mz_compute/render/
continual_task.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! A continual task presents as something like a `TRIGGER`: it watches some
//! _input_ and whenever it changes at time `T`, executes a SQL txn, writing to
//! some _output_ at the same time `T`. It can also read anything in materialize
//! as a _reference_, most notably including the output.
//!
//! Only reacting to new inputs (and not the full history) makes a CT's
//! rehydration time independent of the size of the inputs (NB this is not true
//! for references), enabling things like writing UPSERT on top of an
//! append-only shard in SQL (ignore the obvious bug with my upsert impl):
//!
//! ```sql
//! CREATE CONTINUAL TASK upsert (key INT, val INT) ON INPUT append_only AS (
//!     DELETE FROM upsert WHERE key IN (SELECT key FROM append_only);
//!     INSERT INTO upsert SELECT key, max(val) FROM append_only GROUP BY key;
//! )
//! ```
//!
//! Unlike a materialized view, the continual task does not update outputs if
//! references later change. This enables things like auditing:
//!
//! ```sql
//! CREATE CONTINUAL TASK audit_log (count INT8) ON INPUT anomalies AS (
//!     INSERT INTO audit_log SELECT * FROM anomalies;
//! )
//! ```
//!
//! Rough implementation overview:
//! - A CT is created and starts at some `start_ts` optionally later dropped and
//!   stopped at some `end_ts`.
//! - A CT takes one or more _input_s. These must be persist shards (i.e. TABLE,
//!   SOURCE, MV, but not VIEW).
//! - A CT has one or more _output_s. The outputs are (initially) owned by the
//!   task and cannot be written to by other parts of the system.
//! - The task is run for each time one of the inputs changes starting at
//!   `start_ts`.
//! - It is given the changes in its inputs at time `T` as diffs.
//!   - These are presented as two SQL relations with just the inserts/deletes.
//!   - NB: A full collection for the input can always be recovered by also
//!     using the input as a "reference" (see below) and applying the diffs.
//! - The task logic is expressed as a SQL transaction that does all reads at
//!   commits all writes at `T`
//!   - The notable exception to this is self-referential reads of the CT
//!     output. See below for how that works.
//! - This logic can _reference_ any nameable object in the system, not just the
//!   inputs.
//!   - However, the logic/transaction can mutate only the outputs.
//! - Summary of differences between inputs and references:
//!   - The task receives snapshot + changes for references (like regular
//!     dataflow inputs today) but only changes for inputs.
//!   - The task only produces output in response to changes in the inputs but
//!     not in response to changes in the references.
//! - Instead of re-evaluating the task logic from scratch for each input time,
//!   we maintain the collection representing desired writes to the output(s) as
//!   a dataflow.
//! - The task dataflow is tied to a `CLUSTER` and runs on each `REPLICA`.
//!   - HA strategy: multi-replica clusters race to commit and the losers throw
//!     away the result.
//!
//! ## Self-References
//!
//! Self-references must be handled differently from other reads. When computing
//! the proposed write to some output at `T`, we can only know the contents of
//! it through `T-1` (the exclusive upper is `T`).
//!
//! We address this by initially assuming that the output contains no changes at
//! `T`, then evaluating each of the statements in order, allowing them to see
//! the proposed output changes made by the previous statements. By default,
//! this is stopped after one iteration and proposed output diffs are committed
//! if possible. (We could also add options for iterating to a fixpoint,
//! stop/error after N iters, etc.) Then to compute the changes at `T+1`, we
//! read in what was actually written to the output at `T` (maybe some other
//! replica wrote something different) and begin again.
//!
//! The above is very similar to how timely/differential dataflow iteration
//! works, except that our feedback loop goes through persist and the loop
//! timestamp is already `mz_repr::Timestamp`.
//!
//! This is implemented as follows:
//! - `let I = persist_source(self-reference)`
//! - Transform `I` such that the contents at `T-1` are presented at `T` (i.e.
//!   initially assume `T` is unchanged from `T-1`).
//! - TODO(ct3): Actually implement the following.
//! - In an iteration sub-scope:
//!   - Bring `I` into the sub-scope and `let proposed = Variable`.
//!   - We need a collection that at `(T, 0)` is always the contents of `I` at
//!     `T`, but at `(T, 1...)` contains the proposed diffs by the CT logic. We
//!     can construct it by concatenating `I` with `proposed` except that we
//!     also need to retract everything in `proposed` for the next `(T+1, 0)`
//!     (because `I` is the source of truth for what actually committed).
//!  - `let R = retract_at_next_outer_ts(proposed)`
//!  - `let result = logic(concat(I, proposed, R))`
//!  - `proposed.set(result)`
//! - Then we return `proposed.leave()` for attempted write to persist.
//!
//! ## As Ofs and Output Uppers
//!
//! - A continual task is first created with an initial as_of `I`. It is
//!   initially rendered at as_of `I==A` but as it makes progress, it may be
//!   rendered at later as_ofs `I<A`.
//! - It is required that the output collection springs into existence at `I`
//!   (i.e. receives the initial contents at `I`).
//!   - For a snapshot CT, the full contents of the input at `I` are run through
//!     the CT logic and written at `I`.
//!   - For a non-snapshot CT, the collection is defined to be empty at `I`
//!     (i.e. if the input happened to be written exactly at `I`, we'd ignore
//!     it) and then start writing at `I+1`.
//! - As documented in [DataflowDescription::as_of], `A` is the time we render
//!   the inputs.
//!   - An MV with an as_of of `A` will both have inputs rendered at `A` and
//!     also the first time it could write is also `A`.
//!   - A CT is the same on the initial render (`I==A`), but on renders after it
//!     has made progress (`I<A`) the first time that  it could potentially
//!     write is `A+1`. This is because a persist_source started with
//!     SnapshotMode::Exclude can only start emitting diffs at `as_of+1`.
//!   - As a result, we hold back the since on inputs to be strictly less than
//!     the upper of the output. (This is only necessary for CTs, but we also do
//!     it for MVs to avoid the special case.)
//!   - For CT "inputs" (which are disallowed from being the output), we render
//!     the persist_source with as_of `A`.
//!     - When `I==A` we include the snapshot iff the snapshot option is used.
//!     - When `I<A` we always exclude the snapshot. It would be unnecessary and
//!       this is an absolutely critical performance optimization to make CT
//!       rehydration times independent of input size.
//!   - For CT "references", we render the persist_source with as_of `A` and
//!     always include the snapshot.
//!     - There is one subtlety: self-references on the initial render. We need
//!       the contents to be available at `A-1`, so that we can do the
//!       step_forward described above to get it at `A`. However, the collection
//!       springs into existence at `I`, so we when `I==A`, we're not allowed to
//!       read it as_of `A-1` (the since of the shard may have advanced past
//!       that). We address this by rendering the persist_source as normal at
//!       `A`. On startup, persist_source immediately downgrades its frontier to
//!       `A` (making `A-1` readable). Combined with step_forward, this is
//!       enough to unblock the CT self-reference. We do however have to tweak
//!       the `suppress_early_progress` operator to use `A-1` instead of `A` for
//!       this case.
//!     - On subsequent renders, self-references work as normal.

use std::any::Any;
use std::cell::RefCell;
use std::collections::BTreeSet;
use std::rc::Rc;
use std::sync::Arc;

use differential_dataflow::consolidation::ConsolidatingContainerBuilder;
use differential_dataflow::difference::Semigroup;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::{AsCollection, Collection, Hashable};
use futures::{Future, FutureExt, StreamExt};
use mz_compute_types::dataflows::DataflowDescription;
use mz_compute_types::sinks::{ComputeSinkConnection, ComputeSinkDesc, ContinualTaskConnection};
use mz_ore::cast::CastFrom;
use mz_ore::collections::HashMap;
use mz_persist_client::error::UpperMismatch;
use mz_persist_client::operators::shard_source::SnapshotMode;
use mz_persist_client::write::WriteHandle;
use mz_persist_client::Diagnostics;
use mz_persist_types::codec_impls::UnitSchema;
use mz_repr::{Diff, GlobalId, Row, Timestamp};
use mz_storage_types::controller::CollectionMetadata;
use mz_storage_types::errors::DataflowError;
use mz_storage_types::sources::SourceData;
use mz_timely_util::builder_async::{Button, Event, OperatorBuilder as AsyncOperatorBuilder};
use mz_timely_util::operator::CollectionExt;
use timely::dataflow::channels::pact::{Exchange, Pipeline};
use timely::dataflow::operators::generic::builder_rc::OperatorBuilder;
use timely::dataflow::operators::{Filter, FrontierNotificator, Map, Operator};
use timely::dataflow::{ProbeHandle, Scope};
use timely::progress::frontier::AntichainRef;
use timely::progress::{Antichain, Timestamp as _};
use timely::{Data, PartialOrder};
use tracing::debug;

use crate::compute_state::ComputeState;
use crate::render::sinks::SinkRender;
use crate::render::StartSignal;
use crate::sink::ConsolidatingVec;

pub(crate) struct ContinualTaskCtx<G: Scope<Timestamp = Timestamp>> {
    name: Option<String>,
    dataflow_as_of: Option<Antichain<Timestamp>>,
    inputs_with_snapshot: Option<bool>,
    ct_inputs: BTreeSet<GlobalId>,
    ct_outputs: BTreeSet<GlobalId>,
    pub ct_times: Vec<Collection<G, (), Diff>>,
}

/// An encapsulation of the transformation logic necessary on data coming into a
/// continual task.
///
/// NB: In continual task jargon, an "input" contains diffs and a "reference" is
/// a normal source/collection.
pub(crate) enum ContinualTaskSourceTransformer {
    /// A collection containing, at each time T, exactly the inserts at time T
    /// in the transformed collection.
    ///
    /// For example:
    /// - Input: {} at 0, {1} at 1, {1} at 2, ...
    /// - Output: {} at 0, {1} at 1, {} at 2, ...
    ///
    /// We'll presumably have the same for deletes eventually, but it's not
    /// exposed in the SQL frontend yet.
    InsertsInput {
        source_id: GlobalId,
        with_snapshot: bool,
    },
    /// A self-reference to the continual task's output. This is essentially a
    /// timely feedback loop via the persist shard. See module rustdoc for how
    /// this works.
    SelfReference { source_id: GlobalId },
    /// A normal collection (no-op transformation).
    NormalReference,
}

impl ContinualTaskSourceTransformer {
    /// The persist_source `SnapshotMode` to use when reading this source.
    pub fn snapshot_mode(&self) -> SnapshotMode {
        use ContinualTaskSourceTransformer::*;
        match self {
            InsertsInput {
                with_snapshot: false,
                ..
            } => SnapshotMode::Exclude,
            InsertsInput {
                with_snapshot: true,
                ..
            }
            | SelfReference { .. }
            | NormalReference => SnapshotMode::Include,
        }
    }

    /// Returns the as_of to use with the suppress_early_progress operator for
    /// this source. See the module rustdoc for context.
    pub fn suppress_early_progress_as_of(
        &self,
        as_of: Antichain<Timestamp>,
    ) -> Antichain<Timestamp> {
        use ContinualTaskSourceTransformer::*;
        match self {
            InsertsInput { .. } => as_of,
            SelfReference { .. } => as_of
                .iter()
                .map(|x| x.step_back().unwrap_or_else(Timestamp::minimum))
                .collect(),
            NormalReference => as_of,
        }
    }

    /// Performs the necessary transformation on the source collection.
    ///
    /// Returns the transformed "oks" and "errs" collections. Also returns the
    /// appropriate `ct_times` collection used to inform the sink which times
    /// were changed in the inputs.
    pub fn transform<S: Scope<Timestamp = Timestamp>>(
        &self,
        oks: Collection<S, Row, Diff>,
        errs: Collection<S, DataflowError, Diff>,
    ) -> (
        Collection<S, Row, Diff>,
        Collection<S, DataflowError, Diff>,
        Collection<S, (), Diff>,
    ) {
        use ContinualTaskSourceTransformer::*;
        match self {
            // Make a collection s.t, for each time T in the input, the output
            // contains the inserts at T.
            InsertsInput { source_id, .. } => {
                let name = source_id.to_string();
                // Keep only the inserts.
                let oks = oks.inner.filter(|(_, _, diff)| *diff > 0);
                // Grab the original times for use in the sink operator.
                let (oks, times) = oks.as_collection().times_extract(&name);
                // Then retract everything at the next timestamp.
                let oks = oks.inner.flat_map(|(row, ts, diff)| {
                    let retract_ts = ts.step_forward();
                    let negation = -diff;
                    [(row.clone(), ts, diff), (row, retract_ts, negation)]
                });
                (oks.as_collection(), errs, times)
            }
            NormalReference => {
                let times = Collection::empty(&oks.scope());
                (oks, errs, times)
            }
            // When computing an self-referential output at `T`, start by
            // assuming there are no changes from the contents at `T-1`. See the
            // module rustdoc for how this fits into the larger picture.
            SelfReference { source_id } => {
                let name = source_id.to_string();
                let times = Collection::empty(&oks.scope());
                // step_forward will panic at runtime if it receives a data or
                // capability with a time that cannot be stepped forward (i.e.
                // because it is already the max). We're safe here because this
                // is stepping `T-1` forward to `T`.
                let oks = oks.step_forward(&name);
                let errs = errs.step_forward(&name);
                (oks, errs, times)
            }
        }
    }
}

impl<G: Scope<Timestamp = Timestamp>> ContinualTaskCtx<G> {
    pub fn new<P, S>(dataflow: &DataflowDescription<P, S, Timestamp>) -> Self {
        let mut name = None;
        let mut ct_inputs = BTreeSet::new();
        let mut ct_outputs = BTreeSet::new();
        let mut inputs_with_snapshot = None;
        for (sink_id, sink) in &dataflow.sink_exports {
            match &sink.connection {
                ComputeSinkConnection::ContinualTask(ContinualTaskConnection {
                    input_id, ..
                }) => {
                    ct_outputs.insert(*sink_id);
                    ct_inputs.insert(*input_id);
                    // There's only one CT sink per dataflow at this point.
                    assert_eq!(name, None);
                    name = Some(sink_id.to_string());
                    assert_eq!(inputs_with_snapshot, None);
                    match (
                        sink.with_snapshot,
                        dataflow.as_of.as_ref(),
                        dataflow.initial_storage_as_of.as_ref(),
                    ) {
                        // User specified no snapshot when creating the CT.
                        (false, _, _) => inputs_with_snapshot = Some(false),
                        // User specified a snapshot but we're past the initial
                        // as_of.
                        (true, Some(as_of), Some(initial_as_of))
                            if PartialOrder::less_than(initial_as_of, as_of) =>
                        {
                            inputs_with_snapshot = Some(false)
                        }
                        // User specified a snapshot and we're either at the
                        // initial creation, or we don't know (builtin CTs). If
                        // we don't know, it's always safe to fall back to
                        // snapshotting, at worst it's wasted work and will get
                        // filtered.
                        (true, _, _) => inputs_with_snapshot = Some(true),
                    }
                }
                _ => continue,
            }
        }
        let mut ret = ContinualTaskCtx {
            name,
            dataflow_as_of: None,
            inputs_with_snapshot,
            ct_inputs,
            ct_outputs,
            ct_times: Vec::new(),
        };
        // Only clone the as_of if we're in a CT dataflow.
        if ret.is_ct_dataflow() {
            ret.dataflow_as_of = dataflow.as_of.clone();
            // Sanity check that we have a name if we're in a CT dataflow.
            assert!(ret.name.is_some());
        }
        ret
    }

    pub fn is_ct_dataflow(&self) -> bool {
        // Inputs are non-empty iff outputs are non-empty.
        assert_eq!(self.ct_inputs.is_empty(), self.ct_outputs.is_empty());
        !self.ct_outputs.is_empty()
    }

    pub fn get_ct_source_transformer(
        &self,
        source_id: GlobalId,
    ) -> Option<ContinualTaskSourceTransformer> {
        let Some(inputs_with_snapshot) = self.inputs_with_snapshot else {
            return None;
        };
        let transformer = match (
            self.ct_inputs.contains(&source_id),
            self.ct_outputs.contains(&source_id),
        ) {
            (false, false) => ContinualTaskSourceTransformer::NormalReference,
            (false, true) => ContinualTaskSourceTransformer::SelfReference { source_id },
            (true, false) => ContinualTaskSourceTransformer::InsertsInput {
                source_id,
                with_snapshot: inputs_with_snapshot,
            },
            (true, true) => panic!("ct output is not allowed to be an input"),
        };
        Some(transformer)
    }

    pub fn input_times(&self, scope: &G) -> Option<Collection<G, (), Diff>> {
        // We have a name iff this is a CT dataflow.
        assert_eq!(self.is_ct_dataflow(), self.name.is_some());
        let Some(name) = self.name.as_ref() else {
            return None;
        };
        // Note that self.ct_times might be empty (if the user didn't reference
        // the input), but this still does the correct, though maybe useless,
        // thing: no diffs coming into the input means no times to write at.
        let ct_times = differential_dataflow::collection::concatenate(
            &mut scope.clone(),
            self.ct_times.iter().cloned(),
        );
        // Reduce this down to one update per-time-per-worker before exchanging
        // it, so we don't waste work on unnecessarily high data volumes.
        let ct_times = ct_times.times_reduce(name);
        Some(ct_times)
    }
}

impl<G> SinkRender<G> for ContinualTaskConnection<CollectionMetadata>
where
    G: Scope<Timestamp = Timestamp>,
{
    fn render_sink(
        &self,
        compute_state: &mut ComputeState,
        _sink: &ComputeSinkDesc<CollectionMetadata>,
        sink_id: GlobalId,
        as_of: Antichain<Timestamp>,
        start_signal: StartSignal,
        oks: Collection<G, Row, Diff>,
        errs: Collection<G, DataflowError, Diff>,
        append_times: Option<Collection<G, (), Diff>>,
    ) -> Option<Rc<dyn Any>> {
        let name = sink_id.to_string();

        let to_append = oks
            .map(|x| SourceData(Ok(x)))
            .concat(&errs.map(|x| SourceData(Err(x))));
        let append_times = append_times.expect("should be provided by ContinualTaskCtx");

        let write_handle = {
            let clients = Arc::clone(&compute_state.persist_clients);
            let metadata = self.storage_metadata.clone();
            let handle_purpose = format!("ct_sink({})", name);
            async move {
                let client = clients
                    .open(metadata.persist_location)
                    .await
                    .expect("valid location");
                client
                    .open_writer(
                        metadata.data_shard,
                        metadata.relation_desc.into(),
                        UnitSchema.into(),
                        Diagnostics {
                            shard_name: sink_id.to_string(),
                            handle_purpose,
                        },
                    )
                    .await
                    .expect("codecs should match")
            }
        };

        let collection = compute_state.expect_collection_mut(sink_id);
        let mut probe = ProbeHandle::default();
        let to_append = to_append.probe_with(&mut probe);
        collection.compute_probe = Some(probe);
        let sink_write_frontier = Rc::new(RefCell::new(Antichain::from_elem(Timestamp::minimum())));
        collection.sink_write_frontier = Some(Rc::clone(&sink_write_frontier));

        // TODO(ct1): Obey `compute_state.read_only_rx`
        //
        // Seemingly, the read-only env needs to tail the output shard and keep
        // historical updates around until it sees that the output frontier
        // advances beyond their times.
        let sink_button = continual_task_sink(
            &name,
            to_append,
            append_times,
            as_of,
            write_handle,
            start_signal,
            sink_write_frontier,
        );
        Some(Rc::new(sink_button.press_on_drop()))
    }
}

fn continual_task_sink<G: Scope<Timestamp = Timestamp>>(
    name: &str,
    to_append: Collection<G, SourceData, Diff>,
    append_times: Collection<G, (), Diff>,
    as_of: Antichain<Timestamp>,
    write_handle: impl Future<Output = WriteHandle<SourceData, (), Timestamp, Diff>> + Send + 'static,
    start_signal: StartSignal,
    output_frontier: Rc<RefCell<Antichain<Timestamp>>>,
) -> Button {
    let scope = to_append.scope();
    let mut op = AsyncOperatorBuilder::new(format!("ct_sink({})", name), scope.clone());

    // TODO(ct2): This all works perfectly well data parallel (assuming we
    // broadcast the append_times). We just need to hook it up to the
    // multi-worker persist-sink, but that requires some refactoring. This would
    // also remove the need for this to be an async timely operator.
    let active_worker = name.hashed();
    let to_append_input =
        op.new_input_for_many(&to_append.inner, Exchange::new(move |_| active_worker), []);
    let append_times_input = op.new_input_for_many(
        &append_times.inner,
        Exchange::new(move |_| active_worker),
        [],
    );

    let active_worker = usize::cast_from(active_worker) % scope.peers() == scope.index();
    let button = op.build(move |_capabilities| async move {
        if !active_worker {
            output_frontier.borrow_mut().clear();
            return;
        }

        // SUBTLE: The start_signal below may not be unblocked by the compute
        // controller until it thinks the inputs are "ready" (i.e. readable at
        // the as_of), but if the CT is self-referential, one of the inputs will
        // be the output (which starts at `T::minimum()`, not the as_of). To
        // break this cycle, before we even get the start signal, go ahead and
        // advance the output's (exclusive) upper to the first time that this CT
        // might write: `as_of+1`. Because we don't want this to happen on
        // restarts, only do it if the upper is `T::minimum()`.
        let mut write_handle = write_handle.await;
        {
            let res = write_handle
                .compare_and_append_batch(
                    &mut [],
                    Antichain::from_elem(Timestamp::minimum()),
                    as_of.clone(),
                )
                .await
                .expect("usage was valid");
            match res {
                // We advanced the upper.
                Ok(()) => {}
                // Someone else advanced the upper.
                Err(UpperMismatch { .. }) => {}
            }
        }

        let () = start_signal.await;

        #[derive(Debug)]
        enum OpEvent<C> {
            ToAppend(Event<Timestamp, C, Vec<(SourceData, Timestamp, Diff)>>),
            AppendTimes(Event<Timestamp, C, Vec<((), Timestamp, Diff)>>),
        }

        impl<C: std::fmt::Debug> OpEvent<C> {
            fn apply(self, state: &mut SinkState<SourceData, Timestamp>) {
                debug!("ct_sink event {:?}", self);
                match self {
                    OpEvent::ToAppend(Event::Data(_cap, x)) => {
                        for (k, t, d) in x {
                            state.to_append.push(((k, t), d));
                        }
                    }
                    OpEvent::ToAppend(Event::Progress(x)) => state.to_append_progress = x,
                    OpEvent::AppendTimes(Event::Data(_cap, x)) => state
                        .append_times
                        .extend(x.into_iter().map(|((), t, _d)| t)),
                    OpEvent::AppendTimes(Event::Progress(x)) => state.append_times_progress = x,
                }
            }
        }

        let to_insert_input = to_append_input.map(OpEvent::ToAppend);
        let append_times_input = append_times_input.map(OpEvent::AppendTimes);
        let mut op_inputs = futures::stream::select(to_insert_input, append_times_input);

        let mut state = SinkState::new();
        loop {
            // Loop until we've processed all the work we can.
            loop {
                if PartialOrder::less_than(&*output_frontier.borrow(), &state.output_progress) {
                    output_frontier.borrow_mut().clear();
                    output_frontier
                        .borrow_mut()
                        .extend(state.output_progress.iter().cloned());
                }

                debug!("ct_sink about to process {:?}", state);
                let Some((new_upper, to_append)) = state.process() else {
                    break;
                };
                debug!("ct_sink got write {:?}: {:?}", new_upper, to_append);
                state.output_progress =
                    truncating_compare_and_append(&mut write_handle, to_append, new_upper).await;
            }

            // Then try to generate some more work by reading inputs.
            let Some(event) = op_inputs.next().await else {
                // Inputs exhausted, shutting down.
                output_frontier.borrow_mut().clear();
                return;
            };
            event.apply(&mut state);
            // Also drain any other events that may be ready.
            while let Some(Some(event)) = op_inputs.next().now_or_never() {
                event.apply(&mut state);
            }
        }
    });

    button
}

/// Writes the given data to the shard, truncating it as necessary.
///
/// Returns the latest known upper for the shard.
async fn truncating_compare_and_append(
    write_handle: &mut WriteHandle<SourceData, (), Timestamp, Diff>,
    to_append: Vec<((&SourceData, &()), &Timestamp, &Diff)>,
    new_upper: Antichain<Timestamp>,
) -> Antichain<Timestamp> {
    let mut expected_upper = write_handle.shared_upper();
    loop {
        if !PartialOrder::less_than(&expected_upper, &new_upper) {
            debug!("ct_sink skipping {:?}", new_upper.elements());
            return expected_upper;
        }
        let res = write_handle
            .compare_and_append(&to_append, expected_upper.clone(), new_upper.clone())
            .await
            .expect("usage was valid");
        debug!(
            "ct_sink write res {:?}-{:?}: {:?}",
            expected_upper.elements(),
            new_upper.elements(),
            res
        );
        match res {
            Ok(()) => return new_upper,
            Err(err) => {
                expected_upper = err.current;
                continue;
            }
        }
    }
}

#[derive(Debug)]
struct SinkState<D, T> {
    /// The known times at which we're going to write data to the output. This
    /// is guaranteed to include all times < append_times_progress, except that
    /// ones < output_progress may have been truncated.
    append_times: BTreeSet<T>,
    append_times_progress: Antichain<T>,

    /// The data we've collected to append to the output. This is often
    /// compacted to advancing times and is expected to be ~empty in the steady
    /// state.
    to_append: ConsolidatingVec<(D, T)>,
    to_append_progress: Antichain<T>,

    /// A lower bound on the upper of the output.
    output_progress: Antichain<T>,
}

impl<D: Ord> SinkState<D, Timestamp> {
    fn new() -> Self {
        SinkState {
            append_times: BTreeSet::new(),
            append_times_progress: Antichain::from_elem(Timestamp::minimum()),
            to_append: ConsolidatingVec::with_min_capacity(128),
            to_append_progress: Antichain::from_elem(Timestamp::minimum()),
            output_progress: Antichain::from_elem(Timestamp::minimum()),
        }
    }

    /// Returns data to write to the output, if any, and the new upper to use.
    fn process(&mut self) -> Option<(Antichain<Timestamp>, Vec<((&D, &()), &Timestamp, &Diff)>)> {
        // We can only append at times >= the output_progress, so pop off
        // anything unnecessary.
        while let Some(x) = self.append_times.first() {
            if self.output_progress.less_equal(x) {
                break;
            }
            self.append_times.pop_first();
        }

        // Find the smallest append_time before append_time_progress. This is
        // the next time we might need to write data at. Note that we can only
        // act on append_times once the progress has passed them, because they
        // could come out of order.
        let write_ts = match self.append_times.first() {
            Some(x) if !self.append_times_progress.less_equal(x) => x,
            Some(_) | None => {
                // The CT sink's contract is that it only writes data at times
                // we received an input diff. There are none in
                // `[output_progress, append_times_progress)`, so we can go
                // ahead and advance the upper of the output, if it's not
                // already.
                //
                // We could instead ensure liveness by basing this off of
                // to_append, but for any CTs reading the output (expected to be
                // a common case) we'd end up looping each timestamp through
                // persist one-by-one.
                if PartialOrder::less_than(&self.output_progress, &self.append_times_progress) {
                    return Some((self.append_times_progress.clone(), Vec::new()));
                }
                // Otherwise, nothing to do!
                return None;
            }
        };

        if self.to_append_progress.less_equal(write_ts) {
            // Don't have all the necessary data yet.
            if self.output_progress.less_than(write_ts) {
                // We can advance the output upper up to the write_ts. For
                // self-referential CTs this might be necessary to ensure
                // dataflow progress.
                return Some((Antichain::from_elem(write_ts.clone()), Vec::new()));
            }
            return None;
        }

        // Time to write some data! Produce the collection as of write_ts by
        // advancing timestamps, consolidating, and filtering out anything at
        // future timestamps.
        let as_of = &[write_ts.clone()];
        for ((_, t), _) in self.to_append.iter_mut() {
            t.advance_by(AntichainRef::new(as_of))
        }
        // TODO(ct2): Metrics for vec len and cap.
        self.to_append.consolidate();

        let append_data = self
            .to_append
            .iter()
            .filter_map(|((k, t), d)| (t <= write_ts).then_some(((k, &()), t, d)))
            .collect();
        Some((Antichain::from_elem(write_ts.step_forward()), append_data))
    }
}

trait StepForward<G: Scope, D, R> {
    /// Translates a collection one timestamp "forward" (i.e. `T` -> `T+1` as
    /// defined by `TimestampManipulation::step_forward`).
    ///
    /// This includes:
    /// - The differential timestamps in each data.
    /// - The capabilities paired with that data.
    /// - (As a consequence of the previous) the output frontier is one step forward
    ///   of the input frontier.
    ///
    /// The caller is responsible for ensuring that all data and capabilities given
    /// to this operator can be stepped forward without panicking, otherwise the
    /// operator will panic at runtime.
    fn step_forward(&self, name: &str) -> Collection<G, D, R>;
}

impl<G, D, R> StepForward<G, D, R> for Collection<G, D, R>
where
    G: Scope<Timestamp = Timestamp>,
    D: Data,
    R: Semigroup + 'static,
{
    fn step_forward(&self, name: &str) -> Collection<G, D, R> {
        let name = format!("ct_step_forward({})", name);
        let mut builder = OperatorBuilder::new(name, self.scope());
        let (mut output, output_stream) = builder.new_output();
        // We step forward (by one) each data timestamp and capability. As a
        // result the output's frontier is guaranteed to be one past the input
        // frontier, so make this promise to timely.
        let step_forward_summary = Timestamp::from(1);
        let mut input = builder.new_input_connection(
            &self.inner,
            Pipeline,
            vec![Antichain::from_elem(step_forward_summary)],
        );
        builder.set_notify(false);
        builder.build(move |_caps| {
            move |_frontiers| {
                let mut output = output.activate();
                while let Some((cap, data)) = input.next() {
                    for (_, ts, _) in data.iter_mut() {
                        *ts = ts.step_forward();
                    }
                    let cap = cap.delayed(&cap.time().step_forward());
                    output.session(&cap).give_container(data);
                }
            }
        });

        output_stream.as_collection()
    }
}

trait TimesExtract<G: Scope, D, R> {
    /// Returns a collection with the times changed in the input collection.
    ///
    /// This works by mapping the data piece of the differential tuple to `()`.
    /// It is essentially the same as the following, but without cloning
    /// everything in the input.
    ///
    /// ```ignore
    /// input.map(|(_data, ts, diff)| ((), ts, diff))
    /// ```
    ///
    /// The output may be partially consolidated, but no consolidation
    /// guarantees are made.
    fn times_extract(&self, name: &str) -> (Collection<G, D, R>, Collection<G, (), R>);
}

impl<G, D, R> TimesExtract<G, D, R> for Collection<G, D, R>
where
    G: Scope<Timestamp = Timestamp>,
    D: Clone + 'static,
    R: Semigroup + 'static + std::fmt::Debug,
{
    fn times_extract(&self, name: &str) -> (Collection<G, D, R>, Collection<G, (), R>) {
        let name = format!("ct_times_extract({})", name);
        let mut builder = OperatorBuilder::new(name, self.scope());
        let (mut passthrough, passthrough_stream) = builder.new_output();
        let (mut times, times_stream) = builder.new_output::<ConsolidatingContainerBuilder<_>>();
        let mut input = builder.new_input(&self.inner, Pipeline);
        builder.set_notify(false);
        builder.build(|_caps| {
            move |_frontiers| {
                let mut passthrough = passthrough.activate();
                let mut times = times.activate();
                while let Some((cap, data)) = input.next() {
                    let times_iter = data.iter().map(|(_data, ts, diff)| ((), *ts, diff.clone()));
                    times.session_with_builder(&cap).give_iterator(times_iter);
                    passthrough.session(&cap).give_container(data);
                }
            }
        });
        (
            passthrough_stream.as_collection(),
            times_stream.as_collection(),
        )
    }
}

trait TimesReduce<G: Scope, R> {
    /// This is essentially a specialized impl of consolidate, with a HashMap
    /// instead of the Trace.
    fn times_reduce(&self, name: &str) -> Collection<G, (), R>;
}

impl<G, R> TimesReduce<G, R> for Collection<G, (), R>
where
    G: Scope<Timestamp = Timestamp>,
    R: Semigroup + 'static + std::fmt::Debug,
{
    fn times_reduce(&self, name: &str) -> Collection<G, (), R> {
        let name = format!("ct_times_reduce({})", name);
        self.inner
            .unary_frontier(Pipeline, &name, |_caps, _info| {
                let mut notificator = FrontierNotificator::default();
                let mut stash = HashMap::<_, R>::new();
                move |input, output| {
                    while let Some((cap, data)) = input.next() {
                        for ((), ts, diff) in data.drain(..) {
                            notificator.notify_at(cap.delayed(&ts));
                            if let Some(sum) = stash.get_mut(&ts) {
                                sum.plus_equals(&diff);
                            } else {
                                stash.insert(ts, diff);
                            }
                        }
                    }
                    notificator.for_each(&[input.frontier()], |cap, _not| {
                        if let Some(diff) = stash.remove(cap.time()) {
                            output.session(&cap).give(((), cap.time().clone(), diff));
                        }
                    });
                }
            })
            .as_collection()
    }
}

#[cfg(test)]
mod tests {
    use differential_dataflow::AsCollection;
    use mz_repr::Timestamp;
    use timely::dataflow::operators::capture::Extract;
    use timely::dataflow::operators::{Capture, Input, ToStream};
    use timely::dataflow::ProbeHandle;
    use timely::progress::Antichain;
    use timely::Config;

    use super::*;

    #[mz_ore::test]
    fn step_forward() {
        timely::execute(Config::thread(), |worker| {
            let (mut input, probe, output) = worker.dataflow(|scope| {
                let (handle, input) = scope.new_input();
                let mut probe = ProbeHandle::<Timestamp>::new();
                let output = input
                    .as_collection()
                    .step_forward("test")
                    .probe_with(&mut probe)
                    .inner
                    .capture();
                (handle, probe, output)
            });

            let mut expected = Vec::new();
            for i in 0u64..10 {
                let in_ts = Timestamp::new(i);
                let out_ts = in_ts.step_forward();
                input.send((i, in_ts, 1));
                input.advance_to(in_ts.step_forward());

                // We should get the data out advanced by `step_forward` and
                // also, crucially, the output frontier should do the same (i.e.
                // this is why we can't simply use `Collection::delay`).
                worker.step_while(|| probe.less_than(&out_ts.step_forward()));
                expected.push((i, out_ts, 1));
            }
            // Closing the input should allow the output to advance and the
            // dataflow to shut down.
            input.close();
            while worker.step() {}

            let actual = output
                .extract()
                .into_iter()
                .flat_map(|x| x.1)
                .collect::<Vec<_>>();
            assert_eq!(actual, expected);
        })
        .unwrap();
    }

    #[mz_ore::test]
    fn times_extract() {
        struct PanicOnClone;

        impl Clone for PanicOnClone {
            fn clone(&self) -> Self {
                panic!("boom")
            }
        }

        let output = timely::execute_directly(|worker| {
            worker.dataflow(|scope| {
                let input = [
                    (PanicOnClone, Timestamp::new(0), 0),
                    (PanicOnClone, Timestamp::new(1), 1),
                    (PanicOnClone, Timestamp::new(1), 1),
                    (PanicOnClone, Timestamp::new(2), -2),
                    (PanicOnClone, Timestamp::new(2), 1),
                ]
                .to_stream(scope)
                .as_collection();
                let (_passthrough, times) = input.times_extract("test");
                times.inner.capture()
            })
        });
        let expected = vec![((), Timestamp::new(1), 2), ((), Timestamp::new(2), -1)];
        let actual = output
            .extract()
            .into_iter()
            .flat_map(|x| x.1)
            .collect::<Vec<_>>();
        assert_eq!(actual, expected);
    }

    #[mz_ore::test]
    fn times_reduce() {
        let output = timely::execute_directly(|worker| {
            worker.dataflow(|scope| {
                let input = [
                    ((), Timestamp::new(3), 1),
                    ((), Timestamp::new(2), 1),
                    ((), Timestamp::new(1), 1),
                    ((), Timestamp::new(2), 1),
                    ((), Timestamp::new(3), 1),
                    ((), Timestamp::new(3), 1),
                ]
                .to_stream(scope)
                .as_collection();
                input.times_reduce("test").inner.capture()
            })
        });
        let expected = vec![
            ((), Timestamp::new(1), 1),
            ((), Timestamp::new(2), 2),
            ((), Timestamp::new(3), 3),
        ];
        let actual = output
            .extract()
            .into_iter()
            .flat_map(|x| x.1)
            .collect::<Vec<_>>();
        assert_eq!(actual, expected);
    }

    #[mz_ore::test]
    fn ct_sink_state() {
        #[track_caller]
        fn assert_noop(state: &mut super::SinkState<&'static str, Timestamp>) {
            if let Some(ret) = state.process() {
                panic!("should be nothing to write: {:?}", ret);
            }
        }

        #[track_caller]
        fn assert_write(
            state: &mut super::SinkState<&'static str, Timestamp>,
            expected_upper: u64,
            expected_append: &[&str],
        ) {
            let (new_upper, to_append) = state.process().expect("should be something to write");
            assert_eq!(
                new_upper,
                Antichain::from_elem(Timestamp::new(expected_upper))
            );
            let to_append = to_append
                .into_iter()
                .map(|((k, ()), _ts, _diff)| *k)
                .collect::<Vec<_>>();
            assert_eq!(to_append, expected_append);
        }

        let mut s = super::SinkState::new();

        // Nothing to do at the initial state.
        assert_noop(&mut s);

        // Getting data to append is not enough to do anything yet.
        s.to_append.push((("a", 1.into()), 1));
        s.to_append.push((("b", 1.into()), 1));
        assert_noop(&mut s);

        // Knowing that this is the only data we'll get for that timestamp is
        // still not enough.
        s.to_append_progress = Antichain::from_elem(2.into());
        assert_noop(&mut s);

        // Even knowing that we got input at that time is not quite enough yet
        // (we could be getting these out of order).
        s.append_times.insert(1.into());
        assert_noop(&mut s);

        // Indeed, it did come out of order. Also note that this checks the ==
        // case for time vs progress.
        s.append_times.insert(0.into());
        assert_noop(&mut s);

        // Okay, now we know that we've seen all the times we got input up to 3.
        // This is enough to allow the empty write of `[0,1)`.
        s.append_times_progress = Antichain::from_elem(3.into());
        assert_write(&mut s, 1, &[]);

        // That succeeded, now we can write the data at 1.
        s.output_progress = Antichain::from_elem(1.into());
        assert_write(&mut s, 2, &["a", "b"]);

        // That succeeded, now we know about some empty time.
        s.output_progress = Antichain::from_elem(2.into());
        assert_write(&mut s, 3, &[]);

        // That succeeded, now nothing to do.
        s.output_progress = Antichain::from_elem(3.into());
        assert_noop(&mut s);

        // Find out about a new time to write at. Even without the data, we can
        // do an empty write up to that time.
        s.append_times.insert(5.into());
        s.append_times_progress = Antichain::from_elem(6.into());
        assert_write(&mut s, 5, &[]);

        // That succeeded, now nothing to do again.
        s.output_progress = Antichain::from_elem(5.into());

        // Retract one of the things currently in the collection and add a new
        // thing, to verify the consolidate.
        s.to_append.push((("a", 5.into()), -1));
        s.to_append.push((("c", 5.into()), 1));
        s.to_append_progress = Antichain::from_elem(6.into());
        assert_write(&mut s, 6, &["b", "c"]);
    }
}