ropey/tree/node.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
use std::sync::Arc;
use crate::str_utils::{
byte_to_char_idx, byte_to_line_idx, byte_to_utf16_surrogate_idx, char_to_byte_idx,
};
use crate::tree::node_text::fix_segment_seam;
use crate::tree::{
Count, NodeChildren, NodeText, TextInfo, MAX_BYTES, MAX_CHILDREN, MIN_BYTES, MIN_CHILDREN,
};
#[derive(Debug, Clone)]
#[repr(u8, C)]
pub(crate) enum Node {
Leaf(NodeText),
Internal(NodeChildren),
}
impl Node {
/// Creates an empty node.
#[inline(always)]
pub fn new() -> Self {
Node::Leaf(NodeText::from_str(""))
}
/// Total number of bytes in the Rope.
#[inline(always)]
pub fn byte_count(&self) -> usize {
self.text_info().bytes as usize
}
/// Total number of chars in the Rope.
#[inline(always)]
pub fn char_count(&self) -> usize {
self.text_info().chars as usize
}
/// Total number of line breaks in the Rope.
#[inline(always)]
pub fn line_break_count(&self) -> usize {
self.text_info().line_breaks as usize
}
/// Total number of line breaks in the Rope.
#[inline(always)]
pub fn utf16_surrogate_count(&self) -> usize {
self.text_info().utf16_surrogates as usize
}
/// Fetches a chunk mutably, and allows it to be edited via a closure.
///
/// There are three parameters:
/// - char_idx: the chunk that contains this char is fetched,
/// - node_info: this is the text info of the node it's being called on.
/// This makes it a little awkward to call, but is needed since
/// it's actually the parent node that contains the text info,
/// so the info needs to be passed in.
/// - edit: the closure that receives the chunk and does the edits.
///
/// The closure is effectively the termination case for the recursion,
/// and takes essentially same parameters and returns the same things as
/// the method itself. In particular, the closure receives the char offset
/// of char_idx within the given chunk and the TextInfo of the chunk.
/// The main difference is that it receives a NodeText instead of a node.
///
/// The closure is expected to return the updated text info of the node,
/// and if the node had to be split, then it also returns the right-hand
/// node along with its TextInfo as well.
///
/// The main method call will then return the total updated TextInfo for
/// the whole tree, and a new node only if the whole tree had to be split.
/// It is up to the caller to check for that new node, and handle it by
/// creating a new root with both the original node and the new node as
/// children.
pub fn edit_chunk_at_char<F>(
&mut self,
char_idx: usize,
node_info: TextInfo,
mut edit: F,
) -> (TextInfo, Option<(TextInfo, Arc<Node>)>)
where
F: FnMut(usize, TextInfo, &mut NodeText) -> (TextInfo, Option<(TextInfo, Arc<Node>)>),
{
match *self {
Node::Leaf(ref mut leaf_text) => edit(char_idx, node_info, leaf_text),
Node::Internal(ref mut children) => {
// Compact leaf children if we're very close to maximum leaf
// fragmentation. This basically guards against excessive memory
// ballooning when repeatedly appending to the end of a rope.
// The constant here was arrived at experimentally, and is otherwise
// fairly arbitrary.
const FRAG_MIN_BYTES: usize = (MAX_BYTES * MIN_CHILDREN) + (MAX_BYTES / 32);
if children.is_full()
&& children.nodes()[0].is_leaf()
&& (children.combined_info().bytes as usize) < FRAG_MIN_BYTES
{
children.compact_leaves();
}
// Find the child we care about.
let (child_i, acc_char_idx) = children.search_char_idx_only(char_idx);
let info = children.info()[child_i];
// Recurse into the child.
let (l_info, residual) = Arc::make_mut(&mut children.nodes_mut()[child_i])
.edit_chunk_at_char(char_idx - acc_char_idx, info, edit);
children.info_mut()[child_i] = l_info;
// Handle the residual node if there is one and return.
if let Some((r_info, r_node)) = residual {
if children.len() < MAX_CHILDREN {
children.insert(child_i + 1, (r_info, r_node));
(node_info - info + l_info + r_info, None)
} else {
let r = children.insert_split(child_i + 1, (r_info, r_node));
let r_info = r.combined_info();
(
children.combined_info(),
Some((r_info, Arc::new(Node::Internal(r)))),
)
}
} else {
(node_info - info + l_info, None)
}
}
}
}
/// Removes chars in the range `start_idx..end_idx`.
///
/// Returns (in this order):
/// - The updated TextInfo for the node.
/// - Whether there's a possible CRLF seam that needs fixing.
/// - Whether fix_tree_seam() needs to be run after this.
///
/// WARNING: does not correctly handle all text being removed. That
/// should be special-cased in calling code.
pub fn remove_char_range(
&mut self,
start_idx: usize,
end_idx: usize,
node_info: TextInfo,
) -> (TextInfo, bool, bool) {
if start_idx == end_idx {
return (node_info, false, false);
}
match *self {
// If it's a leaf
Node::Leaf(ref mut leaf_text) => {
let byte_start = char_to_byte_idx(leaf_text, start_idx);
let byte_end =
byte_start + char_to_byte_idx(&leaf_text[byte_start..], end_idx - start_idx);
// Remove text and calculate new info & seam info
if byte_start > 0 || byte_end < leaf_text.len() {
let seam = (byte_start == 0 && leaf_text.as_bytes()[byte_end] == 0x0A)
|| (byte_end == leaf_text.len()
&& leaf_text.as_bytes()[byte_start - 1] == 0x0D);
let seg_len = byte_end - byte_start; // Length of removal segement
if seg_len < (leaf_text.len() - seg_len) {
#[allow(unused_mut)]
let mut info =
node_info - TextInfo::from_str(&leaf_text[byte_start..byte_end]);
// Check for CRLF pairs on the removal seams, and
// adjust line break counts accordingly.
#[cfg(any(feature = "cr_lines", feature = "unicode_lines"))]
{
if byte_end < leaf_text.len()
&& leaf_text.as_bytes()[byte_end - 1] == 0x0D
&& leaf_text.as_bytes()[byte_end] == 0x0A
{
info.line_breaks += 1;
}
if byte_start > 0 && leaf_text.as_bytes()[byte_start - 1] == 0x0D {
if leaf_text.as_bytes()[byte_start] == 0x0A {
info.line_breaks += 1;
}
if byte_end < leaf_text.len()
&& leaf_text.as_bytes()[byte_end] == 0x0A
{
info.line_breaks -= 1;
}
}
}
// Remove the text
leaf_text.remove_range(byte_start, byte_end);
(info, seam, false)
} else {
// Remove the text
leaf_text.remove_range(byte_start, byte_end);
(TextInfo::from_str(leaf_text), seam, false)
}
} else {
// Remove all of the text
leaf_text.remove_range(byte_start, byte_end);
(TextInfo::new(), true, false)
}
}
// If it's internal, it's much more complicated
Node::Internal(ref mut children) => {
// Shared code for handling children.
// Returns (in this order):
// - Whether there's a possible CRLF seam that needs fixing.
// - Whether the tree may need invariant fixing.
// - Updated TextInfo of the node.
let handle_child = |children: &mut NodeChildren,
child_i: usize,
c_char_acc: usize|
-> (bool, bool, TextInfo) {
// Recurse into child
let tmp_info = children.info()[child_i];
let tmp_chars = children.info()[child_i].chars as usize;
let (new_info, seam, needs_fix) =
Arc::make_mut(&mut children.nodes_mut()[child_i]).remove_char_range(
start_idx - c_char_acc.min(start_idx),
(end_idx - c_char_acc).min(tmp_chars),
tmp_info,
);
// Handle result
if new_info.bytes == 0 {
children.remove(child_i);
} else {
children.info_mut()[child_i] = new_info;
}
(seam, needs_fix, new_info)
};
// Shared code for merging children
let merge_child = |children: &mut NodeChildren, child_i: usize| {
if child_i < children.len()
&& children.len() > 1
&& children.nodes()[child_i].is_undersized()
{
if child_i == 0 {
children.merge_distribute(child_i, child_i + 1);
} else {
children.merge_distribute(child_i - 1, child_i);
}
}
};
// Get child info for the two char indices
let ((l_child_i, l_char_acc), (r_child_i, r_char_acc)) =
children.search_char_idx_range(start_idx, end_idx);
// Both indices point into the same child
if l_child_i == r_child_i {
let info = children.info()[l_child_i];
let (seam, mut needs_fix, new_info) =
handle_child(children, l_child_i, l_char_acc);
if children.len() > 0 {
merge_child(children, l_child_i);
// If we couldn't get all children >= minimum size, then
// we'll need to fix that later.
if children.nodes()[l_child_i.min(children.len() - 1)].is_undersized() {
needs_fix = true;
}
}
return (node_info - info + new_info, seam, needs_fix);
}
// We're dealing with more than one child.
else {
let mut needs_fix = false;
// Calculate the start..end range of nodes to be removed.
let r_child_exists: bool;
let start_i = l_child_i + 1;
let end_i = if r_char_acc + children.info()[r_child_i].chars as usize == end_idx
{
r_child_exists = false;
r_child_i + 1
} else {
r_child_exists = true;
r_child_i
};
// Remove the children
for _ in start_i..end_i {
children.remove(start_i);
}
// Handle right child
if r_child_exists {
let (_, fix, _) = handle_child(children, l_child_i + 1, r_char_acc);
needs_fix |= fix;
}
// Handle left child
let (seam, fix, _) = handle_child(children, l_child_i, l_char_acc);
needs_fix |= fix;
if children.len() > 0 {
// Handle merging
let merge_extent = 1 + if r_child_exists { 1 } else { 0 };
for i in (l_child_i..(l_child_i + merge_extent)).rev() {
merge_child(children, i);
}
// If we couldn't get all children >= minimum size, then
// we'll need to fix that later.
if children.nodes()[l_child_i.min(children.len() - 1)].is_undersized() {
needs_fix = true;
}
}
// Return
return (children.combined_info(), seam, needs_fix);
}
}
}
}
pub fn append_at_depth(&mut self, other: Arc<Node>, depth: usize) -> Option<Arc<Node>> {
if depth == 0 {
match *self {
Node::Leaf(_) => {
if !other.is_leaf() {
panic!("Tree-append siblings have differing types.");
} else {
return Some(other);
}
}
Node::Internal(ref mut children_l) => {
let mut other = other;
if let Node::Internal(ref mut children_r) = *Arc::make_mut(&mut other) {
if (children_l.len() + children_r.len()) <= MAX_CHILDREN {
for _ in 0..children_r.len() {
children_l.push(children_r.remove(0));
}
return None;
} else {
children_l.distribute_with(children_r);
// Return lower down, to avoid borrow-checker.
}
} else {
panic!("Tree-append siblings have differing types.");
}
return Some(other);
}
}
} else if let Node::Internal(ref mut children) = *self {
let last_i = children.len() - 1;
let residual =
Arc::make_mut(&mut children.nodes_mut()[last_i]).append_at_depth(other, depth - 1);
children.update_child_info(last_i);
if let Some(extra_node) = residual {
if children.len() < MAX_CHILDREN {
children.push((extra_node.text_info(), extra_node));
return None;
} else {
let r_children = children.push_split((extra_node.text_info(), extra_node));
return Some(Arc::new(Node::Internal(r_children)));
}
} else {
return None;
}
} else {
panic!("Reached leaf before getting to target depth.");
}
}
pub fn prepend_at_depth(&mut self, other: Arc<Node>, depth: usize) -> Option<Arc<Node>> {
if depth == 0 {
match *self {
Node::Leaf(_) => {
if !other.is_leaf() {
panic!("Tree-append siblings have differing types.");
} else {
return Some(other);
}
}
Node::Internal(ref mut children_r) => {
let mut other = other;
if let Node::Internal(ref mut children_l) = *Arc::make_mut(&mut other) {
if (children_l.len() + children_r.len()) <= MAX_CHILDREN {
for _ in 0..children_l.len() {
children_r.insert(0, children_l.pop());
}
return None;
} else {
children_l.distribute_with(children_r);
// Return lower down, to avoid borrow-checker.
}
} else {
panic!("Tree-append siblings have differing types.");
}
return Some(other);
}
}
} else if let Node::Internal(ref mut children) = *self {
let residual =
Arc::make_mut(&mut children.nodes_mut()[0]).prepend_at_depth(other, depth - 1);
children.update_child_info(0);
if let Some(extra_node) = residual {
if children.len() < MAX_CHILDREN {
children.insert(0, (extra_node.text_info(), extra_node));
return None;
} else {
let mut r_children =
children.insert_split(0, (extra_node.text_info(), extra_node));
std::mem::swap(children, &mut r_children);
return Some(Arc::new(Node::Internal(r_children)));
}
} else {
return None;
}
} else {
panic!("Reached leaf before getting to target depth.");
}
}
/// Splits the `Node` at char index `char_idx`, returning
/// the right side of the split.
pub fn split(&mut self, char_idx: usize) -> Node {
debug_assert!(char_idx != 0);
debug_assert!(char_idx != (self.text_info().chars as usize));
match *self {
Node::Leaf(ref mut text) => {
let byte_idx = char_to_byte_idx(text, char_idx);
Node::Leaf(text.split_off(byte_idx))
}
Node::Internal(ref mut children) => {
let (child_i, acc_info) = children.search_char_idx(char_idx);
let child_info = children.info()[child_i];
if char_idx == acc_info.chars as usize {
Node::Internal(children.split_off(child_i))
} else if char_idx == (acc_info.chars as usize + child_info.chars as usize) {
Node::Internal(children.split_off(child_i + 1))
} else {
let mut r_children = children.split_off(child_i + 1);
// Recurse
let r_node = Arc::make_mut(&mut children.nodes_mut()[child_i])
.split(char_idx - acc_info.chars as usize);
r_children.insert(0, (r_node.text_info(), Arc::new(r_node)));
children.update_child_info(child_i);
r_children.update_child_info(0);
Node::Internal(r_children)
}
}
}
}
/// Returns the chunk that contains the given byte, and the TextInfo
/// corresponding to the start of the chunk.
pub fn get_chunk_at_byte(&self, byte_idx: usize) -> (&str, TextInfo) {
let mut node = self;
let mut byte_idx = byte_idx;
let mut info = TextInfo::new();
loop {
match *node {
Node::Leaf(ref text) => {
return (text, info);
}
Node::Internal(ref children) => {
let (child_i, acc_info) = children.search_byte_idx(byte_idx);
info += acc_info;
node = &*children.nodes()[child_i];
byte_idx -= acc_info.bytes as usize;
}
}
}
}
/// Returns the chunk that contains the given char, and the TextInfo
/// corresponding to the start of the chunk.
pub fn get_chunk_at_char(&self, char_idx: usize) -> (&str, TextInfo) {
let mut node = self;
let mut char_idx = char_idx;
let mut info = TextInfo::new();
loop {
match *node {
Node::Leaf(ref text) => {
return (text, info);
}
Node::Internal(ref children) => {
let (child_i, acc_info) = children.search_char_idx(char_idx);
info += acc_info;
node = &*children.nodes()[child_i];
char_idx -= acc_info.chars as usize;
}
}
}
}
/// Returns the chunk that contains the given utf16 code unit, and the
/// TextInfo corresponding to the start of the chunk.
pub fn get_chunk_at_utf16_code_unit(&self, utf16_idx: usize) -> (&str, TextInfo) {
let mut node = self;
let mut utf16_idx = utf16_idx;
let mut info = TextInfo::new();
loop {
match *node {
Node::Leaf(ref text) => {
return (text, info);
}
Node::Internal(ref children) => {
let (child_i, acc_info) = children.search_utf16_code_unit_idx(utf16_idx);
info += acc_info;
node = &*children.nodes()[child_i];
utf16_idx -= (acc_info.chars + acc_info.utf16_surrogates) as usize;
}
}
}
}
/// Returns the chunk that contains the given line break, and the TextInfo
/// corresponding to the start of the chunk.
///
/// Note: for convenience, both the beginning and end of the rope are
/// considered line breaks for indexing.
pub fn get_chunk_at_line_break(&self, line_break_idx: usize) -> (&str, TextInfo) {
let mut node = self;
let mut line_break_idx = line_break_idx;
let mut info = TextInfo::new();
loop {
match *node {
Node::Leaf(ref text) => {
return (text, info);
}
Node::Internal(ref children) => {
let (child_i, acc_info) = children.search_line_break_idx(line_break_idx);
info += acc_info;
node = &*children.nodes()[child_i];
line_break_idx -= acc_info.line_breaks as usize;
}
}
}
}
/// Returns the TextInfo at the given char index.
#[inline(always)]
pub fn char_to_text_info(&self, char_idx: usize) -> TextInfo {
let (chunk, info) = self.get_chunk_at_char(char_idx);
let bi = char_to_byte_idx(chunk, char_idx - info.chars as usize);
TextInfo {
bytes: info.bytes + bi as Count,
chars: char_idx as Count,
utf16_surrogates: info.utf16_surrogates
+ byte_to_utf16_surrogate_idx(chunk, bi) as Count,
line_breaks: info.line_breaks + byte_to_line_idx(chunk, bi) as Count,
}
}
/// Returns the TextInfo at the given byte index.
#[inline(always)]
pub fn byte_to_text_info(&self, byte_idx: usize) -> TextInfo {
let (chunk, info) = self.get_chunk_at_byte(byte_idx);
let bi = byte_idx - info.bytes as usize;
let ci = byte_to_char_idx(chunk, byte_idx - info.bytes as usize);
TextInfo {
bytes: byte_idx as Count,
chars: info.chars + ci as Count,
utf16_surrogates: info.utf16_surrogates
+ byte_to_utf16_surrogate_idx(chunk, bi) as Count,
line_breaks: info.line_breaks + byte_to_line_idx(chunk, bi) as Count,
}
}
pub fn text_info(&self) -> TextInfo {
match *self {
Node::Leaf(ref text) => TextInfo::from_str(text),
Node::Internal(ref children) => children.combined_info(),
}
}
pub fn is_char_boundary(&self, byte_idx: usize) -> bool {
let (chunk, info) = self.get_chunk_at_byte(byte_idx);
chunk.is_char_boundary(byte_idx - info.bytes as usize)
}
#[cfg(any(feature = "cr_lines", feature = "unicode_lines"))]
pub fn is_crlf_split(&self, char_idx: usize) -> bool {
let (chunk, info) = self.get_chunk_at_char(char_idx);
let idx = char_to_byte_idx(chunk, char_idx - info.chars as usize);
if idx == 0 || idx == chunk.len() {
false
} else {
let chunk = chunk.as_bytes();
chunk[idx - 1] == 0x0D && chunk[idx] == 0x0A
}
}
//-----------------------------------------
pub fn child_count(&self) -> usize {
if let Node::Internal(ref children) = *self {
children.len()
} else {
panic!()
}
}
pub fn children(&self) -> &NodeChildren {
match *self {
Node::Internal(ref children) => children,
_ => panic!(),
}
}
pub fn children_mut(&mut self) -> &mut NodeChildren {
match *self {
Node::Internal(ref mut children) => children,
_ => panic!(),
}
}
pub fn leaf_text(&self) -> &str {
if let Node::Leaf(ref text) = *self {
text
} else {
panic!()
}
}
pub fn leaf_text_mut(&mut self) -> &mut NodeText {
if let Node::Leaf(ref mut text) = *self {
text
} else {
panic!()
}
}
pub fn is_leaf(&self) -> bool {
match *self {
Node::Leaf(_) => true,
Node::Internal(_) => false,
}
}
pub fn is_undersized(&self) -> bool {
match *self {
Node::Leaf(ref text) => text.len() < MIN_BYTES,
Node::Internal(ref children) => children.len() < MIN_CHILDREN,
}
}
/// How many nodes deep the tree is.
///
/// This counts root and leafs. For example, a single leaf node
/// has depth 1.
pub fn depth(&self) -> usize {
let mut node = self;
let mut depth = 0;
loop {
match *node {
Node::Leaf(_) => return depth,
Node::Internal(ref children) => {
depth += 1;
node = &*children.nodes()[0];
}
}
}
}
/// Debugging tool to make sure that all of the meta-data of the
/// tree is consistent with the actual data.
pub fn assert_integrity(&self) {
match *self {
Node::Leaf(_) => {}
Node::Internal(ref children) => {
for (info, node) in children.iter() {
if *info != node.text_info() {
assert_eq!(*info, node.text_info());
}
node.assert_integrity();
}
}
}
}
/// Checks that the entire tree is the same height everywhere.
pub fn assert_balance(&self) -> usize {
// Depth, child count, and leaf node emptiness
match *self {
Node::Leaf(_) => 1,
Node::Internal(ref children) => {
let first_depth = children.nodes()[0].assert_balance();
for node in &children.nodes()[1..] {
assert_eq!(node.assert_balance(), first_depth);
}
first_depth + 1
}
}
}
/// Checks that all internal nodes have the minimum number of
/// children and all non-root leaf nodes are non-empty.
pub fn assert_node_size(&self, is_root: bool) {
match *self {
Node::Leaf(ref text) => {
// Leaf size
if !is_root {
assert!(text.len() > 0);
}
}
Node::Internal(ref children) => {
// Child count
if is_root {
assert!(children.len() > 1);
} else {
assert!(children.len() >= MIN_CHILDREN);
}
for node in children.nodes() {
node.assert_node_size(false);
}
}
}
}
/// Checks to make sure that a boundary between leaf nodes (given as a byte
/// position in the rope) doesn't split a CRLF pair, and fixes it if it does.
///
/// If `must_be_boundary` is true, panics if the given byte position is
/// not on the boundary between two leaf nodes.
///
/// TODO: theoretically this can leave an internal node with fewer than
/// MIN_CHILDREN children, although it is exceedingly unlikely with any
/// remotely sane text. In the mean time, right now no code actually
/// depends on there being at least MIN_CHILDREN in an internal node.
/// But this should nevertheless get addressed at some point.
/// Probably the most straight-forward way to address this is via the
/// `fix_info_*` methods below, but I'm not totally sure.
pub fn fix_crlf_seam(&mut self, byte_pos: Count, must_be_boundary: bool) {
if let Node::Internal(ref mut children) = *self {
if byte_pos == 0 {
// Special-case 1
Arc::make_mut(&mut children.nodes_mut()[0])
.fix_crlf_seam(byte_pos, must_be_boundary);
} else if byte_pos == children.combined_info().bytes {
// Special-case 2
let (info, nodes) = children.data_mut();
Arc::make_mut(nodes.last_mut().unwrap())
.fix_crlf_seam(info.last().unwrap().bytes, must_be_boundary);
} else {
// Find the child to navigate into
let (child_i, start_info) = children.search_byte_idx(byte_pos as usize);
let start_byte = start_info.bytes;
let pos_in_child = byte_pos - start_byte;
let child_len = children.info()[child_i].bytes;
if pos_in_child == 0 || pos_in_child == child_len {
// Left or right edge, get neighbor and fix seam
let l_child_i = if pos_in_child == 0 {
debug_assert!(child_i != 0);
child_i - 1
} else {
debug_assert!(child_i < children.len());
child_i
};
// Scope for borrow
{
// Fetch the two children
let (l_child, r_child) = children.get_two_mut(l_child_i, l_child_i + 1);
let l_child_bytes = l_child.0.bytes;
let l_child = Arc::make_mut(l_child.1);
let r_child = Arc::make_mut(r_child.1);
// Get the text of the two children and fix
// the seam between them.
// Scope for borrow.
{
let (l_text, l_offset) =
l_child.get_chunk_at_byte_mut(l_child_bytes as usize);
let (r_text, r_offset) = r_child.get_chunk_at_byte_mut(0);
if must_be_boundary {
assert!(l_offset == 0 || l_offset == l_text.len());
assert!(r_offset == 0 || r_offset == r_text.len());
}
fix_segment_seam(l_text, r_text);
}
// Fix up the children's metadata after the change
// to their text.
l_child.fix_info_right();
r_child.fix_info_left();
}
// Fix up this node's metadata for those
// two children.
children.update_child_info(l_child_i);
children.update_child_info(l_child_i + 1);
// Remove the children if empty.
if children.info()[l_child_i + 1].bytes == 0 {
children.remove(l_child_i + 1);
} else if children.info()[l_child_i].bytes == 0 {
children.remove(l_child_i);
}
} else {
// Internal to child
Arc::make_mut(&mut children.nodes_mut()[child_i])
.fix_crlf_seam(pos_in_child, must_be_boundary);
children.update_child_info(child_i);
if children.info()[child_i].bytes == 0 {
children.remove(child_i);
}
}
}
}
}
/// Returns the chunk that contains the given byte, and the offset
/// of that byte within the chunk.
pub fn get_chunk_at_byte_mut(&mut self, byte_idx: usize) -> (&mut NodeText, usize) {
match *self {
Node::Leaf(ref mut text) => return (text, byte_idx),
Node::Internal(ref mut children) => {
let (child_i, acc_info) = children.search_byte_idx(byte_idx);
Arc::make_mut(&mut children.nodes_mut()[child_i])
.get_chunk_at_byte_mut(byte_idx - acc_info.bytes as usize)
}
}
}
/// Updates the tree meta-data down the left side of the tree, and removes empty
/// children as it goes as well.
fn fix_info_left(&mut self) {
match *self {
Node::Leaf(_) => {}
Node::Internal(ref mut children) => {
Arc::make_mut(&mut children.nodes_mut()[0]).fix_info_left();
children.update_child_info(0);
if children.info()[0].bytes == 0 {
children.remove(0);
}
}
}
}
/// Updates the tree meta-data down the right side of the tree, and removes empty
/// children as it goes as well.
fn fix_info_right(&mut self) {
match *self {
Node::Leaf(_) => {}
Node::Internal(ref mut children) => {
let idx = children.len() - 1;
Arc::make_mut(&mut children.nodes_mut()[idx]).fix_info_right();
children.update_child_info(idx);
if children.info()[idx].bytes == 0 {
children.remove(idx);
}
}
}
}
/// Fixes dangling nodes down the left side of the tree.
///
/// Returns whether it did anything or not that would affect the
/// parent.
pub fn zip_fix_left(&mut self) -> bool {
if let Node::Internal(ref mut children) = *self {
let mut did_stuff = false;
loop {
let do_merge = (children.len() > 1)
&& match *children.nodes()[0] {
Node::Leaf(ref text) => text.len() < MIN_BYTES,
Node::Internal(ref children2) => children2.len() < MIN_CHILDREN,
};
if do_merge {
did_stuff |= children.merge_distribute(0, 1);
}
if !Arc::make_mut(&mut children.nodes_mut()[0]).zip_fix_left() {
break;
}
}
did_stuff
} else {
false
}
}
/// Fixes dangling nodes down the right side of the tree.
///
/// Returns whether it did anything or not that would affect the
/// parent. True: did stuff, false: didn't do stuff
pub fn zip_fix_right(&mut self) -> bool {
if let Node::Internal(ref mut children) = *self {
let mut did_stuff = false;
loop {
let last_i = children.len() - 1;
let do_merge = (children.len() > 1)
&& match *children.nodes()[last_i] {
Node::Leaf(ref text) => text.len() < MIN_BYTES,
Node::Internal(ref children2) => children2.len() < MIN_CHILDREN,
};
if do_merge {
did_stuff |= children.merge_distribute(last_i - 1, last_i);
}
if !Arc::make_mut(children.nodes_mut().last_mut().unwrap()).zip_fix_right() {
break;
}
}
did_stuff
} else {
false
}
}
/// Fixes up the tree after remove_char_range() or Rope::append().
///
/// Takes the char index of the start of the removal range.
///
/// Returns whether it did anything or not that would affect the
/// parent. True: did stuff, false: didn't do stuff
pub fn fix_tree_seam(&mut self, char_idx: usize) -> bool {
if let Node::Internal(ref mut children) = *self {
let mut did_stuff = false;
loop {
// Do merging
if children.len() > 1 {
let (child_i, start_info) = children.search_char_idx(char_idx);
let mut do_merge = match *children.nodes()[child_i] {
Node::Leaf(ref text) => text.len() < MIN_BYTES,
Node::Internal(ref children2) => children2.len() < MIN_CHILDREN,
};
if child_i == 0 {
if do_merge {
did_stuff |= children.merge_distribute(0, 1);
}
} else {
do_merge = do_merge
|| (start_info.chars as usize == char_idx
&& match *children.nodes()[child_i - 1] {
Node::Leaf(ref text) => text.len() < MIN_BYTES,
Node::Internal(ref children2) => children2.len() < MIN_CHILDREN,
});
if do_merge {
let res = children.merge_distribute(child_i - 1, child_i);
did_stuff |= res
}
}
}
// Do recursion
let (child_i, start_info) = children.search_char_idx(char_idx);
if start_info.chars as usize == char_idx && child_i != 0 {
let tmp = children.info()[child_i - 1].chars as usize;
let effect_1 =
Arc::make_mut(&mut children.nodes_mut()[child_i - 1]).fix_tree_seam(tmp);
let effect_2 =
Arc::make_mut(&mut children.nodes_mut()[child_i]).fix_tree_seam(0);
if (!effect_1) && (!effect_2) {
break;
}
} else if !Arc::make_mut(&mut children.nodes_mut()[child_i])
.fix_tree_seam(char_idx - start_info.chars as usize)
{
break;
}
}
debug_assert!(children.is_info_accurate());
did_stuff
} else {
false
}
}
}
//===========================================================================
#[cfg(test)]
mod tests {
use crate::Rope;
// 133 chars, 209 bytes
const TEXT: &str = "\r\nHello there! How're you doing? It's a fine day, \
isn't it? Aren't you glad we're alive?\r\n\
こんにちは!元気ですか?日はいいですね。\
私たちが生きだって嬉しいではないか?\r\n";
#[test]
fn line_to_byte_01() {
let r = Rope::from_str(TEXT);
assert_eq!(3, r.root.line_break_count());
assert_eq!(0, r.line_to_byte(0));
assert_eq!(2, r.line_to_byte(1));
assert_eq!(93, r.line_to_byte(2));
assert_eq!(209, r.line_to_byte(3));
}
#[test]
fn line_to_char_01() {
let r = Rope::from_str(TEXT);
assert_eq!(3, r.root.line_break_count());
assert_eq!(0, r.line_to_char(0));
assert_eq!(2, r.line_to_char(1));
assert_eq!(93, r.line_to_char(2));
assert_eq!(133, r.line_to_char(3));
}
#[test]
fn crlf_corner_case_01() {
use super::Node;
use crate::tree::{NodeChildren, NodeText, MAX_BYTES};
use std::sync::Arc;
// Construct the corner case
let nodel = Node::Leaf(NodeText::from_str(&"\n".repeat(MAX_BYTES - 1)));
let noder = Node::Leaf(NodeText::from_str(&"\n".repeat(MAX_BYTES)));
let mut children = NodeChildren::new();
children.push((nodel.text_info(), Arc::new(nodel)));
children.push((noder.text_info(), Arc::new(noder)));
let root = Node::Internal(children);
let mut rope = Rope {
root: Arc::new(root),
};
assert_eq!(rope.char(0), '\n');
assert_eq!(rope.len_chars(), MAX_BYTES * 2 - 1);
// Do the potentially problematic insertion
rope.insert(MAX_BYTES - 1, "\r");
}
#[test]
fn crlf_corner_case_02() {
use super::Node;
use crate::tree::{NodeChildren, NodeText, MAX_BYTES};
use std::sync::Arc;
// Construct the corner case
let nodel = Node::Leaf(NodeText::from_str(&"\r".repeat(MAX_BYTES)));
let noder = Node::Leaf(NodeText::from_str(&"\r".repeat(MAX_BYTES - 1)));
let mut children = NodeChildren::new();
children.push((nodel.text_info(), Arc::new(nodel)));
children.push((noder.text_info(), Arc::new(noder)));
let root = Node::Internal(children);
let mut rope = Rope {
root: Arc::new(root),
};
assert_eq!(rope.char(0), '\r');
assert_eq!(rope.len_chars(), MAX_BYTES * 2 - 1);
// Do the potentially problematic insertion
rope.insert(MAX_BYTES, "\n");
}
}