use super::*;
use crate::estimate::Estimate;
use crate::estimate::Statistic;
use crate::measurement::ValueFormatter;
use crate::report::{BenchmarkId, MeasurementData, ReportContext};
use crate::stats::Distribution;
fn abs_distribution(
id: &BenchmarkId,
context: &ReportContext,
formatter: &dyn ValueFormatter,
statistic: Statistic,
distribution: &Distribution<f64>,
estimate: &Estimate,
size: Option<(u32, u32)>,
) {
let ci = &estimate.confidence_interval;
let typical = ci.upper_bound;
let mut ci_values = [ci.lower_bound, ci.upper_bound, estimate.point_estimate];
let unit = formatter.scale_values(typical, &mut ci_values);
let (lb, ub, point) = (ci_values[0], ci_values[1], ci_values[2]);
let start = lb - (ub - lb) / 9.;
let end = ub + (ub - lb) / 9.;
let mut scaled_xs: Vec<f64> = distribution.iter().cloned().collect();
let _ = formatter.scale_values(typical, &mut scaled_xs);
let scaled_xs_sample = Sample::new(&scaled_xs);
let (kde_xs, ys) = kde::sweep(scaled_xs_sample, KDE_POINTS, Some((start, end)));
let n_point = kde_xs
.iter()
.position(|&x| x >= point)
.unwrap_or(kde_xs.len() - 1)
.max(1); let slope = (ys[n_point] - ys[n_point - 1]) / (kde_xs[n_point] - kde_xs[n_point - 1]);
let y_point = ys[n_point - 1] + (slope * (point - kde_xs[n_point - 1]));
let start = kde_xs
.iter()
.enumerate()
.find(|&(_, &x)| x >= lb)
.unwrap()
.0;
let end = kde_xs
.iter()
.enumerate()
.rev()
.find(|&(_, &x)| x <= ub)
.unwrap()
.0;
let len = end - start;
let kde_xs_sample = Sample::new(&kde_xs);
let path = context.report_path(id, &format!("{}.svg", statistic));
let root_area = SVGBackend::new(&path, size.unwrap_or(SIZE)).into_drawing_area();
let x_range = plotters::data::fitting_range(kde_xs_sample.iter());
let mut y_range = plotters::data::fitting_range(ys.iter());
y_range.end *= 1.1;
let mut chart = ChartBuilder::on(&root_area)
.margin((5).percent())
.caption(
format!("{}:{}", id.as_title(), statistic),
(DEFAULT_FONT, 20),
)
.set_label_area_size(LabelAreaPosition::Left, (5).percent_width().min(60))
.set_label_area_size(LabelAreaPosition::Bottom, (5).percent_height().min(40))
.build_cartesian_2d(x_range, y_range)
.unwrap();
chart
.configure_mesh()
.disable_mesh()
.x_desc(format!("Average time ({})", unit))
.y_desc("Density (a.u.)")
.x_label_formatter(&|&v| pretty_print_float(v, true))
.y_label_formatter(&|&v| pretty_print_float(v, true))
.draw()
.unwrap();
chart
.draw_series(LineSeries::new(
kde_xs.iter().zip(ys.iter()).map(|(&x, &y)| (x, y)),
DARK_BLUE,
))
.unwrap()
.label("Bootstrap distribution")
.legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], DARK_BLUE));
chart
.draw_series(AreaSeries::new(
kde_xs
.iter()
.zip(ys.iter())
.skip(start)
.take(len)
.map(|(&x, &y)| (x, y)),
0.0,
DARK_BLUE.mix(0.25).filled().stroke_width(3),
))
.unwrap()
.label("Confidence interval")
.legend(|(x, y)| {
Rectangle::new([(x, y - 5), (x + 20, y + 5)], DARK_BLUE.mix(0.25).filled())
});
chart
.draw_series(std::iter::once(PathElement::new(
vec![(point, 0.0), (point, y_point)],
DARK_BLUE.filled().stroke_width(3),
)))
.unwrap()
.label("Point estimate")
.legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], DARK_BLUE));
chart
.configure_series_labels()
.position(SeriesLabelPosition::UpperRight)
.draw()
.unwrap();
}
pub(crate) fn abs_distributions(
id: &BenchmarkId,
context: &ReportContext,
formatter: &dyn ValueFormatter,
measurements: &MeasurementData<'_>,
size: Option<(u32, u32)>,
) {
crate::plot::REPORT_STATS
.iter()
.filter_map(|stat| {
measurements.distributions.get(*stat).and_then(|dist| {
measurements
.absolute_estimates
.get(*stat)
.map(|est| (*stat, dist, est))
})
})
.for_each(|(statistic, distribution, estimate)| {
abs_distribution(
id,
context,
formatter,
statistic,
distribution,
estimate,
size,
)
})
}
fn rel_distribution(
id: &BenchmarkId,
context: &ReportContext,
statistic: Statistic,
distribution: &Distribution<f64>,
estimate: &Estimate,
noise_threshold: f64,
size: Option<(u32, u32)>,
) {
let ci = &estimate.confidence_interval;
let (lb, ub) = (ci.lower_bound, ci.upper_bound);
let start = lb - (ub - lb) / 9.;
let end = ub + (ub - lb) / 9.;
let (xs, ys) = kde::sweep(distribution, KDE_POINTS, Some((start, end)));
let xs_ = Sample::new(&xs);
let point = estimate.point_estimate;
let n_point = xs
.iter()
.position(|&x| x >= point)
.unwrap_or(ys.len() - 1)
.max(1);
let slope = (ys[n_point] - ys[n_point - 1]) / (xs[n_point] - xs[n_point - 1]);
let y_point = ys[n_point - 1] + (slope * (point - xs[n_point - 1]));
let start = xs.iter().enumerate().find(|&(_, &x)| x >= lb).unwrap().0;
let end = xs
.iter()
.enumerate()
.rev()
.find(|&(_, &x)| x <= ub)
.unwrap()
.0;
let len = end - start;
let x_min = xs_.min();
let x_max = xs_.max();
let (fc_start, fc_end) = if noise_threshold < x_min || -noise_threshold > x_max {
let middle = (x_min + x_max) / 2.;
(middle, middle)
} else {
(
if -noise_threshold < x_min {
x_min
} else {
-noise_threshold
},
if noise_threshold > x_max {
x_max
} else {
noise_threshold
},
)
};
let y_range = plotters::data::fitting_range(ys.iter());
let path = context.report_path(id, &format!("change/{}.svg", statistic));
let root_area = SVGBackend::new(&path, size.unwrap_or(SIZE)).into_drawing_area();
let mut chart = ChartBuilder::on(&root_area)
.margin((5).percent())
.caption(
format!("{}:{}", id.as_title(), statistic),
(DEFAULT_FONT, 20),
)
.set_label_area_size(LabelAreaPosition::Left, (5).percent_width().min(60))
.set_label_area_size(LabelAreaPosition::Bottom, (5).percent_height().min(40))
.build_cartesian_2d(x_min..x_max, y_range.clone())
.unwrap();
chart
.configure_mesh()
.disable_mesh()
.x_desc("Relative change (%)")
.y_desc("Density (a.u.)")
.x_label_formatter(&|&v| pretty_print_float(v, true))
.y_label_formatter(&|&v| pretty_print_float(v, true))
.draw()
.unwrap();
chart
.draw_series(LineSeries::new(
xs.iter().zip(ys.iter()).map(|(x, y)| (*x, *y)),
DARK_BLUE,
))
.unwrap()
.label("Bootstrap distribution")
.legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], DARK_BLUE));
chart
.draw_series(AreaSeries::new(
xs.iter()
.zip(ys.iter())
.skip(start)
.take(len)
.map(|(x, y)| (*x, *y)),
0.0,
DARK_BLUE.mix(0.25).filled().stroke_width(3),
))
.unwrap()
.label("Confidence interval")
.legend(|(x, y)| {
Rectangle::new([(x, y - 5), (x + 20, y + 5)], DARK_BLUE.mix(0.25).filled())
});
chart
.draw_series(std::iter::once(PathElement::new(
vec![(point, 0.0), (point, y_point)],
DARK_BLUE.filled().stroke_width(3),
)))
.unwrap()
.label("Point estimate")
.legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], DARK_BLUE));
chart
.draw_series(std::iter::once(Rectangle::new(
[(fc_start, y_range.start), (fc_end, y_range.end)],
DARK_RED.mix(0.1).filled(),
)))
.unwrap()
.label("Noise threshold")
.legend(|(x, y)| {
Rectangle::new([(x, y - 5), (x + 20, y + 5)], DARK_RED.mix(0.25).filled())
});
chart
.configure_series_labels()
.position(SeriesLabelPosition::UpperRight)
.draw()
.unwrap();
}
pub(crate) fn rel_distributions(
id: &BenchmarkId,
context: &ReportContext,
_measurements: &MeasurementData<'_>,
comparison: &ComparisonData,
size: Option<(u32, u32)>,
) {
crate::plot::CHANGE_STATS.iter().for_each(|&statistic| {
rel_distribution(
id,
context,
statistic,
comparison.relative_distributions.get(statistic),
comparison.relative_estimates.get(statistic),
comparison.noise_threshold,
size,
)
});
}