mz_compute/render/continual_task.rs
1// Copyright Materialize, Inc. and contributors. All rights reserved.
2//
3// Use of this software is governed by the Business Source License
4// included in the LICENSE file.
5//
6// As of the Change Date specified in that file, in accordance with
7// the Business Source License, use of this software will be governed
8// by the Apache License, Version 2.0.
9
10//! A continual task presents as something like a `TRIGGER`: it watches some
11//! _input_ and whenever it changes at time `T`, executes a SQL txn, writing to
12//! some _output_ at the same time `T`. It can also read anything in materialize
13//! as a _reference_, most notably including the output.
14//!
15//! Only reacting to new inputs (and not the full history) makes a CT's
16//! rehydration time independent of the size of the inputs (NB this is not true
17//! for references), enabling things like writing UPSERT on top of an
18//! append-only shard in SQL (ignore the obvious bug with my upsert impl):
19//!
20//! ```sql
21//! CREATE CONTINUAL TASK upsert (key INT, val INT) ON INPUT append_only AS (
22//! DELETE FROM upsert WHERE key IN (SELECT key FROM append_only);
23//! INSERT INTO upsert SELECT key, max(val) FROM append_only GROUP BY key;
24//! )
25//! ```
26//!
27//! Unlike a materialized view, the continual task does not update outputs if
28//! references later change. This enables things like auditing:
29//!
30//! ```sql
31//! CREATE CONTINUAL TASK audit_log (count INT8) ON INPUT anomalies AS (
32//! INSERT INTO audit_log SELECT * FROM anomalies;
33//! )
34//! ```
35//!
36//! Rough implementation overview:
37//! - A CT is created and starts at some `start_ts` optionally later dropped and
38//! stopped at some `end_ts`.
39//! - A CT takes one or more _input_s. These must be persist shards (i.e. TABLE,
40//! SOURCE, MV, but not VIEW).
41//! - A CT has one or more _output_s. The outputs are (initially) owned by the
42//! task and cannot be written to by other parts of the system.
43//! - The task is run for each time one of the inputs changes starting at
44//! `start_ts`.
45//! - It is given the changes in its inputs at time `T` as diffs.
46//! - These are presented as two SQL relations with just the inserts/deletes.
47//! - NB: A full collection for the input can always be recovered by also
48//! using the input as a "reference" (see below) and applying the diffs.
49//! - The task logic is expressed as a SQL transaction that does all reads at
50//! commits all writes at `T`
51//! - The notable exception to this is self-referential reads of the CT
52//! output. See below for how that works.
53//! - This logic can _reference_ any nameable object in the system, not just the
54//! inputs.
55//! - However, the logic/transaction can mutate only the outputs.
56//! - Summary of differences between inputs and references:
57//! - The task receives snapshot + changes for references (like regular
58//! dataflow inputs today) but only changes for inputs.
59//! - The task only produces output in response to changes in the inputs but
60//! not in response to changes in the references.
61//! - Instead of re-evaluating the task logic from scratch for each input time,
62//! we maintain the collection representing desired writes to the output(s) as
63//! a dataflow.
64//! - The task dataflow is tied to a `CLUSTER` and runs on each `REPLICA`.
65//! - HA strategy: multi-replica clusters race to commit and the losers throw
66//! away the result.
67//!
68//! ## Self-References
69//!
70//! Self-references must be handled differently from other reads. When computing
71//! the proposed write to some output at `T`, we can only know the contents of
72//! it through `T-1` (the exclusive upper is `T`).
73//!
74//! We address this by initially assuming that the output contains no changes at
75//! `T`, then evaluating each of the statements in order, allowing them to see
76//! the proposed output changes made by the previous statements. By default,
77//! this is stopped after one iteration and proposed output diffs are committed
78//! if possible. (We could also add options for iterating to a fixpoint,
79//! stop/error after N iters, etc.) Then to compute the changes at `T+1`, we
80//! read in what was actually written to the output at `T` (maybe some other
81//! replica wrote something different) and begin again.
82//!
83//! The above is very similar to how timely/differential dataflow iteration
84//! works, except that our feedback loop goes through persist and the loop
85//! timestamp is already `mz_repr::Timestamp`.
86//!
87//! This is implemented as follows:
88//! - `let I = persist_source(self-reference)`
89//! - Transform `I` such that the contents at `T-1` are presented at `T` (i.e.
90//! initially assume `T` is unchanged from `T-1`).
91//! - TODO(ct3): Actually implement the following.
92//! - In an iteration sub-scope:
93//! - Bring `I` into the sub-scope and `let proposed = Variable`.
94//! - We need a collection that at `(T, 0)` is always the contents of `I` at
95//! `T`, but at `(T, 1...)` contains the proposed diffs by the CT logic. We
96//! can construct it by concatenating `I` with `proposed` except that we
97//! also need to retract everything in `proposed` for the next `(T+1, 0)`
98//! (because `I` is the source of truth for what actually committed).
99//! - `let R = retract_at_next_outer_ts(proposed)`
100//! - `let result = logic(concat(I, proposed, R))`
101//! - `proposed.set(result)`
102//! - Then we return `proposed.leave()` for attempted write to persist.
103//!
104//! ## As Ofs and Output Uppers
105//!
106//! - A continual task is first created with an initial as_of `I`. It is
107//! initially rendered at as_of `I==A` but as it makes progress, it may be
108//! rendered at later as_ofs `I<A`.
109//! - It is required that the output collection springs into existence at `I`
110//! (i.e. receives the initial contents at `I`).
111//! - For a snapshot CT, the full contents of the input at `I` are run through
112//! the CT logic and written at `I`.
113//! - For a non-snapshot CT, the collection is defined to be empty at `I`
114//! (i.e. if the input happened to be written exactly at `I`, we'd ignore
115//! it) and then start writing at `I+1`.
116//! - As documented in [DataflowDescription::as_of], `A` is the time we render
117//! the inputs.
118//! - An MV with an as_of of `A` will both have inputs rendered at `A` and
119//! also the first time it could write is also `A`.
120//! - A CT is the same on the initial render (`I==A`), but on renders after it
121//! has made progress (`I<A`) the first time that it could potentially
122//! write is `A+1`. This is because a persist_source started with
123//! SnapshotMode::Exclude can only start emitting diffs at `as_of+1`.
124//! - As a result, we hold back the since on inputs to be strictly less than
125//! the upper of the output. (This is only necessary for CTs, but we also do
126//! it for MVs to avoid the special case.)
127//! - For CT "inputs" (which are disallowed from being the output), we render
128//! the persist_source with as_of `A`.
129//! - When `I==A` we include the snapshot iff the snapshot option is used.
130//! - When `I<A` we always exclude the snapshot. It would be unnecessary and
131//! this is an absolutely critical performance optimization to make CT
132//! rehydration times independent of input size.
133//! - For CT "references", we render the persist_source with as_of `A` and
134//! always include the snapshot.
135//! - There is one subtlety: self-references on the initial render. We need
136//! the contents to be available at `A-1`, so that we can do the
137//! step_forward described above to get it at `A`. However, the collection
138//! springs into existence at `I`, so we when `I==A`, we're not allowed to
139//! read it as_of `A-1` (the since of the shard may have advanced past
140//! that). We address this by rendering the persist_source as normal at
141//! `A`. On startup, persist_source immediately downgrades its frontier to
142//! `A` (making `A-1` readable). Combined with step_forward, this is
143//! enough to unblock the CT self-reference. We do however have to tweak
144//! the `suppress_early_progress` operator to use `A-1` instead of `A` for
145//! this case.
146//! - On subsequent renders, self-references work as normal.
147
148use std::any::Any;
149use std::cell::RefCell;
150use std::collections::BTreeSet;
151use std::rc::Rc;
152use std::sync::Arc;
153
154use differential_dataflow::consolidation::ConsolidatingContainerBuilder;
155use differential_dataflow::difference::Semigroup;
156use differential_dataflow::lattice::Lattice;
157use differential_dataflow::{AsCollection, Collection, Hashable};
158use futures::{Future, FutureExt, StreamExt};
159use mz_compute_types::dataflows::DataflowDescription;
160use mz_compute_types::sinks::{ComputeSinkConnection, ComputeSinkDesc, ContinualTaskConnection};
161use mz_ore::cast::CastFrom;
162use mz_ore::collections::HashMap;
163use mz_persist_client::Diagnostics;
164use mz_persist_client::error::UpperMismatch;
165use mz_persist_client::operators::shard_source::SnapshotMode;
166use mz_persist_client::write::WriteHandle;
167use mz_persist_types::codec_impls::UnitSchema;
168use mz_repr::{Diff, GlobalId, Row, Timestamp};
169use mz_storage_types::StorageDiff;
170use mz_storage_types::controller::CollectionMetadata;
171use mz_storage_types::errors::DataflowError;
172use mz_storage_types::sources::SourceData;
173use mz_timely_util::builder_async::{Button, Event, OperatorBuilder as AsyncOperatorBuilder};
174use mz_timely_util::operator::CollectionExt;
175use mz_timely_util::probe;
176use mz_timely_util::probe::ProbeNotify;
177use timely::dataflow::channels::pact::{Exchange, Pipeline};
178use timely::dataflow::operators::generic::builder_rc::OperatorBuilder;
179use timely::dataflow::operators::{Filter, FrontierNotificator, Map, Operator};
180use timely::dataflow::{ProbeHandle, Scope};
181use timely::progress::frontier::AntichainRef;
182use timely::progress::{Antichain, Timestamp as _};
183use timely::{Data, PartialOrder};
184use tracing::debug;
185
186use crate::compute_state::ComputeState;
187use crate::render::StartSignal;
188use crate::render::sinks::SinkRender;
189use crate::sink::ConsolidatingVec;
190
191pub(crate) struct ContinualTaskCtx<G: Scope<Timestamp = Timestamp>> {
192 name: Option<String>,
193 dataflow_as_of: Option<Antichain<Timestamp>>,
194 inputs_with_snapshot: Option<bool>,
195 ct_inputs: BTreeSet<GlobalId>,
196 ct_outputs: BTreeSet<GlobalId>,
197 pub ct_times: Vec<Collection<G, (), Diff>>,
198}
199
200/// An encapsulation of the transformation logic necessary on data coming into a
201/// continual task.
202///
203/// NB: In continual task jargon, an "input" contains diffs and a "reference" is
204/// a normal source/collection.
205pub(crate) enum ContinualTaskSourceTransformer {
206 /// A collection containing, at each time T, exactly the inserts at time T
207 /// in the transformed collection.
208 ///
209 /// For example:
210 /// - Input: {} at 0, {1} at 1, {1} at 2, ...
211 /// - Output: {} at 0, {1} at 1, {} at 2, ...
212 ///
213 /// We'll presumably have the same for deletes eventually, but it's not
214 /// exposed in the SQL frontend yet.
215 InsertsInput {
216 source_id: GlobalId,
217 with_snapshot: bool,
218 },
219 /// A self-reference to the continual task's output. This is essentially a
220 /// timely feedback loop via the persist shard. See module rustdoc for how
221 /// this works.
222 SelfReference { source_id: GlobalId },
223 /// A normal collection (no-op transformation).
224 NormalReference,
225}
226
227impl ContinualTaskSourceTransformer {
228 /// The persist_source `SnapshotMode` to use when reading this source.
229 pub fn snapshot_mode(&self) -> SnapshotMode {
230 use ContinualTaskSourceTransformer::*;
231 match self {
232 InsertsInput {
233 with_snapshot: false,
234 ..
235 } => SnapshotMode::Exclude,
236 InsertsInput {
237 with_snapshot: true,
238 ..
239 }
240 | SelfReference { .. }
241 | NormalReference => SnapshotMode::Include,
242 }
243 }
244
245 /// Returns the as_of to use with the suppress_early_progress operator for
246 /// this source. See the module rustdoc for context.
247 pub fn suppress_early_progress_as_of(
248 &self,
249 as_of: Antichain<Timestamp>,
250 ) -> Antichain<Timestamp> {
251 use ContinualTaskSourceTransformer::*;
252 match self {
253 InsertsInput { .. } => as_of,
254 SelfReference { .. } => as_of
255 .iter()
256 .map(|x| x.step_back().unwrap_or_else(Timestamp::minimum))
257 .collect(),
258 NormalReference => as_of,
259 }
260 }
261
262 /// Performs the necessary transformation on the source collection.
263 ///
264 /// Returns the transformed "oks" and "errs" collections. Also returns the
265 /// appropriate `ct_times` collection used to inform the sink which times
266 /// were changed in the inputs.
267 pub fn transform<S: Scope<Timestamp = Timestamp>>(
268 &self,
269 oks: Collection<S, Row, Diff>,
270 errs: Collection<S, DataflowError, Diff>,
271 ) -> (
272 Collection<S, Row, Diff>,
273 Collection<S, DataflowError, Diff>,
274 Collection<S, (), Diff>,
275 ) {
276 use ContinualTaskSourceTransformer::*;
277 match self {
278 // Make a collection s.t, for each time T in the input, the output
279 // contains the inserts at T.
280 InsertsInput { source_id, .. } => {
281 let name = source_id.to_string();
282 // Keep only the inserts.
283 let oks = oks.inner.filter(|(_, _, diff)| diff.is_positive());
284 // Grab the original times for use in the sink operator.
285 let (oks, times) = oks.as_collection().times_extract(&name);
286 // Then retract everything at the next timestamp.
287 let oks = oks.inner.flat_map(|(row, ts, diff)| {
288 let retract_ts = ts.step_forward();
289 let negation = -diff;
290 [(row.clone(), ts, diff), (row, retract_ts, negation)]
291 });
292 (oks.as_collection(), errs, times)
293 }
294 NormalReference => {
295 let times = Collection::empty(&oks.scope());
296 (oks, errs, times)
297 }
298 // When computing an self-referential output at `T`, start by
299 // assuming there are no changes from the contents at `T-1`. See the
300 // module rustdoc for how this fits into the larger picture.
301 SelfReference { source_id } => {
302 let name = source_id.to_string();
303 let times = Collection::empty(&oks.scope());
304 // step_forward will panic at runtime if it receives a data or
305 // capability with a time that cannot be stepped forward (i.e.
306 // because it is already the max). We're safe here because this
307 // is stepping `T-1` forward to `T`.
308 let oks = oks.step_forward(&name);
309 let errs = errs.step_forward(&name);
310 (oks, errs, times)
311 }
312 }
313 }
314}
315
316impl<G: Scope<Timestamp = Timestamp>> ContinualTaskCtx<G> {
317 pub fn new<P, S>(dataflow: &DataflowDescription<P, S, Timestamp>) -> Self {
318 let mut name = None;
319 let mut ct_inputs = BTreeSet::new();
320 let mut ct_outputs = BTreeSet::new();
321 let mut inputs_with_snapshot = None;
322 for (sink_id, sink) in &dataflow.sink_exports {
323 match &sink.connection {
324 ComputeSinkConnection::ContinualTask(ContinualTaskConnection {
325 input_id, ..
326 }) => {
327 ct_outputs.insert(*sink_id);
328 ct_inputs.insert(*input_id);
329 // There's only one CT sink per dataflow at this point.
330 assert_eq!(name, None);
331 name = Some(sink_id.to_string());
332 assert_eq!(inputs_with_snapshot, None);
333 match (
334 sink.with_snapshot,
335 dataflow.as_of.as_ref(),
336 dataflow.initial_storage_as_of.as_ref(),
337 ) {
338 // User specified no snapshot when creating the CT.
339 (false, _, _) => inputs_with_snapshot = Some(false),
340 // User specified a snapshot but we're past the initial
341 // as_of.
342 (true, Some(as_of), Some(initial_as_of))
343 if PartialOrder::less_than(initial_as_of, as_of) =>
344 {
345 inputs_with_snapshot = Some(false)
346 }
347 // User specified a snapshot and we're either at the
348 // initial creation, or we don't know (builtin CTs). If
349 // we don't know, it's always safe to fall back to
350 // snapshotting, at worst it's wasted work and will get
351 // filtered.
352 (true, _, _) => inputs_with_snapshot = Some(true),
353 }
354 }
355 _ => continue,
356 }
357 }
358 let mut ret = ContinualTaskCtx {
359 name,
360 dataflow_as_of: None,
361 inputs_with_snapshot,
362 ct_inputs,
363 ct_outputs,
364 ct_times: Vec::new(),
365 };
366 // Only clone the as_of if we're in a CT dataflow.
367 if ret.is_ct_dataflow() {
368 ret.dataflow_as_of = dataflow.as_of.clone();
369 // Sanity check that we have a name if we're in a CT dataflow.
370 assert!(ret.name.is_some());
371 }
372 ret
373 }
374
375 pub fn is_ct_dataflow(&self) -> bool {
376 // Inputs are non-empty iff outputs are non-empty.
377 assert_eq!(self.ct_inputs.is_empty(), self.ct_outputs.is_empty());
378 !self.ct_outputs.is_empty()
379 }
380
381 pub fn get_ct_source_transformer(
382 &self,
383 source_id: GlobalId,
384 ) -> Option<ContinualTaskSourceTransformer> {
385 let Some(inputs_with_snapshot) = self.inputs_with_snapshot else {
386 return None;
387 };
388 let transformer = match (
389 self.ct_inputs.contains(&source_id),
390 self.ct_outputs.contains(&source_id),
391 ) {
392 (false, false) => ContinualTaskSourceTransformer::NormalReference,
393 (false, true) => ContinualTaskSourceTransformer::SelfReference { source_id },
394 (true, false) => ContinualTaskSourceTransformer::InsertsInput {
395 source_id,
396 with_snapshot: inputs_with_snapshot,
397 },
398 (true, true) => panic!("ct output is not allowed to be an input"),
399 };
400 Some(transformer)
401 }
402
403 pub fn input_times(&self, scope: &G) -> Option<Collection<G, (), Diff>> {
404 // We have a name iff this is a CT dataflow.
405 assert_eq!(self.is_ct_dataflow(), self.name.is_some());
406 let Some(name) = self.name.as_ref() else {
407 return None;
408 };
409 // Note that self.ct_times might be empty (if the user didn't reference
410 // the input), but this still does the correct, though maybe useless,
411 // thing: no diffs coming into the input means no times to write at.
412 let ct_times = differential_dataflow::collection::concatenate(
413 &mut scope.clone(),
414 self.ct_times.iter().cloned(),
415 );
416 // Reduce this down to one update per-time-per-worker before exchanging
417 // it, so we don't waste work on unnecessarily high data volumes.
418 let ct_times = ct_times.times_reduce(name);
419 Some(ct_times)
420 }
421}
422
423impl<G> SinkRender<G> for ContinualTaskConnection<CollectionMetadata>
424where
425 G: Scope<Timestamp = Timestamp>,
426{
427 fn render_sink(
428 &self,
429 compute_state: &mut ComputeState,
430 _sink: &ComputeSinkDesc<CollectionMetadata>,
431 sink_id: GlobalId,
432 as_of: Antichain<Timestamp>,
433 start_signal: StartSignal,
434 oks: Collection<G, Row, Diff>,
435 errs: Collection<G, DataflowError, Diff>,
436 append_times: Option<Collection<G, (), Diff>>,
437 flow_control_probe: &probe::Handle<Timestamp>,
438 ) -> Option<Rc<dyn Any>> {
439 let name = sink_id.to_string();
440
441 let to_append = oks
442 .map(|x| SourceData(Ok(x)))
443 .concat(&errs.map(|x| SourceData(Err(x))));
444 let append_times = append_times.expect("should be provided by ContinualTaskCtx");
445
446 let write_handle = {
447 let clients = Arc::clone(&compute_state.persist_clients);
448 let metadata = self.storage_metadata.clone();
449 let handle_purpose = format!("ct_sink({})", name);
450 async move {
451 let client = clients
452 .open(metadata.persist_location)
453 .await
454 .expect("valid location");
455 client
456 .open_writer(
457 metadata.data_shard,
458 metadata.relation_desc.into(),
459 UnitSchema.into(),
460 Diagnostics {
461 shard_name: sink_id.to_string(),
462 handle_purpose,
463 },
464 )
465 .await
466 .expect("codecs should match")
467 }
468 };
469
470 let collection = compute_state.expect_collection_mut(sink_id);
471 let probe = ProbeHandle::default();
472 let to_append = to_append
473 .probe_with(&probe)
474 .inner
475 .probe_notify_with(vec![flow_control_probe.clone()])
476 .as_collection();
477 collection.compute_probe = Some(probe);
478 let sink_write_frontier = Rc::new(RefCell::new(Antichain::from_elem(Timestamp::minimum())));
479 collection.sink_write_frontier = Some(Rc::clone(&sink_write_frontier));
480
481 // TODO(ct1): Obey `compute_state.read_only_rx`
482 //
483 // Seemingly, the read-only env needs to tail the output shard and keep
484 // historical updates around until it sees that the output frontier
485 // advances beyond their times.
486 let sink_button = continual_task_sink(
487 &name,
488 to_append,
489 append_times,
490 as_of,
491 write_handle,
492 start_signal,
493 sink_write_frontier,
494 );
495 Some(Rc::new(sink_button.press_on_drop()))
496 }
497}
498
499fn continual_task_sink<G: Scope<Timestamp = Timestamp>>(
500 name: &str,
501 to_append: Collection<G, SourceData, Diff>,
502 append_times: Collection<G, (), Diff>,
503 as_of: Antichain<Timestamp>,
504 write_handle: impl Future<Output = WriteHandle<SourceData, (), Timestamp, StorageDiff>>
505 + Send
506 + 'static,
507 start_signal: StartSignal,
508 output_frontier: Rc<RefCell<Antichain<Timestamp>>>,
509) -> Button {
510 let scope = to_append.scope();
511 let mut op = AsyncOperatorBuilder::new(format!("ct_sink({})", name), scope.clone());
512
513 // TODO(ct2): This all works perfectly well data parallel (assuming we
514 // broadcast the append_times). We just need to hook it up to the
515 // multi-worker persist-sink, but that requires some refactoring. This would
516 // also remove the need for this to be an async timely operator.
517 let active_worker = name.hashed();
518 let to_append_input =
519 op.new_input_for_many(&to_append.inner, Exchange::new(move |_| active_worker), []);
520 let append_times_input = op.new_input_for_many(
521 &append_times.inner,
522 Exchange::new(move |_| active_worker),
523 [],
524 );
525
526 let active_worker = usize::cast_from(active_worker) % scope.peers() == scope.index();
527 let button = op.build(move |_capabilities| async move {
528 if !active_worker {
529 output_frontier.borrow_mut().clear();
530 return;
531 }
532
533 // SUBTLE: The start_signal below may not be unblocked by the compute
534 // controller until it thinks the inputs are "ready" (i.e. readable at
535 // the as_of), but if the CT is self-referential, one of the inputs will
536 // be the output (which starts at `T::minimum()`, not the as_of). To
537 // break this cycle, before we even get the start signal, go ahead and
538 // advance the output's (exclusive) upper to the first time that this CT
539 // might write: `as_of+1`. Because we don't want this to happen on
540 // restarts, only do it if the upper is `T::minimum()`.
541 let mut write_handle = write_handle.await;
542 {
543 let res = write_handle
544 .compare_and_append_batch(
545 &mut [],
546 Antichain::from_elem(Timestamp::minimum()),
547 as_of.clone(),
548 )
549 .await
550 .expect("usage was valid");
551 match res {
552 // We advanced the upper.
553 Ok(()) => {}
554 // Someone else advanced the upper.
555 Err(UpperMismatch { .. }) => {}
556 }
557 }
558
559 let () = start_signal.await;
560
561 #[derive(Debug)]
562 enum OpEvent<C> {
563 ToAppend(Event<Timestamp, C, Vec<(SourceData, Timestamp, Diff)>>),
564 AppendTimes(Event<Timestamp, C, Vec<((), Timestamp, Diff)>>),
565 }
566
567 impl<C: std::fmt::Debug> OpEvent<C> {
568 fn apply(self, state: &mut SinkState<SourceData, Timestamp>) {
569 debug!("ct_sink event {:?}", self);
570 match self {
571 OpEvent::ToAppend(Event::Data(_cap, x)) => {
572 for (k, t, d) in x {
573 state.to_append.push(((k, t), d));
574 }
575 }
576 OpEvent::ToAppend(Event::Progress(x)) => state.to_append_progress = x,
577 OpEvent::AppendTimes(Event::Data(_cap, x)) => state
578 .append_times
579 .extend(x.into_iter().map(|((), t, _d)| t)),
580 OpEvent::AppendTimes(Event::Progress(x)) => state.append_times_progress = x,
581 }
582 }
583 }
584
585 let to_insert_input = to_append_input.map(OpEvent::ToAppend);
586 let append_times_input = append_times_input.map(OpEvent::AppendTimes);
587 let mut op_inputs = futures::stream::select(to_insert_input, append_times_input);
588
589 let mut state = SinkState::new();
590 loop {
591 // Loop until we've processed all the work we can.
592 loop {
593 if PartialOrder::less_than(&*output_frontier.borrow(), &state.output_progress) {
594 output_frontier.borrow_mut().clear();
595 output_frontier
596 .borrow_mut()
597 .extend(state.output_progress.iter().cloned());
598 }
599
600 debug!("ct_sink about to process {:?}", state);
601 let Some((new_upper, to_append)) = state.process() else {
602 break;
603 };
604 debug!("ct_sink got write {:?}: {:?}", new_upper, to_append);
605 state.output_progress =
606 truncating_compare_and_append(&mut write_handle, to_append, new_upper).await;
607 }
608
609 // Then try to generate some more work by reading inputs.
610 let Some(event) = op_inputs.next().await else {
611 // Inputs exhausted, shutting down.
612 output_frontier.borrow_mut().clear();
613 return;
614 };
615 event.apply(&mut state);
616 // Also drain any other events that may be ready.
617 while let Some(Some(event)) = op_inputs.next().now_or_never() {
618 event.apply(&mut state);
619 }
620 }
621 });
622
623 button
624}
625
626/// Writes the given data to the shard, truncating it as necessary.
627///
628/// Returns the latest known upper for the shard.
629async fn truncating_compare_and_append(
630 write_handle: &mut WriteHandle<SourceData, (), Timestamp, StorageDiff>,
631 to_append: Vec<((&SourceData, &()), &Timestamp, StorageDiff)>,
632 new_upper: Antichain<Timestamp>,
633) -> Antichain<Timestamp> {
634 let mut expected_upper = write_handle.shared_upper();
635 loop {
636 if !PartialOrder::less_than(&expected_upper, &new_upper) {
637 debug!("ct_sink skipping {:?}", new_upper.elements());
638 return expected_upper;
639 }
640 let res = write_handle
641 .compare_and_append(&to_append, expected_upper.clone(), new_upper.clone())
642 .await
643 .expect("usage was valid");
644 debug!(
645 "ct_sink write res {:?}-{:?}: {:?}",
646 expected_upper.elements(),
647 new_upper.elements(),
648 res
649 );
650 match res {
651 Ok(()) => return new_upper,
652 Err(err) => {
653 expected_upper = err.current;
654 continue;
655 }
656 }
657 }
658}
659
660#[derive(Debug)]
661struct SinkState<D, T> {
662 /// The known times at which we're going to write data to the output. This
663 /// is guaranteed to include all times < append_times_progress, except that
664 /// ones < output_progress may have been truncated.
665 append_times: BTreeSet<T>,
666 append_times_progress: Antichain<T>,
667
668 /// The data we've collected to append to the output. This is often
669 /// compacted to advancing times and is expected to be ~empty in the steady
670 /// state.
671 to_append: ConsolidatingVec<(D, T)>,
672 to_append_progress: Antichain<T>,
673
674 /// A lower bound on the upper of the output.
675 output_progress: Antichain<T>,
676}
677
678impl<D: Ord> SinkState<D, Timestamp> {
679 fn new() -> Self {
680 SinkState {
681 append_times: BTreeSet::new(),
682 append_times_progress: Antichain::from_elem(Timestamp::minimum()),
683 to_append: ConsolidatingVec::new(128, 0),
684 to_append_progress: Antichain::from_elem(Timestamp::minimum()),
685 output_progress: Antichain::from_elem(Timestamp::minimum()),
686 }
687 }
688
689 /// Returns data to write to the output, if any, and the new upper to use.
690 fn process(
691 &mut self,
692 ) -> Option<(
693 Antichain<Timestamp>,
694 Vec<((&D, &()), &Timestamp, StorageDiff)>,
695 )> {
696 // We can only append at times >= the output_progress, so pop off
697 // anything unnecessary.
698 while let Some(x) = self.append_times.first() {
699 if self.output_progress.less_equal(x) {
700 break;
701 }
702 self.append_times.pop_first();
703 }
704
705 // Find the smallest append_time before append_time_progress. This is
706 // the next time we might need to write data at. Note that we can only
707 // act on append_times once the progress has passed them, because they
708 // could come out of order.
709 let write_ts = match self.append_times.first() {
710 Some(x) if !self.append_times_progress.less_equal(x) => x,
711 Some(_) | None => {
712 // The CT sink's contract is that it only writes data at times
713 // we received an input diff. There are none in
714 // `[output_progress, append_times_progress)`, so we can go
715 // ahead and advance the upper of the output, if it's not
716 // already.
717 //
718 // We could instead ensure liveness by basing this off of
719 // to_append, but for any CTs reading the output (expected to be
720 // a common case) we'd end up looping each timestamp through
721 // persist one-by-one.
722 if PartialOrder::less_than(&self.output_progress, &self.append_times_progress) {
723 return Some((self.append_times_progress.clone(), Vec::new()));
724 }
725 // Otherwise, nothing to do!
726 return None;
727 }
728 };
729
730 if self.to_append_progress.less_equal(write_ts) {
731 // Don't have all the necessary data yet.
732 if self.output_progress.less_than(write_ts) {
733 // We can advance the output upper up to the write_ts. For
734 // self-referential CTs this might be necessary to ensure
735 // dataflow progress.
736 return Some((Antichain::from_elem(write_ts.clone()), Vec::new()));
737 }
738 return None;
739 }
740
741 // Time to write some data! Produce the collection as of write_ts by
742 // advancing timestamps, consolidating, and filtering out anything at
743 // future timestamps.
744 let as_of = &[write_ts.clone()];
745 for ((_, t), _) in self.to_append.iter_mut() {
746 t.advance_by(AntichainRef::new(as_of))
747 }
748 // TODO(ct2): Metrics for vec len and cap.
749 self.to_append.consolidate();
750
751 let append_data = self
752 .to_append
753 .iter()
754 .filter_map(|((k, t), d)| (t <= write_ts).then_some(((k, &()), t, d.into_inner())))
755 .collect();
756 Some((Antichain::from_elem(write_ts.step_forward()), append_data))
757 }
758}
759
760trait StepForward<G: Scope, D, R> {
761 /// Translates a collection one timestamp "forward" (i.e. `T` -> `T+1` as
762 /// defined by `TimestampManipulation::step_forward`).
763 ///
764 /// This includes:
765 /// - The differential timestamps in each data.
766 /// - The capabilities paired with that data.
767 /// - (As a consequence of the previous) the output frontier is one step forward
768 /// of the input frontier.
769 ///
770 /// The caller is responsible for ensuring that all data and capabilities given
771 /// to this operator can be stepped forward without panicking, otherwise the
772 /// operator will panic at runtime.
773 fn step_forward(&self, name: &str) -> Collection<G, D, R>;
774}
775
776impl<G, D, R> StepForward<G, D, R> for Collection<G, D, R>
777where
778 G: Scope<Timestamp = Timestamp>,
779 D: Data,
780 R: Semigroup + 'static,
781{
782 fn step_forward(&self, name: &str) -> Collection<G, D, R> {
783 let name = format!("ct_step_forward({})", name);
784 let mut builder = OperatorBuilder::new(name, self.scope());
785 let (mut output, output_stream) = builder.new_output();
786 // We step forward (by one) each data timestamp and capability. As a
787 // result the output's frontier is guaranteed to be one past the input
788 // frontier, so make this promise to timely.
789 let step_forward_summary = Timestamp::from(1);
790 let mut input = builder.new_input_connection(
791 &self.inner,
792 Pipeline,
793 [(0, Antichain::from_elem(step_forward_summary))],
794 );
795 builder.set_notify(false);
796 builder.build(move |_caps| {
797 move |_frontiers| {
798 let mut output = output.activate();
799 while let Some((cap, data)) = input.next() {
800 for (_, ts, _) in data.iter_mut() {
801 *ts = ts.step_forward();
802 }
803 let cap = cap.delayed(&cap.time().step_forward());
804 output.session(&cap).give_container(data);
805 }
806 }
807 });
808
809 output_stream.as_collection()
810 }
811}
812
813trait TimesExtract<G: Scope, D, R> {
814 /// Returns a collection with the times changed in the input collection.
815 ///
816 /// This works by mapping the data piece of the differential tuple to `()`.
817 /// It is essentially the same as the following, but without cloning
818 /// everything in the input.
819 ///
820 /// ```ignore
821 /// input.map(|(_data, ts, diff)| ((), ts, diff))
822 /// ```
823 ///
824 /// The output may be partially consolidated, but no consolidation
825 /// guarantees are made.
826 fn times_extract(&self, name: &str) -> (Collection<G, D, R>, Collection<G, (), R>);
827}
828
829impl<G, D, R> TimesExtract<G, D, R> for Collection<G, D, R>
830where
831 G: Scope<Timestamp = Timestamp>,
832 D: Clone + 'static,
833 R: Semigroup + 'static + std::fmt::Debug,
834{
835 fn times_extract(&self, name: &str) -> (Collection<G, D, R>, Collection<G, (), R>) {
836 let name = format!("ct_times_extract({})", name);
837 let mut builder = OperatorBuilder::new(name, self.scope());
838 let (mut passthrough, passthrough_stream) = builder.new_output();
839 let (mut times, times_stream) = builder.new_output::<ConsolidatingContainerBuilder<_>>();
840 let mut input = builder.new_input(&self.inner, Pipeline);
841 builder.set_notify(false);
842 builder.build(|_caps| {
843 move |_frontiers| {
844 let mut passthrough = passthrough.activate();
845 let mut times = times.activate();
846 while let Some((cap, data)) = input.next() {
847 let times_iter = data.iter().map(|(_data, ts, diff)| ((), *ts, diff.clone()));
848 times.session_with_builder(&cap).give_iterator(times_iter);
849 passthrough.session(&cap).give_container(data);
850 }
851 }
852 });
853 (
854 passthrough_stream.as_collection(),
855 times_stream.as_collection(),
856 )
857 }
858}
859
860trait TimesReduce<G: Scope, R> {
861 /// This is essentially a specialized impl of consolidate, with a HashMap
862 /// instead of the Trace.
863 fn times_reduce(&self, name: &str) -> Collection<G, (), R>;
864}
865
866impl<G, R> TimesReduce<G, R> for Collection<G, (), R>
867where
868 G: Scope<Timestamp = Timestamp>,
869 R: Semigroup + 'static + std::fmt::Debug,
870{
871 fn times_reduce(&self, name: &str) -> Collection<G, (), R> {
872 let name = format!("ct_times_reduce({})", name);
873 self.inner
874 .unary_frontier(Pipeline, &name, |_caps, _info| {
875 let mut notificator = FrontierNotificator::default();
876 let mut stash = HashMap::<_, R>::new();
877 move |input, output| {
878 while let Some((cap, data)) = input.next() {
879 for ((), ts, diff) in data.drain(..) {
880 notificator.notify_at(cap.delayed(&ts));
881 if let Some(sum) = stash.get_mut(&ts) {
882 sum.plus_equals(&diff);
883 } else {
884 stash.insert(ts, diff);
885 }
886 }
887 }
888 notificator.for_each(&[input.frontier()], |cap, _not| {
889 if let Some(diff) = stash.remove(cap.time()) {
890 output.session(&cap).give(((), cap.time().clone(), diff));
891 }
892 });
893 }
894 })
895 .as_collection()
896 }
897}
898
899#[cfg(test)]
900mod tests {
901 use differential_dataflow::AsCollection;
902 use mz_repr::Timestamp;
903 use timely::Config;
904 use timely::dataflow::ProbeHandle;
905 use timely::dataflow::operators::capture::Extract;
906 use timely::dataflow::operators::{Capture, Input, ToStream};
907 use timely::progress::Antichain;
908
909 use super::*;
910
911 #[mz_ore::test]
912 fn step_forward() {
913 timely::execute(Config::thread(), |worker| {
914 let (mut input, probe, output) = worker.dataflow(|scope| {
915 let (handle, input) = scope.new_input();
916 let probe = ProbeHandle::<Timestamp>::new();
917 let output = input
918 .as_collection()
919 .step_forward("test")
920 .probe_with(&probe)
921 .inner
922 .capture();
923 (handle, probe, output)
924 });
925
926 let mut expected = Vec::new();
927 for i in 0u64..10 {
928 let in_ts = Timestamp::new(i);
929 let out_ts = in_ts.step_forward();
930 input.send((i, in_ts, 1));
931 input.advance_to(in_ts.step_forward());
932
933 // We should get the data out advanced by `step_forward` and
934 // also, crucially, the output frontier should do the same (i.e.
935 // this is why we can't simply use `Collection::delay`).
936 worker.step_while(|| probe.less_than(&out_ts.step_forward()));
937 expected.push((i, out_ts, 1));
938 }
939 // Closing the input should allow the output to advance and the
940 // dataflow to shut down.
941 input.close();
942 while worker.step() {}
943
944 let actual = output
945 .extract()
946 .into_iter()
947 .flat_map(|x| x.1)
948 .collect::<Vec<_>>();
949 assert_eq!(actual, expected);
950 })
951 .unwrap();
952 }
953
954 #[mz_ore::test]
955 fn times_extract() {
956 struct PanicOnClone;
957
958 impl Clone for PanicOnClone {
959 fn clone(&self) -> Self {
960 panic!("boom")
961 }
962 }
963
964 let output = timely::execute_directly(|worker| {
965 worker.dataflow(|scope| {
966 let input = [
967 (PanicOnClone, Timestamp::new(0), 0),
968 (PanicOnClone, Timestamp::new(1), 1),
969 (PanicOnClone, Timestamp::new(1), 1),
970 (PanicOnClone, Timestamp::new(2), -2),
971 (PanicOnClone, Timestamp::new(2), 1),
972 ]
973 .to_stream(scope)
974 .as_collection();
975 let (_passthrough, times) = input.times_extract("test");
976 times.inner.capture()
977 })
978 });
979 let expected = vec![((), Timestamp::new(1), 2), ((), Timestamp::new(2), -1)];
980 let actual = output
981 .extract()
982 .into_iter()
983 .flat_map(|x| x.1)
984 .collect::<Vec<_>>();
985 assert_eq!(actual, expected);
986 }
987
988 #[mz_ore::test]
989 fn times_reduce() {
990 let output = timely::execute_directly(|worker| {
991 worker.dataflow(|scope| {
992 let input = [
993 ((), Timestamp::new(3), 1),
994 ((), Timestamp::new(2), 1),
995 ((), Timestamp::new(1), 1),
996 ((), Timestamp::new(2), 1),
997 ((), Timestamp::new(3), 1),
998 ((), Timestamp::new(3), 1),
999 ]
1000 .to_stream(scope)
1001 .as_collection();
1002 input.times_reduce("test").inner.capture()
1003 })
1004 });
1005 let expected = vec![
1006 ((), Timestamp::new(1), 1),
1007 ((), Timestamp::new(2), 2),
1008 ((), Timestamp::new(3), 3),
1009 ];
1010 let actual = output
1011 .extract()
1012 .into_iter()
1013 .flat_map(|x| x.1)
1014 .collect::<Vec<_>>();
1015 assert_eq!(actual, expected);
1016 }
1017
1018 #[mz_ore::test]
1019 fn ct_sink_state() {
1020 #[track_caller]
1021 fn assert_noop(state: &mut super::SinkState<&'static str, Timestamp>) {
1022 if let Some(ret) = state.process() {
1023 panic!("should be nothing to write: {:?}", ret);
1024 }
1025 }
1026
1027 #[track_caller]
1028 fn assert_write(
1029 state: &mut super::SinkState<&'static str, Timestamp>,
1030 expected_upper: u64,
1031 expected_append: &[&str],
1032 ) {
1033 let (new_upper, to_append) = state.process().expect("should be something to write");
1034 assert_eq!(
1035 new_upper,
1036 Antichain::from_elem(Timestamp::new(expected_upper))
1037 );
1038 let to_append = to_append
1039 .into_iter()
1040 .map(|((k, ()), _ts, _diff)| *k)
1041 .collect::<Vec<_>>();
1042 assert_eq!(to_append, expected_append);
1043 }
1044
1045 let mut s = super::SinkState::new();
1046
1047 // Nothing to do at the initial state.
1048 assert_noop(&mut s);
1049
1050 // Getting data to append is not enough to do anything yet.
1051 s.to_append.push((("a", 1.into()), Diff::ONE));
1052 s.to_append.push((("b", 1.into()), Diff::ONE));
1053 assert_noop(&mut s);
1054
1055 // Knowing that this is the only data we'll get for that timestamp is
1056 // still not enough.
1057 s.to_append_progress = Antichain::from_elem(2.into());
1058 assert_noop(&mut s);
1059
1060 // Even knowing that we got input at that time is not quite enough yet
1061 // (we could be getting these out of order).
1062 s.append_times.insert(1.into());
1063 assert_noop(&mut s);
1064
1065 // Indeed, it did come out of order. Also note that this checks the ==
1066 // case for time vs progress.
1067 s.append_times.insert(0.into());
1068 assert_noop(&mut s);
1069
1070 // Okay, now we know that we've seen all the times we got input up to 3.
1071 // This is enough to allow the empty write of `[0,1)`.
1072 s.append_times_progress = Antichain::from_elem(3.into());
1073 assert_write(&mut s, 1, &[]);
1074
1075 // That succeeded, now we can write the data at 1.
1076 s.output_progress = Antichain::from_elem(1.into());
1077 assert_write(&mut s, 2, &["a", "b"]);
1078
1079 // That succeeded, now we know about some empty time.
1080 s.output_progress = Antichain::from_elem(2.into());
1081 assert_write(&mut s, 3, &[]);
1082
1083 // That succeeded, now nothing to do.
1084 s.output_progress = Antichain::from_elem(3.into());
1085 assert_noop(&mut s);
1086
1087 // Find out about a new time to write at. Even without the data, we can
1088 // do an empty write up to that time.
1089 s.append_times.insert(5.into());
1090 s.append_times_progress = Antichain::from_elem(6.into());
1091 assert_write(&mut s, 5, &[]);
1092
1093 // That succeeded, now nothing to do again.
1094 s.output_progress = Antichain::from_elem(5.into());
1095
1096 // Retract one of the things currently in the collection and add a new
1097 // thing, to verify the consolidate.
1098 s.to_append.push((("a", 5.into()), Diff::MINUS_ONE));
1099 s.to_append.push((("c", 5.into()), Diff::ONE));
1100 s.to_append_progress = Antichain::from_elem(6.into());
1101 assert_write(&mut s, 6, &["b", "c"]);
1102 }
1103}