bytes_utils/string.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
//! [String]-like wrappers around [Bytes] and [BytesMut].
//!
//! The [Bytes] and [BytesMut] provide a buffer of bytes with ability to create owned slices into
//! the same shared memory allocation. This allows cheap manipulation of data.
//!
//! Strings are mostly just byte buffers with extra APIs to manipulate them. The standard [String]
//! type is built as a wrapper around [Vec]. We build similar wrappers around the [Bytes] and
//! [BytesMut], gaining the ability to create owned shared slices for textual data as well.
//!
//! Users are expected to use the [Str] and [StrMut] types. Note that these are type aliases around
//! the [StrInner] type. The latter is means to implement both in one go and contains all the
//! documentation, but is not meant to be used directly.
//!
//! # Splitting
//!
//! The [prim@str] type from standard library (which the types here dereference to) allows for
//! slicing and splitting in many convenient ways. They, however, return borrowed string slices
//! (`&str`), which might pose some problems.
//!
//! The [Str], and to certain extent, the [StrMut] type additionally allow cheap splitting and
//! slicing that produce owned [Str] and [StrMut] respectively. They are slightly more expensive
//! than the slicing than the ones returning `&str`, but only by incrementing internal reference
//! counts. They do not clone the actual string data, like `.to_owned()` on the standard library
//! methods would. These methods are available in addition to the standard ones.
//!
//! There are three ways how this can be done:
//!
//! * By dedicated methods, like [lines_bytes][StrInner::lines_bytes] (in general, the name of the
//! standard method suffixed with `_bytes`).
//! * By using the [BytesIter] iterator manually.
//! * By using the standard-library methods, producing `&str` and translating it back to [Str] with
//! [slice][StrInner::slice] or [StrInner::slice_ref].
//!
//! # Examples
//!
//! ```rust
//! # use std::convert::TryFrom;
//! # use bytes::Bytes;
//! # use bytes_utils::{Str, StrMut};
//! let mut builder = StrMut::new();
//! builder += "Hello";
//! builder.push(' ');
//! builder.push_str("World");
//! assert_eq!("Hello World", builder);
//!
//! let s1 = builder.split_built().freeze();
//! // This is a cheap copy, in the form of incrementing a reference count.
//! let s2 = s1.clone();
//! assert_eq!("Hello World", s1);
//! assert_eq!("Hello World", s2);
//! // Slicing is cheap as well, even though the returned things are Str and therefore owned too.
//! assert_eq!("ello", s1.slice(1..5));
//! // We have taken the data out of the builder, but the rest of its capacity can be used for
//! // further things.
//! assert_eq!("", builder);
//!
//! // Creating from strings and similar works
//! let a = Str::from("Hello");
//! assert_eq!("Hello", a);
//!
//! let e = Str::new();
//! assert_eq!("", e);
//!
//! // And from Bytes too.
//! let b = Str::try_from(Bytes::from_static(b"World")).expect("Must be utf8");
//! assert_eq!("World", b);
//! // Invalid utf8 is refused.
//! Str::try_from(Bytes::from_static(&[0, 0, 255])).unwrap_err();
//! ```
use std::borrow::{Borrow, BorrowMut, Cow};
use std::cmp::Ordering;
use std::convert::{Infallible, TryFrom};
use std::error::Error;
use std::fmt::{Debug, Display, Formatter, Result as FmtResult, Write};
use std::hash::{Hash, Hasher};
use std::iter::{self, FromIterator};
use std::ops::{Add, AddAssign, Deref, DerefMut, Index, IndexMut};
use std::str::{self, FromStr};
use bytes::{Bytes, BytesMut};
use either::Either;
/// Error when creating [Str] or [StrMut] from invalid UTF8 data.
#[derive(Copy, Clone, Debug)]
pub struct Utf8Error<S> {
e: str::Utf8Error,
inner: S,
}
impl<S> Utf8Error<S> {
/// Returns the byte buffer back to the caller.
pub fn into_inner(self) -> S {
self.inner
}
/// The inner description of why the data is invalid UTF8.
pub fn utf8_error(&self) -> str::Utf8Error {
self.e
}
}
impl<S> Display for Utf8Error<S> {
fn fmt(&self, fmt: &mut Formatter) -> FmtResult {
Display::fmt(&self.e, fmt)
}
}
impl<S: Debug> Error for Utf8Error<S> {}
/// Direction of iteration.
///
/// See [BytesIter].
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Direction {
/// Move forward (in the normal direction) in the string.
Forward,
/// Move backwards in the string.
Backward,
}
/// Manual splitting iterator.
///
/// The methods on [Str] and [StrMut] that iterate use this internally. But it can also be used
/// manually to generate other iterators that split the original into parts.
#[derive(Clone, Debug)]
pub struct BytesIter<S, F> {
bytes: Option<S>,
extract: F,
direction: Direction,
}
impl<S, F> BytesIter<S, F>
where
S: Storage,
F: FnMut(&str) -> Option<(usize, usize)>,
{
/// A constructor of the iterator.
///
/// The `direction` specifies in what order chunks should be yielded.
///
/// The `ext` closure is always called with the rest of not yet split string. It shall return
/// the byte indices of the chunk and separator border. In case of forward iteration, it is the
/// end of them and the separator needs to end further to the string (or at the same position).
/// In the backwards direction, it is in reverse ‒ they specify their starts and the separator
/// is before the chunk.
///
/// # Panics
///
/// If the indices don't point at a character boundary, the iteration will panic. It'll also
/// panic if the returned indices are reversed or if they are out of bounds.
pub fn new(s: StrInner<S>, direction: Direction, ext: F) -> Self {
Self {
bytes: Some(s.0),
extract: ext,
direction,
}
}
}
impl<S, F> Iterator for BytesIter<S, F>
where
S: Storage,
F: FnMut(&str) -> Option<(usize, usize)>,
{
type Item = StrInner<S>;
fn next(&mut self) -> Option<StrInner<S>> {
let storage = self.bytes.take()?;
// Safety: we keep sure it is valid UTF8 on the API boundary.
let whole_str = unsafe { str::from_utf8_unchecked(storage.as_ref()) };
fn split<S: Storage>(storage: S, left: usize, right: usize) -> (S, S) {
let whole_str = unsafe { str::from_utf8_unchecked(storage.as_ref()) };
// Sanity-check we are not slicing in the middle of utf8 code point. This would
// panic if we do. It would also panic if we are out of range, which is also good.
assert!(whole_str.is_char_boundary(left));
assert!(whole_str.is_char_boundary(right));
// Now that we are sure this is legal, we are going to slice the byte data for real.
let (with_sep, end) = storage.split_at(right);
let (start, _sep) = with_sep.split_at(left);
(start, end)
}
match ((self.extract)(whole_str), self.direction) {
(Some((chunk_end, sep_end)), Direction::Forward) => {
assert!(chunk_end <= sep_end);
let (start, end) = split(storage, chunk_end, sep_end);
self.bytes = Some(end);
Some(StrInner(start))
}
(Some((chunk_start, sep_start)), Direction::Backward) => {
assert!(sep_start <= chunk_start);
let (start, end) = split(storage, sep_start, chunk_start);
self.bytes = Some(start);
Some(StrInner(end))
}
(None, _) => {
// No separator found -> return the whole rest (and keep None in ourselves)
Some(StrInner(storage))
}
}
}
}
/// Find a separator position, for use with the [BytesIter].
fn sep_find<F: Fn(char) -> bool>(s: &str, is_sep: F) -> Option<(usize, usize)> {
let sep_start = s.find(&is_sep)?;
let sep_end = s[sep_start..]
.find(|c| !is_sep(c))
.map(|e| e + sep_start)
.unwrap_or_else(|| s.len());
Some((sep_start, sep_end))
}
/// Separator for an empty pattern.
fn empty_sep(s: &str, limit: usize) -> Option<(usize, usize)> {
let char_end = s
.char_indices()
.skip(1)
.map(|(i, _)| i)
.chain(iter::once(s.len()).take((!s.is_empty()) as usize))
.take(limit)
.next()?;
Some((char_end, char_end))
}
fn rempty_sep(s: &str, limit: usize) -> Option<(usize, usize)> {
let char_start = s.char_indices().rev().map(|(i, _)| i).take(limit).next()?;
Some((char_start, char_start))
}
/// The backing storage for [StrInner]
///
/// This is currently a technical detail of the crate, users are not expected to implement this
/// trait. Use [Str] or [StrMut] type aliases.
///
/// # Safety
///
/// The storage must act "sane". But what exactly it means is not yet analyzed and may change in
/// future versions. Don't implement the trait (at least not yet).
pub unsafe trait Storage: AsRef<[u8]> + Default + Sized {
/// A type that can be used to build the storage incrementally.
///
/// For mutable storages, it may be itself. For immutable one, there needs to be a mutable
/// counterpart that can be converted to immutable later on.
type Creator: Default + StorageMut;
/// Converts the creator (mutable storage) to self.
///
/// In case of mutable storages, this should be identity.
fn from_creator(creator: Self::Creator) -> Self;
/// Splits the storage at the given byte index and creates two non-overlapping instances.
fn split_at(self, at: usize) -> (Self, Self);
}
unsafe impl Storage for Bytes {
type Creator = BytesMut;
fn from_creator(creator: Self::Creator) -> Self {
creator.freeze()
}
fn split_at(mut self, at: usize) -> (Self, Self) {
let right = self.split_off(at);
(self, right)
}
}
unsafe impl Storage for BytesMut {
type Creator = BytesMut;
fn from_creator(creator: Self::Creator) -> Self {
creator
}
fn split_at(mut self, at: usize) -> (Self, Self) {
let right = self.split_off(at);
(self, right)
}
}
/// Trait for extra functionality of a mutable storage.
///
/// This is in addition to what an immutable storage must satisfy.
///
/// # Safety
///
/// The storage must act "sane". But what exactly it means is not yet analyzed and may change in
/// future versions. Don't implement the trait (at least not yet).
pub unsafe trait StorageMut: Storage + AsMut<[u8]> {
/// An immutable counter-part storage.
type Immutable: Storage<Creator = Self>;
/// Adds some more bytes to the end of the storage.
fn push_slice(&mut self, s: &[u8]);
}
unsafe impl StorageMut for BytesMut {
type Immutable = Bytes;
fn push_slice(&mut self, s: &[u8]) {
self.extend_from_slice(s)
}
}
/// Implementation of the [Str] and [StrMut] types.
///
/// For technical reasons, both are implemented in one go as this type. For the same reason, most
/// of the documentation can be found here. Users are expected to use the [Str] and [StrMut]
/// instead.
#[derive(Copy, Clone, Default)]
pub struct StrInner<S>(S);
impl<S: Storage> StrInner<S> {
/// Creates an empty instance.
pub fn new() -> Self {
Self::default()
}
/// Extracts the inner byte storage.
pub fn into_inner(self) -> S {
self.0
}
/// Access to the inner storage.
pub fn inner(&self) -> &S {
&self.0
}
/// Creates an instance from an existing byte storage.
///
/// It may fail if the content is not valid UTF8.
///
/// A [try_from][TryFrom::try_from] may be used instead.
pub fn from_inner(s: S) -> Result<Self, Utf8Error<S>> {
match str::from_utf8(s.as_ref()) {
Ok(_) => Ok(Self(s)),
Err(e) => Err(Utf8Error { e, inner: s }),
}
}
/// Same as [from_inner][StrInner::from_inner], but without the checks.
///
/// # Safety
///
/// The caller must ensure content is valid UTF8.
pub unsafe fn from_inner_unchecked(s: S) -> Self {
Self(s)
}
/// Splits the string into two at the given index.
///
/// # Panics
///
/// If the index is not at char boundary.
pub fn split_at_bytes(self, at: usize) -> (Self, Self) {
assert!(self.deref().is_char_boundary(at));
let (l, r) = self.0.split_at(at);
(Self(l), Self(r))
}
/// Splits into whitespace separated "words".
///
/// This acts like [split_whitespace][str::split_whitespace], but yields owned instances. It
/// doesn't clone the content, it just increments some reference counts.
pub fn split_whitespace_bytes(self) -> impl Iterator<Item = Self> {
BytesIter::new(self, Direction::Forward, |s| {
sep_find(s, char::is_whitespace)
})
.filter(|s| !s.is_empty())
}
/// Splits into whitespace separated "words".
///
/// This acts like [split_ascii_whitespace][str::split_ascii_whitespace], but yields owned
/// instances. This doesn't clone the content, it just increments some reference counts.
pub fn split_ascii_whitespace_bytes(self) -> impl Iterator<Item = Self> {
BytesIter::new(self, Direction::Forward, |s| {
sep_find(s, |c| c.is_ascii() && (c as u8).is_ascii_whitespace())
})
.filter(|s| !s.is_empty())
}
/// Splits into lines.
///
/// This acts like [lines][str::lines], but yields owned instances. The content is not cloned,
/// this just increments some reference counts.
pub fn lines_bytes(self) -> impl Iterator<Item = Self> {
if self.is_empty() {
Either::Left(iter::empty())
} else {
let iter = BytesIter::new(self, Direction::Forward, |s| sep_find(s, |c| c == '\n'))
.map(|s| match s.chars().next() {
Some('\r') => s.split_at_bytes(1).1,
_ => s,
});
Either::Right(iter)
}
}
/// Splits with the provided separator.
///
/// This acts somewhat like [split][str::split], but yields owned instances. Also, it accepts
/// only string patters (since the `Pattern` is not stable ☹). The content is not cloned, this
/// just increments some reference counts.
pub fn split_bytes<'s>(self, sep: &'s str) -> impl Iterator<Item = Self> + 's
where
S: 's,
{
if sep.is_empty() {
let bulk = BytesIter::new(self, Direction::Forward, |s| empty_sep(s, usize::MAX));
Either::Left(iter::once(Self::default()).chain(bulk))
} else {
let sep_find = move |s: &str| s.find(sep).map(|pos| (pos, pos + sep.len()));
Either::Right(BytesIter::new(self, Direction::Forward, sep_find))
}
}
/// Splits max. `n` times according to the given pattern.
///
/// This acts somewhat like [splitn][str::splitn], but yields owned instances. Also, it accepts
/// only string patters (since the `Pattern` is not stable ☹). The content is not cloned, this
/// just increments some reference counts.
pub fn splitn_bytes<'s>(self, mut n: usize, sep: &'s str) -> impl Iterator<Item = Self> + 's
where
S: 's,
{
// TODO: This seems to work, but is ugly. Any idea how to simplify?
if sep.is_empty() {
if n <= 1 {
Either::Left(Either::Left(iter::once(self).take(n)))
} else {
n -= 1;
let bulk = BytesIter::new(self, Direction::Forward, move |s| {
n -= 1;
empty_sep(s, n)
});
Either::Left(Either::Right(iter::once(Self::default()).chain(bulk)))
}
} else {
let sep_find = move |s: &str| {
n -= 1;
if n == 0 {
None
} else {
s.find(sep).map(|pos| (pos, pos + sep.len()))
}
};
Either::Right(BytesIter::new(self, Direction::Forward, sep_find).take(n))
}
}
/// A reverse version of [split_bytes][Self::split_bytes].
pub fn rsplit_bytes<'s>(self, sep: &'s str) -> impl Iterator<Item = Self> + 's
where
S: 's,
{
if sep.is_empty() {
let bulk = BytesIter::new(self, Direction::Backward, |s| rempty_sep(s, usize::MAX));
Either::Left(iter::once(Self::default()).chain(bulk))
} else {
let sep_find = move |s: &str| s.rfind(sep).map(|pos| (pos + sep.len(), pos));
Either::Right(BytesIter::new(self, Direction::Backward, sep_find))
}
}
/// A reverse version of [splitn_bytes][Self::splitn_bytes].
pub fn rsplitn_bytes<'s>(self, mut n: usize, sep: &'s str) -> impl Iterator<Item = Self> + 's
where
S: 's,
{
// TODO: This seems to work, but is ugly. Any idea how to simplify?
if sep.is_empty() {
if n <= 1 {
Either::Left(Either::Left(iter::once(self).take(n)))
} else {
n -= 1;
let bulk = BytesIter::new(self, Direction::Backward, move |s| {
n -= 1;
rempty_sep(s, n)
});
Either::Left(Either::Right(iter::once(Self::default()).chain(bulk)))
}
} else {
let sep_find = move |s: &str| {
n -= 1;
if n == 0 {
None
} else {
s.rfind(sep).map(|pos| (pos + sep.len(), pos))
}
};
Either::Right(BytesIter::new(self, Direction::Backward, sep_find).take(n))
}
}
}
impl<S: StorageMut> StrInner<S> {
/// Appends a string.
pub fn push_str(&mut self, s: &str) {
self.0.push_slice(s.as_bytes());
}
/// Appends one character.
pub fn push(&mut self, c: char) {
self.push_str(c.encode_utf8(&mut [0; 4]));
}
/// Provides mutable access to the inner buffer.
///
/// # Safety
///
/// The caller must ensure that the content stays valid UTF8.
pub unsafe fn inner_mut(&mut self) -> &mut S {
&mut self.0
}
/// Turns the mutable variant into an immutable one.
///
/// The advantage is that it can then be shared (also by small parts).
pub fn freeze(self) -> StrInner<S::Immutable> {
StrInner(S::Immutable::from_creator(self.0))
}
}
impl<S: Storage> Deref for StrInner<S> {
type Target = str;
fn deref(&self) -> &str {
unsafe { str::from_utf8_unchecked(self.0.as_ref()) }
}
}
impl<S: StorageMut> DerefMut for StrInner<S> {
fn deref_mut(&mut self) -> &mut str {
unsafe { str::from_utf8_unchecked_mut(self.0.as_mut()) }
}
}
impl<S, T> AsRef<T> for StrInner<S>
where
S: Storage,
str: AsRef<T>,
{
fn as_ref(&self) -> &T {
self.deref().as_ref()
}
}
impl<S: StorageMut> AsMut<str> for StrInner<S> {
fn as_mut(&mut self) -> &mut str {
self.deref_mut()
}
}
impl<S: Storage> Borrow<str> for StrInner<S> {
fn borrow(&self) -> &str {
self.deref()
}
}
impl<S: StorageMut> BorrowMut<str> for StrInner<S> {
fn borrow_mut(&mut self) -> &mut str {
self.deref_mut()
}
}
impl<S: Storage> Debug for StrInner<S> {
fn fmt(&self, fmt: &mut Formatter) -> FmtResult {
Debug::fmt(self.deref(), fmt)
}
}
impl<S: Storage> Display for StrInner<S> {
fn fmt(&self, fmt: &mut Formatter) -> FmtResult {
Display::fmt(self.deref(), fmt)
}
}
impl<S: Storage> Hash for StrInner<S> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.deref().hash(state)
}
}
impl<S, I> Index<I> for StrInner<S>
where
S: Storage,
str: Index<I>,
{
type Output = <str as Index<I>>::Output;
fn index(&self, index: I) -> &Self::Output {
self.deref().index(index)
}
}
impl<S, I> IndexMut<I> for StrInner<S>
where
S: StorageMut,
str: IndexMut<I>,
{
fn index_mut(&mut self, index: I) -> &mut Self::Output {
self.deref_mut().index_mut(index)
}
}
impl<S: StorageMut> Add<&str> for StrInner<S> {
type Output = Self;
fn add(mut self, rhs: &str) -> Self::Output {
self.push_str(rhs);
self
}
}
impl<S: StorageMut> AddAssign<&str> for StrInner<S> {
fn add_assign(&mut self, rhs: &str) {
self.push_str(rhs);
}
}
impl<S: StorageMut> Extend<char> for StrInner<S> {
fn extend<T: IntoIterator<Item = char>>(&mut self, iter: T) {
for c in iter {
self.push(c);
}
}
}
impl<'a, S: StorageMut> Extend<&'a char> for StrInner<S> {
fn extend<T: IntoIterator<Item = &'a char>>(&mut self, iter: T) {
for c in iter {
self.push(*c);
}
}
}
macro_rules! e {
($ty: ty) => {
impl<'a, S: StorageMut> Extend<$ty> for StrInner<S> {
fn extend<T: IntoIterator<Item = $ty>>(&mut self, iter: T) {
for i in iter {
self.push_str(i.as_ref());
}
}
}
impl<'a, S> FromIterator<$ty> for StrInner<S>
where
S: Storage,
{
fn from_iter<T: IntoIterator<Item = $ty>>(iter: T) -> Self {
let mut creator = StrInner(S::Creator::default());
creator.extend(iter);
StrInner(S::from_creator(creator.0))
}
}
impl<'a, S> From<$ty> for StrInner<S>
where
S: Storage,
{
fn from(s: $ty) -> Self {
iter::once(s).collect()
}
}
};
}
e!(String);
e!(&'a String);
e!(Box<str>);
e!(&'a str);
e!(Cow<'a, str>);
macro_rules! t {
($ty: ty) => {
impl TryFrom<$ty> for StrInner<$ty> {
type Error = Utf8Error<$ty>;
fn try_from(s: $ty) -> Result<Self, Utf8Error<$ty>> {
Self::from_inner(s)
}
}
impl From<StrInner<$ty>> for $ty {
fn from(s: StrInner<$ty>) -> $ty {
s.0
}
}
};
}
t!(Bytes);
t!(BytesMut);
impl From<StrMut> for Str {
fn from(s: StrMut) -> Self {
s.freeze()
}
}
impl<S: Storage> FromStr for StrInner<S> {
type Err = Infallible;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(s.into())
}
}
impl<S: Storage> PartialEq for StrInner<S> {
fn eq(&self, other: &Self) -> bool {
self.deref() == other.deref()
}
}
impl<S: Storage> Eq for StrInner<S> {}
impl<S: Storage> PartialOrd for StrInner<S> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(Ord::cmp(self, other))
}
}
impl<S: Storage> Ord for StrInner<S> {
fn cmp(&self, other: &Self) -> Ordering {
self.deref().cmp(other.deref())
}
}
macro_rules! c {
($ty: ty) => {
impl<'a, S: Storage> PartialEq<$ty> for StrInner<S> {
fn eq(&self, other: &$ty) -> bool {
self.deref() == other.deref()
}
}
impl<'a, S: Storage> PartialEq<StrInner<S>> for $ty {
fn eq(&self, other: &StrInner<S>) -> bool {
self.deref() == other.deref()
}
}
impl<'a, S: Storage> PartialOrd<$ty> for StrInner<S> {
fn partial_cmp(&self, other: &$ty) -> Option<Ordering> {
Some(self.deref().cmp(other.deref()))
}
}
impl<'a, S: Storage> PartialOrd<StrInner<S>> for $ty {
fn partial_cmp(&self, other: &StrInner<S>) -> Option<Ordering> {
Some(self.deref().cmp(other.deref()))
}
}
};
}
c!(&'a str);
c!(&'a mut str);
c!(String);
c!(Box<str>);
c!(Cow<'a, str>);
impl<S: StorageMut> Write for StrInner<S> {
fn write_str(&mut self, s: &str) -> FmtResult {
self.push_str(s);
Ok(())
}
}
/// The [format] macro, but returning [Str].
///
/// # Examples
///
/// ```
/// use bytes_utils::{format_bytes, Str};
/// let s: Str = format_bytes!("Hello {}", "world");
/// assert_eq!("Hello world", s);
/// ```
#[macro_export]
macro_rules! format_bytes {
($($arg: tt)*) => {
$crate::format_bytes_mut!($($arg)*).freeze()
}
}
/// The [format] macro, but returning [StrMut].
///
/// # Examples
///
/// ```
/// use bytes_utils::{format_bytes_mut, StrMut};
/// let s: StrMut = format_bytes_mut!("Hello {}", "world");
/// assert_eq!("Hello world", s);
/// ```
#[macro_export]
macro_rules! format_bytes_mut {
($($arg: tt)*) => {{
use std::fmt::Write;
let mut buf = $crate::StrMut::default();
write!(buf, $($arg)*).unwrap();
buf
}}
}
// TODO: Serde
/// An immutable variant of [Bytes]-backed string.
///
/// The methods and their documentation are on [StrInner], but users are mostly expected to use
/// this and the [StrMut] aliases.
pub type Str = StrInner<Bytes>;
impl Str {
/// Extracts a subslice of the string as an owned [Str].
///
/// # Panics
///
/// If the byte indices in the range are not on char boundaries.
pub fn slice<R>(&self, range: R) -> Str
where
str: Index<R, Output = str>,
{
self.slice_ref(&self[range])
}
/// Extracts owned representation of the slice passed.
///
/// This method accepts a string sub-slice of `self`. It then extracts the slice but as the
/// [Str] type. This makes it easier to use "ordinary" string parsing/manipulation and then go
/// back to holding the [Bytes]-based representation.
///
/// This is zero-copy, the common part will be shared by reference counting.
///
/// # Panics
///
/// If the provided slice is not a sub-slice of `self`. This is checked based on address of the
/// slice, not on the content.
///
/// # Example
///
/// ```rust
/// # use bytes_utils::Str;
/// let owned = Str::from("Hello World");
/// let borrowed_mid: &str = &owned[2..5];
///
/// let mid: Str = owned.slice_ref(borrowed_mid);
/// assert_eq!("Hello World", owned);
/// assert_eq!("llo", mid);
/// ```
pub fn slice_ref(&self, subslice: &str) -> Self {
let sub = self.0.slice_ref(subslice.as_bytes());
Self(sub)
}
}
/// A mutable variant of [BytesMut]-backed string.
///
/// Unlike [Str], this one allows modifications (mostly additions), but also doesn't allow
/// overlapping/shared chunks.
///
/// This is internally backed by the [StrInner] type, so the documentation of the methods are on
/// that.
pub type StrMut = StrInner<BytesMut>;
impl StrMut {
/// Splits and returns the part of already built string, but keeps the extra capacity.
pub fn split_built(&mut self) -> StrMut {
StrInner(self.0.split())
}
}
#[cfg(test)]
mod tests {
use std::panic;
use itertools::Itertools;
use proptest::prelude::*;
use super::*;
#[test]
fn split_w_byte_index() {
let v = Str::from("😈 ").split_whitespace_bytes().collect_vec();
assert_eq!(1, v.len());
assert_eq!("😈", v[0]);
}
#[test]
fn split_same() {
let v = Str::from("a").split_bytes("a").collect_vec();
assert_eq!(2, v.len());
assert_eq!("", v[0]);
assert_eq!("", v[1]);
}
#[test]
fn split_empty_pat() {
let v = Str::from("a").split_bytes("").collect_vec();
assert_eq!(3, v.len());
assert_eq!("", v[0]);
assert_eq!("a", v[1]);
assert_eq!("", v[2]);
}
#[test]
fn slice_checks_char_boundaries() {
let v = Str::from("😈");
assert_eq!(4, v.len());
panic::catch_unwind(|| v.slice(1..)).unwrap_err();
}
#[test]
fn split_at_bytes_mid() {
let v = Str::from("hello");
let (l, r) = v.split_at_bytes(2);
assert_eq!("he", l);
assert_eq!("llo", r);
}
#[test]
fn split_at_bytes_begin() {
let v = Str::from("hello");
let (l, r) = v.split_at_bytes(0);
assert_eq!("", l);
assert_eq!("hello", r);
}
#[test]
fn split_at_bytes_end() {
let v = Str::from("hello");
let (l, r) = v.split_at_bytes(5);
assert_eq!("hello", l);
assert_eq!("", r);
}
#[test]
fn split_at_bytes_panic() {
let v = Str::from("😈");
assert_eq!(4, v.len());
panic::catch_unwind(|| v.split_at_bytes(2)).unwrap_err();
}
proptest! {
#[test]
fn split_whitespace(s: String) {
let bstring = Str::from(&s);
let bw = bstring.split_whitespace_bytes();
let sw = s.split_whitespace();
for (b, s) in bw.zip_eq(sw) {
prop_assert_eq!(b, s);
}
}
#[test]
fn split_ascii_whitespace(s: String) {
let bstring = Str::from(&s);
let bw = bstring.split_ascii_whitespace_bytes();
let sw = s.split_ascii_whitespace();
for (b, s) in bw.zip_eq(sw) {
prop_assert_eq!(b, s);
}
}
#[test]
fn lines(s: String) {
let bstring = Str::from(&s);
let bl = bstring.lines_bytes();
let sl = s.lines();
for (b, s) in bl.zip_eq(sl) {
prop_assert_eq!(b, s);
}
}
#[test]
fn split(s: String, pat: String) {
let bstring = Str::from(&s);
let bs = bstring.split_bytes(&pat);
let ss = s.split(&pat);
for (b, s) in bs.zip_eq(ss) {
prop_assert_eq!(b, s);
}
}
#[test]
fn split_n(s: String, pat: String, n in 0..5usize) {
let bstring = Str::from(&s);
let bs = bstring.splitn_bytes(n, &pat);
let ss = s.splitn(n, &pat);
for (b, s) in bs.zip_eq(ss) {
prop_assert_eq!(b, s);
}
}
#[test]
fn rsplit(s: String, pat: String) {
let bstring = Str::from(&s);
let bs = bstring.rsplit_bytes(&pat);
let ss = s.rsplit(&pat);
for (b, s) in bs.zip_eq(ss) {
prop_assert_eq!(b, s);
}
}
#[test]
fn rsplit_n(s: String, pat: String, n in 0..5usize) {
let bstring = Str::from(&s);
let bs = bstring.rsplitn_bytes(n, &pat);
let ss = s.rsplitn(n, &pat);
for (b, s) in bs.zip_eq(ss) {
prop_assert_eq!(b, s);
}
}
}
}