mz_storage/source/mysql/replication.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Renders the replication side of the [`MySqlSourceConnection`] ingestion dataflow.
//!
//! # Progress tracking using Partitioned Timestamps
//!
//! This dataflow uses a Partitioned Timestamp implementation to represent the GTID Set that
//! comprises the full set of committed transactions from the MySQL Server. The frontier
//! representing progress for this dataflow represents the full range of possible UUIDs +
//! Transaction IDs of future GTIDs that could be added to the GTID Set.
//!
//! See the [`mz_storage_types::sources::mysql::GtidPartition`] type for more information.
//!
//! To maintain a complete frontier of the full UUID GTID range, we use a
//! [`partitions::GtidReplicationPartitions`] struct to store the GTID Set as a set of partitions.
//! This allows us to easily advance the frontier each time we see a new GTID on the replication
//! stream.
//!
//! # Resumption
//!
//! When the dataflow is resumed, the MySQL replication stream is started from the GTID frontier
//! of the minimum frontier across all source outputs. This is compared against the GTID set that
//! may still be obtained from the MySQL server, using the @@GTID_PURGED value in MySQL to
//! determine GTIDs that are no longer available in the binlog and to put the source in an error
//! state if we cannot resume from the GTID frontier.
//!
//! # Rewinds
//!
//! The replication stream may be resumed from a point before the snapshot for a specific output
//! occurs. To avoid double-counting updates that were present in the snapshot, we store a map
//! of pending rewinds that we've received from the snapshot operator, and when we see updates
//! for an output that were present in the snapshot, we negate the snapshot update
//! (at the minimum timestamp) and send it again at the correct GTID.
use std::collections::BTreeMap;
use std::convert::Infallible;
use std::num::NonZeroU64;
use std::pin::pin;
use std::sync::Arc;
use differential_dataflow::AsCollection;
use futures::StreamExt;
use itertools::Itertools;
use mysql_async::prelude::Queryable;
use mysql_async::{BinlogStream, BinlogStreamRequest, GnoInterval, Sid};
use mz_ore::future::InTask;
use mz_ssh_util::tunnel_manager::ManagedSshTunnelHandle;
use mz_timely_util::containers::stack::AccountedStackBuilder;
use timely::container::CapacityContainerBuilder;
use timely::dataflow::channels::pact::Exchange;
use timely::dataflow::operators::core::Map;
use timely::dataflow::operators::Concat;
use timely::dataflow::{Scope, Stream};
use timely::progress::{Antichain, Timestamp};
use timely::PartialOrder;
use tracing::trace;
use uuid::Uuid;
use mz_mysql_util::{
query_sys_var, MySqlConn, MySqlError, ER_SOURCE_FATAL_ERROR_READING_BINLOG_CODE,
};
use mz_ore::cast::CastFrom;
use mz_repr::GlobalId;
use mz_storage_types::errors::DataflowError;
use mz_storage_types::sources::mysql::{gtid_set_frontier, GtidPartition, GtidState};
use mz_storage_types::sources::MySqlSourceConnection;
use mz_timely_util::builder_async::{
Event as AsyncEvent, OperatorBuilder as AsyncOperatorBuilder, PressOnDropButton,
};
use crate::metrics::source::mysql::MySqlSourceMetrics;
use crate::source::types::{SignaledFuture, SourceMessage, StackedCollection};
use crate::source::RawSourceCreationConfig;
use super::{
return_definite_error, validate_mysql_repl_settings, DefiniteError, ReplicationError,
RewindRequest, SourceOutputInfo, TransientError,
};
mod context;
mod events;
mod partitions;
/// Used as a partition id to determine if the worker is
/// responsible for reading from the MySQL replication stream
static REPL_READER: &str = "reader";
/// A constant arbitrary offset to add to the source-id to
/// produce a deterministic server-id for identifying Materialize
/// as a replica on the upstream MySQL server.
/// TODO(roshan): Add user-facing documentation for this
static REPLICATION_SERVER_ID_OFFSET: u32 = 524000;
/// Renders the replication dataflow. See the module documentation for more
/// information.
pub(crate) fn render<G: Scope<Timestamp = GtidPartition>>(
scope: G,
config: RawSourceCreationConfig,
connection: MySqlSourceConnection,
source_outputs: Vec<SourceOutputInfo>,
rewind_stream: &Stream<G, RewindRequest>,
metrics: MySqlSourceMetrics,
) -> (
StackedCollection<G, (usize, Result<SourceMessage, DataflowError>)>,
Stream<G, Infallible>,
Stream<G, ReplicationError>,
PressOnDropButton,
) {
let op_name = format!("MySqlReplicationReader({})", config.id);
let mut builder = AsyncOperatorBuilder::new(op_name, scope);
let repl_reader_id = u64::cast_from(config.responsible_worker(REPL_READER));
let (mut data_output, data_stream) = builder.new_output::<AccountedStackBuilder<_>>();
let (_upper_output, upper_stream) = builder.new_output::<CapacityContainerBuilder<_>>();
// Captures DefiniteErrors that affect the entire source, including all outputs
let (definite_error_handle, definite_errors) =
builder.new_output::<CapacityContainerBuilder<_>>();
let mut rewind_input = builder.new_input_for(
rewind_stream,
Exchange::new(move |_| repl_reader_id),
&data_output,
);
let output_indexes = source_outputs
.iter()
.map(|output| output.output_index)
.collect_vec();
metrics.tables.set(u64::cast_from(source_outputs.len()));
let (button, transient_errors) = builder.build_fallible(move |caps| {
let busy_signal = Arc::clone(&config.busy_signal);
Box::pin(SignaledFuture::new(busy_signal, async move {
let (id, worker_id) = (config.id, config.worker_id);
let [data_cap_set, upper_cap_set, definite_error_cap_set]: &mut [_; 3] =
caps.try_into().unwrap();
// Only run the replication reader on the worker responsible for it.
if !config.responsible_for(REPL_READER) {
return Ok(());
}
let connection_config = connection
.connection
.config(
&config.config.connection_context.secrets_reader,
&config.config,
InTask::Yes,
)
.await?;
let mut conn = connection_config
.connect(
&format!("timely-{worker_id} MySQL replication reader"),
&config.config.connection_context.ssh_tunnel_manager,
)
.await?;
// Get the set of GTIDs that have been purged from the binlogs. The assumption is that this
// represents the frontier of possible GTIDs that exist in the binlog, that we can start
// replicating from.
let binlog_purged_set = query_sys_var(&mut conn, "global.gtid_purged").await?;
let binlog_frontier = match gtid_set_frontier(&binlog_purged_set) {
Ok(frontier) => frontier,
Err(err) => {
let err = DefiniteError::UnsupportedGtidState(err.to_string());
return Ok(
// If GTID intervals in the binlog are not available in a monotonic consecutive
// order this breaks all of our assumptions and there is nothing else we can do.
// This can occur if the mysql server is restored to a previous point-in-time
// or if a user manually adds transactions to the @@gtid_purged system var.
return_definite_error(
err,
&output_indexes,
&data_output,
data_cap_set,
&definite_error_handle,
definite_error_cap_set,
)
.await,
);
}
};
trace!(%id, "timely-{worker_id} replication binlog frontier: {binlog_frontier:?}");
// upstream-table-name: Vec<SourceOutputInfo> since multiple
// outputs can refer to the same table
let mut table_info = BTreeMap::new();
let mut output_uppers = Vec::new();
// Calculate the lowest frontier across all outputs, which represents the point which
// we should start replication from.
let min_frontier = Antichain::from_elem(GtidPartition::minimum());
for output in source_outputs.into_iter() {
// If an output is resuming at the minimum frontier then its snapshot
// has not yet been committed.
// We need to resume from a frontier before the output's snapshot frontier
// to ensure we don't miss updates that happen after the snapshot was taken.
//
// This also ensures that tables created as part of the same CREATE SOURCE
// statement are 'effectively' snapshot at the same GTID Set, even if their
// actual snapshot frontiers are different due to a restart.
//
// We've chosen the frontier beyond the GTID Set recorded
// during purification as this resume point.
if &output.resume_upper == &min_frontier {
output_uppers.push(output.initial_gtid_set.clone());
} else {
output_uppers.push(output.resume_upper.clone());
}
table_info
.entry(output.table_name.clone())
.or_insert_with(Vec::new)
.push(output);
}
let resume_upper = match output_uppers.len() {
0 => {
// If there are no outputs to replicate then we will just be updating the
// source progress collection. In this case we can just start from the head of
// the binlog to avoid wasting time on old events.
trace!(%id, "timely-{worker_id} replication reader found no outputs \
to replicate, using latest gtid_executed as resume_upper");
let executed_gtid_set =
query_sys_var(&mut conn, "global.gtid_executed").await?;
gtid_set_frontier(&executed_gtid_set)?
}
_ => Antichain::from_iter(output_uppers.into_iter().flatten()),
};
// Validate that we can actually resume from this upper.
if !PartialOrder::less_equal(&binlog_frontier, &resume_upper) {
let err = DefiniteError::BinlogMissingResumePoint(
format!("{:?}", binlog_frontier),
format!("{:?}", resume_upper),
);
return Ok(return_definite_error(
err,
&output_indexes,
&data_output,
data_cap_set,
&definite_error_handle,
definite_error_cap_set,
)
.await);
};
data_cap_set.downgrade(&*resume_upper);
upper_cap_set.downgrade(&*resume_upper);
trace!(%id, "timely-{worker_id} replication reader started at {:?}", resume_upper);
let mut rewinds = BTreeMap::new();
while let Some(event) = rewind_input.next().await {
if let AsyncEvent::Data(caps, data) = event {
for req in data {
// Check that the replication stream will be resumed from the snapshot point or before.
if !PartialOrder::less_equal(&resume_upper, &req.snapshot_upper) {
let err = DefiniteError::BinlogMissingResumePoint(
format!("{:?}", resume_upper),
format!("{:?}", req.snapshot_upper),
);
return Ok(return_definite_error(
err,
&output_indexes,
&data_output,
data_cap_set,
&definite_error_handle,
definite_error_cap_set,
)
.await);
};
// If the snapshot point is the same as the resume point then we don't need to rewind
if resume_upper != req.snapshot_upper {
rewinds.insert(req.output_index.clone(), (caps.clone(), req));
}
}
}
}
trace!(%id, "timely-{worker_id} pending rewinds {rewinds:?}");
// We don't use _conn_tunnel_handle here, but need to keep it around to ensure that the
// SSH tunnel is not dropped until the replication stream is dropped.
let (binlog_stream, _conn_tunnel_handle) =
match raw_stream(&config, conn, &resume_upper).await? {
Ok(stream) => stream,
// If the replication stream cannot be obtained in a definite way there is
// nothing else to do. These errors are not retractable.
Err(err) => {
return Ok(return_definite_error(
err,
&output_indexes,
&data_output,
data_cap_set,
&definite_error_handle,
definite_error_cap_set,
)
.await)
}
};
let mut stream = pin!(binlog_stream.peekable());
// Store all partitions from the resume_upper so we can create a frontier that comprises
// timestamps for partitions representing the full range of UUIDs to advance our main
// capabilities.
let mut data_partitions =
partitions::GtidReplicationPartitions::from(resume_upper.clone());
let mut progress_partitions = partitions::GtidReplicationPartitions::from(resume_upper);
let mut repl_context = context::ReplContext::new(
&config,
&connection_config,
stream.as_mut(),
&table_info,
&metrics,
&mut data_output,
data_cap_set,
upper_cap_set,
rewinds,
);
let mut active_tx: Option<(Uuid, NonZeroU64)> = None;
let mut row_event_buffer = Vec::new();
while let Some(event) = repl_context.stream.next().await {
use mysql_async::binlog::events::*;
let event = event?;
let event_data = event.read_data()?;
metrics.total.inc();
match event_data {
Some(EventData::XidEvent(_)) => {
// We've received a transaction commit event, which means that we've seen
// all events for the current GTID and we can advance the frontier beyond.
let (source_id, tx_id) = active_tx.take().expect("unexpected xid event");
// Increment the transaction-id to the next GTID we should see from this source-id
let next_tx_id = tx_id.checked_add(1).unwrap();
let next_gtid =
GtidPartition::new_singleton(source_id, GtidState::Active(next_tx_id));
if let Err(err) = data_partitions.advance_frontier(next_gtid) {
return Ok(return_definite_error(
err,
&output_indexes,
&data_output,
data_cap_set,
&definite_error_handle,
definite_error_cap_set,
)
.await);
}
let new_upper = data_partitions.frontier();
repl_context.downgrade_data_cap_set("xid_event", new_upper);
}
// We receive a GtidEvent that tells us the GTID of the incoming RowsEvents (and other events)
Some(EventData::GtidEvent(event)) => {
let source_id = Uuid::from_bytes(event.sid());
let tx_id = NonZeroU64::new(event.gno()).unwrap();
// We are potentially about to ingest a big transaction that we don't want
// to store in memory. For this reason we are immediately downgrading our
// progress frontier to one that includes the upcoming transaction. This
// will cause a remap binding to be minted right away and so the data of
// the transaction will not accumulate in the reclock operator.
let next_tx_id = tx_id.checked_add(1).unwrap();
let next_gtid =
GtidPartition::new_singleton(source_id, GtidState::Active(next_tx_id));
if let Err(err) = progress_partitions.advance_frontier(next_gtid) {
return Ok(return_definite_error(
err,
&output_indexes,
&data_output,
data_cap_set,
&definite_error_handle,
definite_error_cap_set,
)
.await);
}
let new_upper = progress_partitions.frontier();
repl_context.downgrade_progress_cap_set("xid_event", new_upper);
// Store the information of the active transaction for the subsequent events
active_tx = Some((source_id, tx_id));
}
Some(EventData::RowsEvent(data)) => {
let (source_id, tx_id) = active_tx
.clone()
.expect("gtid cap should be set by previous GtidEvent");
let cur_gtid =
GtidPartition::new_singleton(source_id, GtidState::Active(tx_id));
events::handle_rows_event(
data,
&repl_context,
&cur_gtid,
&mut row_event_buffer,
)
.await?;
// Advance the frontier up to the point right before this GTID, since we
// might still see other events that are part of this same GTID, such as
// row events for multiple tables or large row events split into multiple.
if let Err(err) = data_partitions.advance_frontier(cur_gtid) {
return Ok(return_definite_error(
err,
&output_indexes,
&data_output,
data_cap_set,
&definite_error_handle,
definite_error_cap_set,
)
.await);
}
let new_upper = data_partitions.frontier();
repl_context.downgrade_data_cap_set("rows_event", new_upper);
}
Some(EventData::QueryEvent(event)) => {
let (source_id, tx_id) = active_tx
.clone()
.expect("gtid cap should be set by previous GtidEvent");
let cur_gtid =
GtidPartition::new_singleton(source_id, GtidState::Active(tx_id));
let should_advance =
events::handle_query_event(event, &mut repl_context, &cur_gtid).await?;
if should_advance {
active_tx = None;
// Increment the transaction-id to the next GTID we should see from this source-id
let next_tx_id = tx_id.checked_add(1).unwrap();
let next_gtid = GtidPartition::new_singleton(
source_id,
GtidState::Active(next_tx_id),
);
if let Err(err) = data_partitions.advance_frontier(next_gtid) {
return Ok(return_definite_error(
err,
&output_indexes,
&data_output,
data_cap_set,
&definite_error_handle,
definite_error_cap_set,
)
.await);
}
let new_upper = data_partitions.frontier();
repl_context.downgrade_data_cap_set("query_event", new_upper);
}
}
_ => {
// TODO: Handle other event types
metrics.ignored.inc();
}
}
}
// We never expect the replication stream to gracefully end
Err(TransientError::ReplicationEOF)
}))
});
// TODO: Split row decoding into a separate operator that can be distributed across all workers
let errors = definite_errors.concat(&transient_errors.map(ReplicationError::from));
(
data_stream.as_collection(),
upper_stream,
errors,
button.press_on_drop(),
)
}
/// Produces the replication stream from the MySQL server. This will return all transactions
/// whose GTIDs were not present in the GTID UUIDs referenced in the `resume_uppper` partitions.
async fn raw_stream<'a>(
config: &RawSourceCreationConfig,
mut conn: MySqlConn,
resume_upper: &Antichain<GtidPartition>,
) -> Result<Result<(BinlogStream, Option<ManagedSshTunnelHandle>), DefiniteError>, TransientError> {
// Verify the MySQL system settings are correct for consistent row-based replication using GTIDs
match validate_mysql_repl_settings(&mut conn).await {
Err(err @ MySqlError::InvalidSystemSetting { .. }) => {
return Ok(Err(DefiniteError::ServerConfigurationError(
err.to_string(),
)));
}
Err(err) => Err(err)?,
Ok(()) => (),
};
// To start the stream we need to provide a GTID set of the transactions that we've 'seen'
// and the server will send us all transactions that have been committed after that point.
// NOTE: The 'Gno' intervals in this transaction-set use an open set [start, end)
// interval, which is different than the closed-set [start, end] form returned by the
// @gtid_executed system variable. So the intervals we construct in this GTID set
// end with the value of the transaction-id that we want to start replication at,
// which happens to be the same as the definition of a frontier value.
// https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
// https://dev.mysql.com/doc/dev/mysql-server/latest/classGtid__set.html#ab46da5ceeae0198b90f209b0a8be2a24
let seen_gtids = resume_upper
.iter()
.flat_map(|partition| match partition.timestamp() {
GtidState::Absent => None,
GtidState::Active(frontier_time) => {
let part_uuid = partition
.interval()
.singleton()
.expect("Non-absent paritions will be singletons");
// NOTE: Since we enforce replica_preserve_commit_order=ON we can start the interval at 1
// since we know that all transactions with a lower transaction id were monotonic
Some(
Sid::new(*part_uuid.as_bytes())
.with_interval(GnoInterval::new(1, frontier_time.get())),
)
}
})
.collect::<Vec<_>>();
// Request that the stream provide us with a heartbeat message when no other messages have
// been sent. This isn't strictly necessary, but is a lightweight additional general
// health-check for the replication stream
conn.query_drop(format!(
"SET @master_heartbeat_period = {};",
mz_storage_types::dyncfgs::MYSQL_REPLICATION_HEARTBEAT_INTERVAL
.get(config.config.config_set())
.as_nanos()
))
.await?;
// Generate a deterministic server-id for identifying us as a replica on the upstream mysql server.
// The value does not actually matter since it's irrelevant for GTID-based replication and won't
// cause errors if it happens to be the same as another replica in the mysql cluster (based on testing),
// but by setting it to a constant value we can make it easier for users to identify Materialize connections
let server_id = match config.id {
GlobalId::System(id) => id,
GlobalId::User(id) => id,
GlobalId::Transient(id) => id,
_ => unreachable!(),
};
let server_id = match u32::try_from(server_id) {
Ok(id) if id + REPLICATION_SERVER_ID_OFFSET < u32::MAX => id + REPLICATION_SERVER_ID_OFFSET,
_ => REPLICATION_SERVER_ID_OFFSET,
};
trace!(
"requesting replication stream with seen_gtids: {seen_gtids:?} \
and server_id: {server_id:?}"
);
// We need to transform the connection into a BinlogStream (which takes the `Conn` by value),
// but to avoid dropping any active SSH tunnel used by the connection we need to preserve the
// tunnel handle and return it
let (inner_conn, conn_tunnel_handle) = conn.take();
let repl_stream = match inner_conn
.get_binlog_stream(
BinlogStreamRequest::new(server_id)
.with_gtid()
.with_gtid_set(seen_gtids),
)
.await
{
Ok(stream) => stream,
Err(mysql_async::Error::Server(ref server_err))
if server_err.code == ER_SOURCE_FATAL_ERROR_READING_BINLOG_CODE =>
{
// The GTID set we requested is no longer available
return Ok(Err(DefiniteError::BinlogNotAvailable));
}
// TODO: handle other error types. Some may require a re-snapshot and some may be transient
Err(err) => return Err(err.into()),
};
Ok(Ok((repl_stream, conn_tunnel_handle)))
}