initial creation, or we don't know (builtin CTs). If
// we don't know, it's always safe to fall back to
// snapshotting, at worst it's wasted work and will get
// filtered.
(true, _, _) => inputs_with_snapshot = Some(true),
}
}
_ => continue,
}
}
let mut ret = ContinualTaskCtx {
name,
dataflow_as_of: None,
inputs_with_snapshot,
ct_inputs,
ct_outputs,
ct_times: Vec::new(),
};
// Only clone the as_of if we're in a CT dataflow.
if ret.is_ct_dataflow() {
ret.dataflow_as_of = dataflow.as_of.clone();
// Sanity check that we have a name if we're in a CT dataflow.
assert!(ret.name.is_some());
}
ret
}
pub fn is_ct_dataflow(&self) -> bool {
// Inputs are non-empty iff outputs are non-empty.
assert_eq!(self.ct_inputs.is_empty(), self.ct_outputs.is_empty());
!self.ct_outputs.is_empty()
}
pub fn get_ct_source_transformer(
&self,
source_id: GlobalId,
) -> Option<ContinualTaskSourceTransformer> {
let Some(inputs_with_snapshot) = self.inputs_with_snapshot else {
return None;
};
let transformer = match (
self.ct_inputs.contains(&source_id),
self.ct_outputs.contains(&source_id),
) {
(false, false) => ContinualTaskSourceTransformer::NormalReference,
(false, true) => ContinualTaskSourceTransformer::SelfReference { source_id },
(true, false) => ContinualTaskSourceTransformer::InsertsInput {
source_id,
with_snapshot: inputs_with_snapshot,
},
(true, true) => panic!("ct output is not allowed to be an input"),
};
Some(transformer)
}
pub fn input_times(&self, scope: &G) -> Option<Collection<G, (), Diff>> {
// We have a name iff this is a CT dataflow.
assert_eq!(self.is_ct_dataflow(), self.name.is_some());
let Some(name) = self.name.as_ref() else {
return None;
};
// Note that self.ct_times might be empty (if the user didn't reference
// the input), but this still does the correct, though maybe useless,
// thing: no diffs coming into the input means no times to write at.
let ct_times = differential_dataflow::collection::concatenate(
&mut scope.clone(),
self.ct_times.iter().cloned(),
);
// Reduce this down to one update per-time-per-worker before exchanging
// it, so we don't waste work on unnecessarily high data volumes.
let ct_times = ct_times.times_reduce(name);
Some(ct_times)
}
}
impl<G> SinkRender<G> for ContinualTaskConnection<CollectionMetadata>
where
G: Scope<Timestamp = Timestamp>,
{
fn render_sink(
&self,
compute_state: &mut ComputeState,
_sink: &ComputeSinkDesc<CollectionMetadata>,
sink_id: GlobalId,
as_of: Antichain<Timestamp>,
start_signal: StartSignal,
oks: Collection<G, Row, Diff>,
errs: Collection<G, DataflowError, Diff>,
append_times: Option<Collection<G, (), Diff>>,
) -> Option<Rc<dyn Any>> {
let name = sink_id.to_string();
let to_append = oks
.map(|x| SourceData(Ok(x)))
.concat(&errs.map(|x| SourceData(Err(x))));
let append_times = append_times.expect("should be provided by ContinualTaskCtx");
let write_handle = {
let clients = Arc::clone(&compute_state.persist_clients);
let metadata = self.storage_metadata.clone();
let handle_purpose = format!("ct_sink({})", name);
async move {
let client = clients
.open(metadata.persist_location)
.await
.expect("valid location");
client
.open_writer(
metadata.data_shard,
metadata.relation_desc.into(),
UnitSchema.into(),
Diagnostics {
shard_name: sink_id.to_string(),
handle_purpose,
},
)
.await
.expect("codecs should match")
}
};
let collection = compute_state.expect_collection_mut(sink_id);
let mut probe = ProbeHandle::default();
let to_append = to_append.probe_with(&mut probe);
collection.compute_probe = Some(probe);
let sink_write_frontier = Rc::new(RefCell::new(Antichain::from_elem(Timestamp::minimum())));
collection.sink_write_frontier = Some(Rc::clone(&sink_write_frontier));
// TODO(ct1): Obey `compute_state.read_only_rx`
//
// Seemingly, the read-only env needs to tail the output shard and keep
// historical updates around until it sees that the output frontier
// advances beyond their times.
let sink_button = continual_task_sink(
&name,
to_append,
append_times,
as_of,
write_handle,
start_signal,
sink_write_frontier,
);
Some(Rc::new(sink_button.press_on_drop()))
}
}
fn continual_task_sink<G: Scope<Timestamp = Timestamp>>(
name: &str,
to_append: Collection<G, SourceData, Diff>,
append_times: Collection<G, (), Diff>,
as_of: Antichain<Timestamp>,
write_handle: impl Future<Output = WriteHandle<SourceData, (), Timestamp, Diff>> + Send + 'static,
start_signal: StartSignal,
output_frontier: Rc<RefCell<Antichain<Timestamp>>>,
) -> Button {
let scope = to_append.scope();
let mut op = AsyncOperatorBuilder::new(format!("ct_sink({})", name), scope.clone());
// TODO(ct2): This all works perfectly well data parallel (assuming we
// broadcast the append_times). We just need to hook it up to the
// multi-worker persist-sink, but that requires some refactoring. This would
// also remove the need for this to be an async timely operator.
let active_worker = name.hashed();
let to_append_input =
op.new_input_for_many(&to_append.inner, Exchange::new(move |_| active_worker), []);
let append_times_input = op.new_input_for_many(
&append_times.inner,
Exchange::new(move |_| active_worker),
[],
);
let active_worker = usize::cast_from(active_worker) % scope.peers() == scope.index();
let button = op.build(move |_capabilities| async move {
if !active_worker {
output_frontier.borrow_mut().clear();
return;
}
// SUBTLE: The start_signal below may not be unblocked by the compute
// controller until it thinks the inputs are "ready" (i.e. readable at
// the as_of), but if the CT is self-referential, one of the inputs will
// be the output (which starts at `T::minimum()`, not the as_of). To
// break this cycle, before we even get the start signal, go ahead and
// advance the output's (exclusive) upper to the first time that this CT
// might write: `as_of+1`. Because we don't want this to happen on
// restarts, only do it if the upper is `T::minimum()`.
let mut write_handle = write_handle.await;
{
let res = write_handle
.compare_and_append_batch(
&mut [],
Antichain::from_elem(Timestamp::minimum()),
as_of.clone(),
)
.await
.expect("usage was valid");
match res {
// We advanced the upper.
Ok(()) => {}
// Someone else advanced the upper.
Err(UpperMismatch { .. }) => {}
}
}
let () = start_signal.await;
#[derive(Debug)]
enum OpEvent<C> {
ToAppend(Event<Timestamp, C, Vec<(SourceData, Timestamp, Diff)>>),
AppendTimes(Event<Timestamp, C, Vec<((), Timestamp, Diff)>>),
}
impl<C: std::fmt::Debug> OpEvent<C> {
fn apply(self, state: &mut SinkState<SourceData, Timestamp>) {
debug!("ct_sink event {:?}", self);
match self {
OpEvent::ToAppend(Event::Data(_cap, x)) => {
for (k, t, d) in x {
state.to_append.push(((k, t), d));
}
}
OpEvent::ToAppend(Event::Progress(x)) => state.to_append_progress = x,
OpEvent::AppendTimes(Event::Data(_cap, x)) => state
.append_times
.extend(x.into_iter().map(|((), t, _d)| t)),
OpEvent::AppendTimes(Event::Progress(x)) => state.append_times_progress = x,
}
}
}
let to_insert_input = to_append_input.map(OpEvent::ToAppend);
let append_times_input = append_times_input.map(OpEvent::AppendTimes);
let mut op_inputs = futures::stream::select(to_insert_input, append_times_input);
let mut state = SinkState::new();
loop {
// Loop until we've processed all the work we can.
loop {
if PartialOrder::less_than(&*output_frontier.borrow(), &state.output_progress) {
output_frontier.borrow_mut().clear();
output_frontier
.borrow_mut()
.extend(state.output_progress.iter().cloned());
}
debug!("ct_sink about to process {:?}", state);
let Some((new_upper, to_append)) = state.process() else {
break;
};
debug!("ct_sink got write {:?}: {:?}", new_upper, to_append);
state.output_progress =
truncating_compare_and_append(&mut write_handle, to_append, new_upper).await;
}
// Then try to generate some more work by reading inputs.
let Some(event) = op_inputs.next().await else {
// Inputs exhausted, shutting down.
output_frontier.borrow_mut().clear();
return;
};
event.apply(&mut state);
// Also drain any other events that may be ready.
while let Some(Some(event)) = op_inputs.next().now_or_never() {
event.apply(&mut state);
}
}
});
button
}
/// Writes the given data to the shard, truncating it as necessary.
///
/// Returns the latest known upper for the shard.
async fn truncating_compare_and_append(
write_handle: &mut WriteHandle<SourceData, (), Timestamp, Diff>,
to_append: Vec<((&SourceData, &()), &Timestamp, &Diff)>,
new_upper: Antichain<Timestamp>,
) -> Antichain<Timestamp> {
let mut expected_upper = write_handle.shared_upper();
loop {
if !PartialOrder::less_than(&expected_upper, &new_upper) {
debug!("ct_sink skipping {:?}", new_upper.elements());
return expected_upper;
}
let res = write_handle
.compare_and_append(&to_append, expected_upper.clone(), new_upper.clone())
.await
.expect("usage was valid");
debug!(
"ct_sink write res {:?}-{:?}: {:?}",
expected_upper.elements(),
new_upper.elements(),
res
);
match res {
Ok(()) => return new_upper,
Err(err) => {
expected_upper = err.current;
continue;
}
}
}
}
#[derive(Debug)]
struct SinkState<D, T> {
/// The known times at which we're going to write data to the output. This
/// is guaranteed to include all times < append_times_progress, except that
/// ones < output_progress may have been truncated.
append_times: BTreeSet<T>,
append_times_progress: Antichain<T>,
/// The data we've collected to append to the output. This is often
/// compacted to advancing times and is expected to be ~empty in the steady
/// state.
to_append: ConsolidatingVec<(D, T)>,
to_append_progress: Antichain<T>,
/// A lower bound on the upper of the output.
output_progress: Antichain<T>,
}
impl<D: Ord> SinkState<D, Timestamp> {
fn new() -> Self {
SinkState {
append_times: BTreeSet::new(),
append_times_progress: Antichain::from_elem(Timestamp::minimum()),
to_append: ConsolidatingVec::with_min_capacity(128),
to_append_progress: Antichain::from_elem(Timestamp::minimum()),
output_progress: Antichain::from_elem(Timestamp::minimum()),
}
}
/// Returns data to write to the output, if any, and the new upper to use.
fn process(&mut self) -> Option<(Antichain<Timestamp>, Vec<((&D, &()), &Timestamp, &Diff)>)> {
// We can only append at times >= the output_progress, so pop off
// anything unnecessary.
while let Some(x) = self.append_times.first() {
if self.output_progress.less_equal(x) {
break;
}
self.append_times.pop_first();
}
// Find the smallest append_time before append_time_progress. This is
// the next time we might need to write data at. Note that we can only
// act on append_times once the progress has passed them, because they
// could come out of order.
let write_ts = match self.append_times.first() {
Some(x) if !self.append_times_progress.less_equal(x) => x,
Some(_) | None => {
// The CT sink's contract is that it only writes data at times
// we received an input diff. There are none in
// `[output_progress, append_times_progress)`, so we can go
// ahead and advance the upper of the output, if it's not
// already.
//
// We could instead ensure liveness by basing this off of
// to_append, but for any CTs reading the output (expected to be
// a common case) we'd end up looping each timestamp through
// persist one-by-one.
if PartialOrder::less_than(&self.output_progress, &self.append_times_progress) {
return Some((self.append_times_progress.clone(), Vec::new()));
}
// Otherwise, nothing to do!
return None;
}
};
if self.to_append_progress.less_equal(write_ts) {
// Don't have all the necessary data yet.
if self.output_progress.less_than(write_ts) {
// We can advance the output upper up to the write_ts. For
// self-referential CTs this might be necessary to ensure
// dataflow progress.
return Some((Antichain::from_elem(write_ts.clone()), Vec::new()));
}
return None;
}
// Time to write some data! Produce the collection as of write_ts by
// advancing timestamps, consolidating, and filtering out anything at
// future timestamps.
let as_of = &[write_ts.clone()];
for ((_, t), _) in self.to_append.iter_mut() {
t.advance_by(AntichainRef::new(as_of))
}
// TODO(ct2): Metrics for vec len and cap.
self.to_append.consolidate();
let append_data = self
.to_append
.iter()
.filter_map(|((k, t), d)| (t <= write_ts).then_some(((k, &()), t, d)))
.collect();
Some((Antichain::from_elem(write_ts.step_forward()), append_data))
}
}
trait StepForward<G: Scope, D, R> {
/// Translates a collection one timestamp "forward" (i.e. `T` -> `T+1` as
/// defined by `TimestampManipulation::step_forward`).
///
/// This includes:
/// - The differential timestamps in each data.
/// - The capabilities paired with that data.
/// - (As a consequence of the previous) the output frontier is one step forward
/// of the input frontier.
///
/// The caller is responsible for ensuring that all data and capabilities given
/// to this operator can be stepped forward without panicking, otherwise the
/// operator will panic at runtime.
fn step_forward(&self, name: &str) -> Collection<G, D, R>;
}
impl<G, D, R> StepForward<G, D, R> for Collection<G, D, R>
where
G: Scope<Timestamp = Timestamp>,
D: Data,
R: Semigroup + 'static,
{
fn step_forward(&self, name: &str) -> Collection<G, D, R> {
let name = format!("ct_step_forward({})", name);
let mut builder = OperatorBuilder::new(name, self.scope());
let (mut output, output_stream) = builder.new_output();
// We step forward (by one) each data timestamp and capability. As a
// result the output's frontier is guaranteed to be one past the input
// frontier, so make this promise to timely.
let step_forward_summary = Timestamp::from(1);
let mut input = builder.new_input_connection(
&self.inner,
Pipeline,
vec![Antichain::from_elem(step_forward_summary)],
);
builder.set_notify(false);
builder.build(move |_caps| {
move |_frontiers| {
let mut output = output.activate();
while let Some((cap, data)) = input.next() {
for (_, ts, _) in data.iter_mut() {
*ts = ts.step_forward();
}
let cap = cap.delayed(&cap.time().step_forward());
output.session(&cap).give_container(data);
}
}
});
output_stream.as_collection()
}
}
trait TimesExtract<G: Scope, D, R> {
/// Returns a collection with the times changed in the input collection.
///
/// This works by mapping the data piece of the differential tuple to `()`.
/// It is essentially the same as the following, but without cloning
/// everything in the input.
///
/// ```ignore
/// input.map(|(_data, ts, diff)| ((), ts, diff))
/// ```
///
/// The output may be partially consolidated, but no consolidation
/// guarantees are made.
fn times_extract(&self, name: &str) -> (Collection<G, D, R>, Collection<G, (), R>);
}
impl<G, D, R> TimesExtract<G, D, R> for Collection<G, D, R>
where
G: Scope<Timestamp = Timestamp>,
D: Clone + 'static,
R: Semigroup + 'static + std::fmt::Debug,
{
fn times_extract(&self, name: &str) -> (Collection<G, D, R>, Collection<G, (), R>) {
let name = format!("ct_times_extract({})", name);
let mut builder = OperatorBuilder::new(name, self.scope());
let (mut passthrough, passthrough_stream) = builder.new_output();
let (mut times, times_stream) = builder.new_output::<ConsolidatingContainerBuilder<_>>();
let mut input = builder.new_input(&self.inner, Pipeline);
builder.set_notify(false);
builder.build(|_caps| {
move |_frontiers| {
let mut passthrough = passthrough.activate();
let mut times = times.activate();
while let Some((cap, data)) = input.next() {
let times_iter = data.iter().map(|(_data, ts, diff)| ((), *ts, diff.clone()));
times.session_with_builder(&cap).give_iterator(times_iter);
passthrough.session(&cap).give_container(data);
}
}
});
(
passthrough_stream.as_collection(),
times_stream.as_collection(),
)
}
}
trait TimesReduce<G: Scope, R> {
/// This is essentially a specialized impl of consolidate, with a HashMap
/// instead of the Trace.
fn times_reduce(&self, name: &str) -> Collection<G, (), R>;
}
impl<G, R> TimesReduce<G, R> for Collection<G, (), R>
where
G: Scope<Timestamp = Timestamp>,
R: Semigroup + 'static + std::fmt::Debug,
{
fn times_reduce(&self, name: &str) -> Collection<G, (), R> {
let name = format!("ct_times_reduce({})", name);
self.inner
.unary_frontier(Pipeline, &name, |_caps, _info| {
let mut notificator = FrontierNotificator::new();
let mut stash = HashMap::<_, R>::new();
move |input, output| {
while let Some((cap, data)) = input.next() {
for ((), ts, diff) in data.drain(..) {
notificator.notify_at(cap.delayed(&ts));
if let Some(sum) = stash.get_mut(&ts) {
sum.plus_equals(&diff);
} else {
stash.insert(ts, diff);
}
}
}
notificator.for_each(&[input.frontier()], |cap, _not| {
if let Some(diff) = stash.remove(cap.time()) {
output.session(&cap).give(((), cap.time().clone(), diff));
}
});
}
})
.as_collection()
}
}
#[cfg(test)]
mod tests {
use differential_dataflow::AsCollection;
use mz_repr::Timestamp;
use timely::dataflow::operators::capture::Extract;
use timely::dataflow::operators::{Capture, Input, ToStream};
use timely::dataflow::ProbeHandle;
use timely::progress::Antichain;
use timely::Config;
use super::*;
#[mz_ore::test]
fn step_forward() {
timely::execute(Config::thread(), |worker| {
let (mut input, probe, output) = worker.dataflow(|scope| {
let (handle, input) = scope.new_input();
let mut probe = ProbeHandle::<Timestamp>::new();
let output = input
.as_collection()
.step_forward("test")
.probe_with(&mut probe)
.inner
.capture();
(handle, probe, output)
});
let mut expected = Vec::new();
for i in 0u64..10 {
let in_ts = Timestamp::new(i);
let out_ts = in_ts.step_forward();
input.send((i, in_ts, 1));
input.advance_to(in_ts.step_forward());
// We should get the data out advanced by `step_forward` and
// also, crucially, the output frontier should do the same (i.e.
// this is why we can't simply use `Collection::delay`).
worker.step_while(|| probe.less_than(&out_ts.step_forward()));
expected.push((i, out_ts, 1));
}
// Closing the input should allow the output to advance and the
// dataflow to shut down.
input.close();
while worker.step() {}
let actual = output
.extract()
.into_iter()
.flat_map(|x| x.1)
.collect::<Vec<_>>();
assert_eq!(actual, expected);
})
.unwrap();
}
#[mz_ore::test]
fn times_extract() {
struct PanicOnClone;
impl Clone for PanicOnClone {
fn clone(&self) -> Self {
panic!("boom")
}
}
let output = timely::execute_directly(|worker| {
worker.dataflow(|scope| {
let input = [
(PanicOnClone, Timestamp::new(0), 0),
(PanicOnClone, Timestamp::new(1), 1),
(PanicOnClone, Timestamp::new(1), 1),
(PanicOnClone, Timestamp::new(2), -2),
(PanicOnClone, Timestamp::new(2), 1),
]
.to_stream(scope)
.as_collection();
let (_passthrough, times) = input.times_extract("test");
times.inner.capture()
})
});
let expected = vec![((), Timestamp::new(1), 2), ((), Timestamp::new(2), -1)];
let actual = output
.extract()
.into_iter()
.flat_map(|x| x.1)
.collect::<Vec<_>>();
assert_eq!(actual, expected);
}
#[mz_ore::test]
fn times_reduce() {
let output = timely::execute_directly(|worker| {
worker.dataflow(|scope| {
let input = [
((), Timestamp::new(3), 1),
((), Timestamp::new(2), 1),
((), Timestamp::new(1), 1),
((), Timestamp::new(2), 1),
((), Timestamp::new(3), 1),
((), Timestamp::new(3), 1),
]
.to_stream(scope)
.as_collection();
input.times_reduce("test").inner.capture()
})
});
let expected = vec![
((), Timestamp::new(1), 1),
((), Timestamp::new(2), 2),
((), Timestamp::new(3), 3),
];
let actual = output
.extract()
.into_iter()
.flat_map(|x| x.1)
.collect::<Vec<_>>();
assert_eq!(actual, expected);
}
#[mz_ore::test]
fn ct_sink_state() {
#[track_caller]
fn assert_noop(state: &mut super::SinkState<&'static str, Timestamp>) {
if let Some(ret) = state.process() {
panic!("should be nothing to write: {:?}", ret);
}
}
#[track_caller]
fn assert_write(
state: &mut super::SinkState<&'static str, Timestamp>,
expected_upper: u64,
expected_append: &[&str],
) {
let (new_upper, to_append) = state.process().expect("should be something to write");
assert_eq!(
new_upper,
Antichain::from_elem(Timestamp::new(expected_upper))
);
let to_append = to_append
.into_iter()
.map(|((k, ()), _ts, _diff)| *k)
.collect::<Vec<_>>();
assert_eq!(to_append, expected_append);
}
let mut s = super::SinkState::new();
// Nothing to do at the initial state.
assert_noop(&mut s);
// Getting data to append is not enough to do anything yet.
s.to_append.push((("a", 1.into()), 1));
s.to_append.push((("b", 1.into()), 1));
assert_noop(&mut s);
// Knowing that this is the only data we'll get for that timestamp is
// still not enough.
s.to_append_progress = Antichain::from_elem(2.into());
assert_noop(&mut s);
// Even knowing that we got input at that time is not quite enough yet
// (we could be getting these out of order).
s.append_times.insert(1.into());
assert_noop(&mut s);
// Indeed, it did come out of order. Also note that this checks the ==
// case for time vs progress.
s.append_times.insert(0.into());
assert_noop(&mut s);
// Okay, now we know that we've seen all the times we got input up to 3.
// This is enough to allow the empty write of `[0,1)`.
s.append_times_progress = Antichain::from_elem(3.into());
assert_write(&mut s, 1, &[]);
// That succeeded, now we can write the data at 1.
s.output_progress = Antichain::from_elem(1.into());
assert_write(&mut s, 2, &["a", "b"]);
// That succeeded, now we know about some empty time.
s.output_progress = Antichain::from_elem(2.into());
assert_write(&mut s, 3, &[]);
// That succeeded, now nothing to do.
s.output_progress = Antichain::from_elem(3.into());
assert_noop(&mut s);
// Find out about a new time to write at. Even without the data, we can
// do an empty write up to that time.
s.append_times.insert(5.into());
s.append_times_progress = Antichain::from_elem(6.into());
assert_write(&mut s, 5, &[]);
// That succeeded, now nothing to do again.
s.output_progress = Antichain::from_elem(5.into());
// Retract one of the things currently in the collection and add a new
// thing, to verify the consolidate.
s.to_append.push((("a", 5.into()), -1));
s.to_append.push((("c", 5.into()), 1));
s.to_append_progress = Antichain::from_elem(6.into());
assert_write(&mut s, 6, &["b", "c"]);
}
}