mz_storage/source/mysql/
replication.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Renders the replication side of the [`MySqlSourceConnection`] ingestion dataflow.
//!
//! # Progress tracking using Partitioned Timestamps
//!
//! This dataflow uses a Partitioned Timestamp implementation to represent the GTID Set that
//! comprises the full set of committed transactions from the MySQL Server. The frontier
//! representing progress for this dataflow represents the full range of possible UUIDs +
//! Transaction IDs of future GTIDs that could be added to the GTID Set.
//!
//! See the [`mz_storage_types::sources::mysql::GtidPartition`] type for more information.
//!
//! To maintain a complete frontier of the full UUID GTID range, we use a
//! [`partitions::GtidReplicationPartitions`] struct to store the GTID Set as a set of partitions.
//! This allows us to easily advance the frontier each time we see a new GTID on the replication
//! stream.
//!
//! # Resumption
//!
//! When the dataflow is resumed, the MySQL replication stream is started from the GTID frontier
//! of the minimum frontier across all source outputs. This is compared against the GTID set that
//! may still be obtained from the MySQL server, using the @@GTID_PURGED value in MySQL to
//! determine GTIDs that are no longer available in the binlog and to put the source in an error
//! state if we cannot resume from the GTID frontier.
//!
//! # Rewinds
//!
//! The replication stream may be resumed from a point before the snapshot for a specific output
//! occurs. To avoid double-counting updates that were present in the snapshot, we store a map
//! of pending rewinds that we've received from the snapshot operator, and when we see updates
//! for an output that were present in the snapshot, we negate the snapshot update
//! (at the minimum timestamp) and send it again at the correct GTID.

use std::collections::BTreeMap;
use std::convert::Infallible;
use std::num::NonZeroU64;
use std::pin::pin;
use std::sync::Arc;

use differential_dataflow::AsCollection;
use futures::StreamExt;
use itertools::Itertools;
use mysql_async::prelude::Queryable;
use mysql_async::{BinlogStream, BinlogStreamRequest, GnoInterval, Sid};
use mz_ore::future::InTask;
use mz_ssh_util::tunnel_manager::ManagedSshTunnelHandle;
use mz_timely_util::containers::stack::AccountedStackBuilder;
use timely::container::CapacityContainerBuilder;
use timely::dataflow::channels::pact::Exchange;
use timely::dataflow::operators::core::Map;
use timely::dataflow::operators::Concat;
use timely::dataflow::{Scope, Stream};
use timely::progress::{Antichain, Timestamp};
use timely::PartialOrder;
use tracing::trace;
use uuid::Uuid;

use mz_mysql_util::{
    query_sys_var, MySqlConn, MySqlError, ER_SOURCE_FATAL_ERROR_READING_BINLOG_CODE,
};
use mz_ore::cast::CastFrom;
use mz_repr::GlobalId;
use mz_storage_types::errors::DataflowError;
use mz_storage_types::sources::mysql::{gtid_set_frontier, GtidPartition, GtidState};
use mz_storage_types::sources::MySqlSourceConnection;
use mz_timely_util::builder_async::{
    Event as AsyncEvent, OperatorBuilder as AsyncOperatorBuilder, PressOnDropButton,
};

use crate::metrics::source::mysql::MySqlSourceMetrics;
use crate::source::types::{SignaledFuture, SourceMessage, StackedCollection};
use crate::source::RawSourceCreationConfig;

use super::{
    return_definite_error, validate_mysql_repl_settings, DefiniteError, ReplicationError,
    RewindRequest, SourceOutputInfo, TransientError,
};

mod context;
mod events;
mod partitions;

/// Used as a partition id to determine if the worker is
/// responsible for reading from the MySQL replication stream
static REPL_READER: &str = "reader";

/// A constant arbitrary offset to add to the source-id to
/// produce a deterministic server-id for identifying Materialize
/// as a replica on the upstream MySQL server.
/// TODO(roshan): Add user-facing documentation for this
static REPLICATION_SERVER_ID_OFFSET: u32 = 524000;

/// Renders the replication dataflow. See the module documentation for more
/// information.
pub(crate) fn render<G: Scope<Timestamp = GtidPartition>>(
    scope: G,
    config: RawSourceCreationConfig,
    connection: MySqlSourceConnection,
    source_outputs: Vec<SourceOutputInfo>,
    rewind_stream: &Stream<G, RewindRequest>,
    metrics: MySqlSourceMetrics,
) -> (
    StackedCollection<G, (usize, Result<SourceMessage, DataflowError>)>,
    Stream<G, Infallible>,
    Stream<G, ReplicationError>,
    PressOnDropButton,
) {
    let op_name = format!("MySqlReplicationReader({})", config.id);
    let mut builder = AsyncOperatorBuilder::new(op_name, scope);

    let repl_reader_id = u64::cast_from(config.responsible_worker(REPL_READER));
    let (mut data_output, data_stream) = builder.new_output::<AccountedStackBuilder<_>>();
    let (_upper_output, upper_stream) = builder.new_output::<CapacityContainerBuilder<_>>();
    // Captures DefiniteErrors that affect the entire source, including all outputs
    let (definite_error_handle, definite_errors) =
        builder.new_output::<CapacityContainerBuilder<_>>();
    let mut rewind_input = builder.new_input_for(
        rewind_stream,
        Exchange::new(move |_| repl_reader_id),
        &data_output,
    );

    let output_indexes = source_outputs
        .iter()
        .map(|output| output.output_index)
        .collect_vec();

    metrics.tables.set(u64::cast_from(source_outputs.len()));

    let (button, transient_errors) = builder.build_fallible(move |caps| {
        let busy_signal = Arc::clone(&config.busy_signal);
        Box::pin(SignaledFuture::new(busy_signal, async move {
            let (id, worker_id) = (config.id, config.worker_id);
            let [data_cap_set, upper_cap_set, definite_error_cap_set]: &mut [_; 3] =
                caps.try_into().unwrap();

            // Only run the replication reader on the worker responsible for it.
            if !config.responsible_for(REPL_READER) {
                return Ok(());
            }

            let connection_config = connection
                .connection
                .config(
                    &config.config.connection_context.secrets_reader,
                    &config.config,
                    InTask::Yes,
                )
                .await?;

            let mut conn = connection_config
                .connect(
                    &format!("timely-{worker_id} MySQL replication reader"),
                    &config.config.connection_context.ssh_tunnel_manager,
                )
                .await?;

            // Get the set of GTIDs that have been purged from the binlogs. The assumption is that this
            // represents the frontier of possible GTIDs that exist in the binlog, that we can start
            // replicating from.
            let binlog_purged_set = query_sys_var(&mut conn, "global.gtid_purged").await?;
            let binlog_frontier = match gtid_set_frontier(&binlog_purged_set) {
                Ok(frontier) => frontier,
                Err(err) => {
                    let err = DefiniteError::UnsupportedGtidState(err.to_string());
                    return Ok(
                        // If GTID intervals in the binlog are not available in a monotonic consecutive
                        // order this breaks all of our assumptions and there is nothing else we can do.
                        // This can occur if the mysql server is restored to a previous point-in-time
                        // or if a user manually adds transactions to the @@gtid_purged system var.
                        return_definite_error(
                            err,
                            &output_indexes,
                            &data_output,
                            data_cap_set,
                            &definite_error_handle,
                            definite_error_cap_set,
                        )
                        .await,
                    );
                }
            };

            trace!(%id, "timely-{worker_id} replication binlog frontier: {binlog_frontier:?}");

            // upstream-table-name: Vec<SourceOutputInfo> since multiple
            // outputs can refer to the same table
            let mut table_info = BTreeMap::new();
            let mut output_uppers = Vec::new();

            // Calculate the lowest frontier across all outputs, which represents the point which
            // we should start replication from.
            let min_frontier = Antichain::from_elem(GtidPartition::minimum());
            for output in source_outputs.into_iter() {
                // If an output is resuming at the minimum frontier then its snapshot
                // has not yet been committed.
                // We need to resume from a frontier before the output's snapshot frontier
                // to ensure we don't miss updates that happen after the snapshot was taken.
                //
                // This also ensures that tables created as part of the same CREATE SOURCE
                // statement are 'effectively' snapshot at the same GTID Set, even if their
                // actual snapshot frontiers are different due to a restart.
                //
                // We've chosen the frontier beyond the GTID Set recorded
                // during purification as this resume point.
                if &output.resume_upper == &min_frontier {
                    output_uppers.push(output.initial_gtid_set.clone());
                } else {
                    output_uppers.push(output.resume_upper.clone());
                }

                table_info
                    .entry(output.table_name.clone())
                    .or_insert_with(Vec::new)
                    .push(output);
            }
            let resume_upper = match output_uppers.len() {
                0 => {
                    // If there are no outputs to replicate then we will just be updating the
                    // source progress collection. In this case we can just start from the head of
                    // the binlog to avoid wasting time on old events.
                    trace!(%id, "timely-{worker_id} replication reader found no outputs \
                                 to replicate, using latest gtid_executed as resume_upper");
                    let executed_gtid_set =
                        query_sys_var(&mut conn, "global.gtid_executed").await?;

                    gtid_set_frontier(&executed_gtid_set)?
                }
                _ => Antichain::from_iter(output_uppers.into_iter().flatten()),
            };

            // Validate that we can actually resume from this upper.
            if !PartialOrder::less_equal(&binlog_frontier, &resume_upper) {
                let err = DefiniteError::BinlogMissingResumePoint(
                    format!("{:?}", binlog_frontier),
                    format!("{:?}", resume_upper),
                );
                return Ok(return_definite_error(
                    err,
                    &output_indexes,
                    &data_output,
                    data_cap_set,
                    &definite_error_handle,
                    definite_error_cap_set,
                )
                .await);
            };

            data_cap_set.downgrade(&*resume_upper);
            upper_cap_set.downgrade(&*resume_upper);
            trace!(%id, "timely-{worker_id} replication reader started at {:?}", resume_upper);

            let mut rewinds = BTreeMap::new();
            while let Some(event) = rewind_input.next().await {
                if let AsyncEvent::Data(caps, data) = event {
                    for req in data {
                        // Check that the replication stream will be resumed from the snapshot point or before.
                        if !PartialOrder::less_equal(&resume_upper, &req.snapshot_upper) {
                            let err = DefiniteError::BinlogMissingResumePoint(
                                format!("{:?}", resume_upper),
                                format!("{:?}", req.snapshot_upper),
                            );
                            return Ok(return_definite_error(
                                err,
                                &output_indexes,
                                &data_output,
                                data_cap_set,
                                &definite_error_handle,
                                definite_error_cap_set,
                            )
                            .await);
                        };
                        // If the snapshot point is the same as the resume point then we don't need to rewind
                        if resume_upper != req.snapshot_upper {
                            rewinds.insert(req.output_index.clone(), (caps.clone(), req));
                        }
                    }
                }
            }
            trace!(%id, "timely-{worker_id} pending rewinds {rewinds:?}");

            // We don't use _conn_tunnel_handle here, but need to keep it around to ensure that the
            // SSH tunnel is not dropped until the replication stream is dropped.
            let (binlog_stream, _conn_tunnel_handle) =
                match raw_stream(&config, conn, &resume_upper).await? {
                    Ok(stream) => stream,
                    // If the replication stream cannot be obtained in a definite way there is
                    // nothing else to do. These errors are not retractable.
                    Err(err) => {
                        return Ok(return_definite_error(
                            err,
                            &output_indexes,
                            &data_output,
                            data_cap_set,
                            &definite_error_handle,
                            definite_error_cap_set,
                        )
                        .await)
                    }
                };
            let mut stream = pin!(binlog_stream.peekable());

            // Store all partitions from the resume_upper so we can create a frontier that comprises
            // timestamps for partitions representing the full range of UUIDs to advance our main
            // capabilities.
            let mut data_partitions =
                partitions::GtidReplicationPartitions::from(resume_upper.clone());
            let mut progress_partitions = partitions::GtidReplicationPartitions::from(resume_upper);

            let mut repl_context = context::ReplContext::new(
                &config,
                &connection_config,
                stream.as_mut(),
                &table_info,
                &metrics,
                &mut data_output,
                data_cap_set,
                upper_cap_set,
                rewinds,
            );

            let mut active_tx: Option<(Uuid, NonZeroU64)> = None;

            let mut row_event_buffer = Vec::new();

            while let Some(event) = repl_context.stream.next().await {
                use mysql_async::binlog::events::*;
                let event = event?;
                let event_data = event.read_data()?;
                metrics.total.inc();

                match event_data {
                    Some(EventData::XidEvent(_)) => {
                        // We've received a transaction commit event, which means that we've seen
                        // all events for the current GTID and we can advance the frontier beyond.
                        let (source_id, tx_id) = active_tx.take().expect("unexpected xid event");

                        // Increment the transaction-id to the next GTID we should see from this source-id
                        let next_tx_id = tx_id.checked_add(1).unwrap();
                        let next_gtid =
                            GtidPartition::new_singleton(source_id, GtidState::Active(next_tx_id));

                        if let Err(err) = data_partitions.advance_frontier(next_gtid) {
                            return Ok(return_definite_error(
                                err,
                                &output_indexes,
                                &data_output,
                                data_cap_set,
                                &definite_error_handle,
                                definite_error_cap_set,
                            )
                            .await);
                        }
                        let new_upper = data_partitions.frontier();
                        repl_context.downgrade_data_cap_set("xid_event", new_upper);
                    }
                    // We receive a GtidEvent that tells us the GTID of the incoming RowsEvents (and other events)
                    Some(EventData::GtidEvent(event)) => {
                        let source_id = Uuid::from_bytes(event.sid());
                        let tx_id = NonZeroU64::new(event.gno()).unwrap();

                        // We are potentially about to ingest a big transaction that we don't want
                        // to store in memory. For this reason we are immediately downgrading our
                        // progress frontier to one that includes the upcoming transaction. This
                        // will cause a remap binding to be minted right away and so the data of
                        // the transaction will not accumulate in the reclock operator.
                        let next_tx_id = tx_id.checked_add(1).unwrap();
                        let next_gtid =
                            GtidPartition::new_singleton(source_id, GtidState::Active(next_tx_id));

                        if let Err(err) = progress_partitions.advance_frontier(next_gtid) {
                            return Ok(return_definite_error(
                                err,
                                &output_indexes,
                                &data_output,
                                data_cap_set,
                                &definite_error_handle,
                                definite_error_cap_set,
                            )
                            .await);
                        }
                        let new_upper = progress_partitions.frontier();
                        repl_context.downgrade_progress_cap_set("xid_event", new_upper);

                        // Store the information of the active transaction for the subsequent events
                        active_tx = Some((source_id, tx_id));
                    }
                    Some(EventData::RowsEvent(data)) => {
                        let (source_id, tx_id) = active_tx
                            .clone()
                            .expect("gtid cap should be set by previous GtidEvent");
                        let cur_gtid =
                            GtidPartition::new_singleton(source_id, GtidState::Active(tx_id));

                        events::handle_rows_event(
                            data,
                            &repl_context,
                            &cur_gtid,
                            &mut row_event_buffer,
                        )
                        .await?;

                        // Advance the frontier up to the point right before this GTID, since we
                        // might still see other events that are part of this same GTID, such as
                        // row events for multiple tables or large row events split into multiple.
                        if let Err(err) = data_partitions.advance_frontier(cur_gtid) {
                            return Ok(return_definite_error(
                                err,
                                &output_indexes,
                                &data_output,
                                data_cap_set,
                                &definite_error_handle,
                                definite_error_cap_set,
                            )
                            .await);
                        }
                        let new_upper = data_partitions.frontier();
                        repl_context.downgrade_data_cap_set("rows_event", new_upper);
                    }
                    Some(EventData::QueryEvent(event)) => {
                        let (source_id, tx_id) = active_tx
                            .clone()
                            .expect("gtid cap should be set by previous GtidEvent");
                        let cur_gtid =
                            GtidPartition::new_singleton(source_id, GtidState::Active(tx_id));

                        let should_advance =
                            events::handle_query_event(event, &mut repl_context, &cur_gtid).await?;

                        if should_advance {
                            active_tx = None;
                            // Increment the transaction-id to the next GTID we should see from this source-id
                            let next_tx_id = tx_id.checked_add(1).unwrap();
                            let next_gtid = GtidPartition::new_singleton(
                                source_id,
                                GtidState::Active(next_tx_id),
                            );

                            if let Err(err) = data_partitions.advance_frontier(next_gtid) {
                                return Ok(return_definite_error(
                                    err,
                                    &output_indexes,
                                    &data_output,
                                    data_cap_set,
                                    &definite_error_handle,
                                    definite_error_cap_set,
                                )
                                .await);
                            }
                            let new_upper = data_partitions.frontier();
                            repl_context.downgrade_data_cap_set("query_event", new_upper);
                        }
                    }
                    _ => {
                        // TODO: Handle other event types
                        metrics.ignored.inc();
                    }
                }
            }
            // We never expect the replication stream to gracefully end
            Err(TransientError::ReplicationEOF)
        }))
    });

    // TODO: Split row decoding into a separate operator that can be distributed across all workers

    let errors = definite_errors.concat(&transient_errors.map(ReplicationError::from));

    (
        data_stream.as_collection(),
        upper_stream,
        errors,
        button.press_on_drop(),
    )
}

/// Produces the replication stream from the MySQL server. This will return all transactions
/// whose GTIDs were not present in the GTID UUIDs referenced in the `resume_uppper` partitions.
async fn raw_stream<'a>(
    config: &RawSourceCreationConfig,
    mut conn: MySqlConn,
    resume_upper: &Antichain<GtidPartition>,
) -> Result<Result<(BinlogStream, Option<ManagedSshTunnelHandle>), DefiniteError>, TransientError> {
    // Verify the MySQL system settings are correct for consistent row-based replication using GTIDs
    match validate_mysql_repl_settings(&mut conn).await {
        Err(err @ MySqlError::InvalidSystemSetting { .. }) => {
            return Ok(Err(DefiniteError::ServerConfigurationError(
                err.to_string(),
            )));
        }
        Err(err) => Err(err)?,
        Ok(()) => (),
    };

    // To start the stream we need to provide a GTID set of the transactions that we've 'seen'
    // and the server will send us all transactions that have been committed after that point.
    // NOTE: The 'Gno' intervals in this transaction-set use an open set [start, end)
    // interval, which is different than the closed-set [start, end] form returned by the
    // @gtid_executed system variable. So the intervals we construct in this GTID set
    // end with the value of the transaction-id that we want to start replication at,
    // which happens to be the same as the definition of a frontier value.
    // https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
    // https://dev.mysql.com/doc/dev/mysql-server/latest/classGtid__set.html#ab46da5ceeae0198b90f209b0a8be2a24
    let seen_gtids = resume_upper
        .iter()
        .flat_map(|partition| match partition.timestamp() {
            GtidState::Absent => None,
            GtidState::Active(frontier_time) => {
                let part_uuid = partition
                    .interval()
                    .singleton()
                    .expect("Non-absent paritions will be singletons");
                // NOTE: Since we enforce replica_preserve_commit_order=ON we can start the interval at 1
                // since we know that all transactions with a lower transaction id were monotonic
                Some(
                    Sid::new(*part_uuid.as_bytes())
                        .with_interval(GnoInterval::new(1, frontier_time.get())),
                )
            }
        })
        .collect::<Vec<_>>();

    // Request that the stream provide us with a heartbeat message when no other messages have
    // been sent. This isn't strictly necessary, but is a lightweight additional general
    // health-check for the replication stream
    conn.query_drop(format!(
        "SET @master_heartbeat_period = {};",
        mz_storage_types::dyncfgs::MYSQL_REPLICATION_HEARTBEAT_INTERVAL
            .get(config.config.config_set())
            .as_nanos()
    ))
    .await?;

    // Generate a deterministic server-id for identifying us as a replica on the upstream mysql server.
    // The value does not actually matter since it's irrelevant for GTID-based replication and won't
    // cause errors if it happens to be the same as another replica in the mysql cluster (based on testing),
    // but by setting it to a constant value we can make it easier for users to identify Materialize connections
    let server_id = match config.id {
        GlobalId::System(id) => id,
        GlobalId::User(id) => id,
        GlobalId::Transient(id) => id,
        _ => unreachable!(),
    };
    let server_id = match u32::try_from(server_id) {
        Ok(id) if id + REPLICATION_SERVER_ID_OFFSET < u32::MAX => id + REPLICATION_SERVER_ID_OFFSET,
        _ => REPLICATION_SERVER_ID_OFFSET,
    };

    trace!(
        "requesting replication stream with seen_gtids: {seen_gtids:?} \
         and server_id: {server_id:?}"
    );

    // We need to transform the connection into a BinlogStream (which takes the `Conn` by value),
    // but to avoid dropping any active SSH tunnel used by the connection we need to preserve the
    // tunnel handle and return it
    let (inner_conn, conn_tunnel_handle) = conn.take();

    let repl_stream = match inner_conn
        .get_binlog_stream(
            BinlogStreamRequest::new(server_id)
                .with_gtid()
                .with_gtid_set(seen_gtids),
        )
        .await
    {
        Ok(stream) => stream,
        Err(mysql_async::Error::Server(ref server_err))
            if server_err.code == ER_SOURCE_FATAL_ERROR_READING_BINLOG_CODE =>
        {
            // The GTID set we requested is no longer available
            return Ok(Err(DefiniteError::BinlogNotAvailable));
        }
        // TODO: handle other error types. Some may require a re-snapshot and some may be transient
        Err(err) => return Err(err.into()),
    };

    Ok(Ok((repl_stream, conn_tunnel_handle)))
}