proptest/num/
float_samplers.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
//-
// Copyright 2022 The proptest developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Alternative uniform float samplers.
//! These samplers are used over the ones from `rand` because the ones provided by the
//! rand crate are prone to overflow. In addition, these are 'high precision' samplers
//! that are more appropriate for test data.
//! The samplers work by splitting the range into equally sized intervals and selecting
//! an iterval at random. That interval is then itself split and a new interval is
//! selected at random. The process repeats until the interval only contains two
//! floating point values at the bounds. At that stage, one is selected at random and
//! returned.

pub(crate) use self::f32::F32U;
pub(crate) use self::f64::F64U;

macro_rules! float_sampler {
    ($typ: ident, $int_typ: ident, $wrapper: ident) => {
        pub mod $typ {
            use rand::prelude::*;
            use rand::distributions::uniform::{
                SampleBorrow, SampleUniform, UniformSampler,
            };
            #[cfg(not(feature = "std"))]
            use num_traits::float::Float;

            #[must_use]
            // Returns the previous float value. In other words the greatest value representable
            // as a float such that `next_down(a) < a`. `-0.` is treated as `0.`.
            fn next_down(a: $typ) -> $typ {
                debug_assert!(a.is_finite() && a > $typ::MIN, "`next_down` invalid input: {}", a);
                if a == (0.) {
                    -$typ::from_bits(1)
                } else if a < 0. {
                    $typ::from_bits(a.to_bits() + 1)
                } else {
                    $typ::from_bits(a.to_bits() - 1)
                }
            }

            #[must_use]
            // Returns the unit in last place using the definition by John Harrison.
            // This is the distance between `a` and the next closest float. Note that
            // `ulp(1) = $typ::EPSILON/2`.
            fn ulp(a: $typ) -> $typ {
                debug_assert!(a.is_finite() && a > $typ::MIN, "`ulp` invalid input: {}", a);
                a.abs() - next_down(a.abs())
            }

            #[derive(Copy, Clone, Debug)]
            pub(crate) struct $wrapper($typ);

            impl From<$typ> for $wrapper {
                fn from(x: $typ) -> Self {
                    $wrapper(x)
                }
            }
            impl From<$wrapper> for $typ {
                fn from(x: $wrapper) -> Self {
                    x.0
                }
            }

            #[derive(Clone, Copy, Debug)]
            pub(crate) struct FloatUniform {
                low: $typ,
                high: $typ,
                intervals: IntervalCollection,
                inclusive: bool,
            }

            impl UniformSampler for FloatUniform {

                type X = $wrapper;

                fn new<B1, B2>(low: B1, high: B2) -> Self
                where
                    B1: SampleBorrow<Self::X> + Sized,
                    B2: SampleBorrow<Self::X> + Sized,
                {
                    let low = low.borrow().0;
                    let high = high.borrow().0;
                    FloatUniform {
                        low,
                        high,
                        intervals: split_interval([low, high]),
                        inclusive: false,
                    }
                }

                fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
                where
                    B1: SampleBorrow<Self::X> + Sized,
                    B2: SampleBorrow<Self::X> + Sized,
                {
                    let low = low.borrow().0;
                    let high = high.borrow().0;

                    FloatUniform {
                        low,
                        high,
                        intervals: split_interval([low, high]),
                        inclusive: true,
                    }
                }

                fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
                    let mut intervals = self.intervals;
                    while intervals.count > 1 {
                        let new_interval = intervals.get(rng.gen_range(0..intervals.count));
                        intervals = split_interval(new_interval);
                    }
                    let last = intervals.get(0);
                    let result = *last.choose(rng).expect("Slice is not empty");

                    // These results could happen because the first split might
                    // overshoot one of the bounds. We could resample in this
                    // case but for testing data this is not a problem.
                    let clamped_result = if result < self.low {
                        debug_assert!(self.low - result < self.intervals.step);
                        self.low
                    } else if result > self.high{
                        debug_assert!(result - self.high < self.intervals.step);
                        self.high
                    } else {
                        result
                    };

                    if !self.inclusive && clamped_result == self.high  {
                        return $wrapper(next_down(self.high));
                    };

                    $wrapper(clamped_result)
                }
            }

            impl SampleUniform for $wrapper {
                type Sampler = FloatUniform;
            }

            // Divides the range [low, high] into intervals of size epsilon * max(abs(low, high));
            // Note that the one interval may extend out of the range.
            #[derive(Clone, Copy, Debug)]
            struct IntervalCollection {
                start: $typ,
                step: $typ,
                count: $int_typ,
            }

            fn split_interval([low, high]: [$typ; 2]) -> IntervalCollection {
                    assert!(low.is_finite(), "low finite");
                    assert!(high.is_finite(), "high finite");
                    assert!(high - low > 0., "invalid range");

                    let min_abs = $typ::min(low.abs(), high.abs());
                    let max_abs = $typ::max(low.abs(), high.abs());

                    let gap = ulp(max_abs);

                    let (start, step) = if low.abs() < high.abs() {
                        (high, -gap)
                    } else {
                        (low, gap)
                    };

                    let min_gaps = min_abs / gap;
                    let max_gaps = max_abs / gap;
                    debug_assert!(
                        max_gaps.floor() == max_gaps,
                        "max_gaps is an integer"
                    );

                    let count = if low.signum() == high.signum() {
                        max_gaps as $int_typ - min_gaps.floor() as $int_typ
                    } else {
                        // `step` is a power of two so `min_gaps` won't be rounded
                        // except possibly to 0.
                        if min_gaps == 0. && min_abs > 0. {
                            max_gaps as $int_typ + 1
                        } else {
                            max_gaps as $int_typ + min_gaps.ceil() as $int_typ
                        }
                    };

                    debug_assert!(count - 1 <= 2 * MAX_PRECISE_INT);

                    IntervalCollection {
                        start,
                        step,
                        count,
                    }
            }


            impl IntervalCollection {
                fn get(&self, index: $int_typ) -> [$typ; 2] {
                    assert!(index < self.count, "index out of bounds");

                    // `index` might be greater that `MAX_PERCISE_INT`
                    // which means `MAX_PRECIST_INT as $typ` would round
                    // to a different number. Fortunately, `index` will
                    // never be larger than `2 * MAX_PRECISE_INT` (as
                    // asserted above).
                    let x = ((index / 2) as $typ).mul_add(
                        2. * self.step,
                        (index % 2) as $typ * self.step + self.start,
                    );

                    let y = x + self.step;

                    if self.step > 0. {
                        [x, y]
                    } else {
                        [y, x]
                    }
                }
            }


            // Values greater than MAX_PRECISE_INT may be rounded when converted to float.
            const MAX_PRECISE_INT: $int_typ =
                (2 as $int_typ).pow($typ::MANTISSA_DIGITS);

            #[cfg(test)]
            mod test {

                use super::*;
                use crate::prelude::*;

                fn sort((left, right): ($typ, $typ)) -> ($typ, $typ) {
                    if left < right {
                        (left, right)
                    } else {
                        (right, left)
                    }
                }

                fn finite() -> impl Strategy<Value = $typ> {
                    prop::num::$typ::NEGATIVE
                    | prop::num::$typ::POSITIVE
                    | prop::num::$typ::NORMAL
                    | prop::num::$typ::SUBNORMAL
                    | prop::num::$typ::ZERO
                }

                fn bounds() -> impl Strategy<Value = ($typ, $typ)> {
                    (finite(), finite())
                        .prop_filter("Bounds can't be equal", |(a, b)| a != b)
                        .prop_map(sort)
                }

                #[test]
                fn range_test() {
                    use crate::test_runner::{RngAlgorithm, TestRng};

                    let mut test_rng = TestRng::deterministic_rng(RngAlgorithm::default());
                    let (low, high) = (-1., 10.);
                    let uniform = FloatUniform::new($wrapper(low), $wrapper(high));

                    let samples = (0..100)
                        .map(|_| $typ::from(uniform.sample(&mut test_rng)));
                    for s in samples {
                        assert!(low <= s && s < high);
                    }
                }

                #[test]
                fn range_end_bound_test() {
                    use crate::test_runner::{RngAlgorithm, TestRng};

                    let mut test_rng = TestRng::deterministic_rng(RngAlgorithm::default());
                    let (low, high) = (1., 1. + $typ::EPSILON);
                    let uniform = FloatUniform::new($wrapper(low), $wrapper(high));

                    let mut samples = (0..100)
                        .map(|_| $typ::from(uniform.sample(&mut test_rng)));
                    assert!(samples.all(|x| x == 1.));
                }

                #[test]
                fn inclusive_range_test() {
                    use crate::test_runner::{RngAlgorithm, TestRng};

                    let mut test_rng = TestRng::deterministic_rng(RngAlgorithm::default());
                    let (low, high) = (-1., 10.);
                    let uniform = FloatUniform::new_inclusive($wrapper(low), $wrapper(high));

                    let samples = (0..100)
                        .map(|_| $typ::from(uniform.sample(&mut test_rng)));
                    for s in samples {
                        assert!(low <= s && s <= high);
                    }
                }

                #[test]
                fn inclusive_range_end_bound_test() {
                    use crate::test_runner::{RngAlgorithm, TestRng};

                    let mut test_rng = TestRng::deterministic_rng(RngAlgorithm::default());
                    let (low, high) = (1., 1. + $typ::EPSILON);
                    let uniform = FloatUniform::new_inclusive($wrapper(low), $wrapper(high));

                    let mut samples = (0..100)
                        .map(|_| $typ::from(uniform.sample(&mut test_rng)));
                    assert!(samples.any(|x| x == 1. + $typ::EPSILON));
                }

                #[test]
                fn all_floats_in_range_are_possible_1() {
                    use crate::test_runner::{RngAlgorithm, TestRng};

                    let mut test_rng = TestRng::deterministic_rng(RngAlgorithm::default());
                    let (low, high) = (1. - $typ::EPSILON, 1. + $typ::EPSILON);
                    let uniform = FloatUniform::new_inclusive($wrapper(low), $wrapper(high));

                    let mut samples = (0..100)
                        .map(|_| $typ::from(uniform.sample(&mut test_rng)));
                    assert!(samples.any(|x| x == 1. - $typ::EPSILON / 2.));
                }

                #[test]
                fn all_floats_in_range_are_possible_2() {
                    use crate::test_runner::{RngAlgorithm, TestRng};

                    let mut test_rng = TestRng::deterministic_rng(RngAlgorithm::default());
                    let (low, high) = (0., MAX_PRECISE_INT as $typ);
                    let uniform = FloatUniform::new_inclusive($wrapper(low), $wrapper(high));

                    let mut samples = (0..100)
                        .map(|_| $typ::from(uniform.sample(&mut test_rng)))
                        .map(|x| x.fract());

                    assert!(samples.any(|x| x != 0.));
                }

                #[test]
                fn max_precise_int_plus_one_is_rounded_down() {
                    assert_eq!(((MAX_PRECISE_INT + 1) as $typ) as $int_typ, MAX_PRECISE_INT);
                }

                proptest! {
                    #[test]
                    fn next_down_less_than_float(val in finite()) {
                        prop_assume!(val > $typ::MIN);
                        prop_assert!(next_down(val) <  val);
                    }

                    #[test]
                    fn no_value_between_float_and_next_down(val in finite()) {
                        prop_assume!(val > $typ::MIN);
                        let prev = next_down(val);
                        let avg = prev / 2. + val / 2.;
                        prop_assert!(avg == prev || avg == val);
                    }

                    #[test]
                    fn values_less_than_or_equal_to_max_precise_int_are_not_rounded(i in 0..=MAX_PRECISE_INT) {
                        prop_assert_eq!((i as $typ) as $int_typ, i);
                    }

                    #[test]
                    fn indivisible_intervals_are_split_to_self(val in finite()) {
                        prop_assume!(val > $typ::MIN);
                        let prev = next_down(val);
                        let intervals = split_interval([prev, val]);
                        prop_assert_eq!(intervals.count, 1);
                    }

                    #[test]
                    fn split_intervals_are_the_same_size(
                            (low, high) in bounds(),
                            indices: [prop::sample::Index; 32]) {

                        let intervals = split_interval([low, high]);

                        let size = (intervals.count - 1) as usize;
                        prop_assume!(size > 0);

                        let mut it = indices.iter()
                            .map(|i| i.index(size) as $int_typ)
                            .map(|i| intervals.get(i))
                            .map(|[low, high]| high - low);

                        let interval_size = it.next().unwrap();
                        let all_equal = it.all(|g| g == interval_size);
                        prop_assert!(all_equal);
                    }

                    #[test]
                    fn split_intervals_are_consecutive(
                        (low, high) in bounds(),
                        indices: [prop::sample::Index; 32]) {

                        let intervals = split_interval([low, high]);

                        let size = (intervals.count - 1) as usize;
                        prop_assume!(size > 1);

                        let mut it = indices.iter()
                            .map(|i| i.index(size - 1) as $int_typ)
                            .map(|i| (intervals.get(i), intervals.get(i + 1)));

                        let ascending = it.all(|([_, h1], [l2, _])| h1 == l2);
                        let descending = it.all(|([l1, _], [_, h2])| l1 == h2);

                        prop_assert!(ascending || descending);
                    }

                    #[test]
                    fn first_split_might_slightly_overshoot_one_bound((low, high) in bounds()) {
                        let intervals = split_interval([low, high]);
                        let start = intervals.get(0);
                        let end = intervals.get(intervals.count - 1);
                        let (low_interval, high_interval) = if  start[0] < end[0] {
                            (start, end)
                        } else {
                            (end, start)
                        };

                        prop_assert!(
                            low == low_interval[0] && high_interval[0] < high && high <= high_interval[1] ||
                            low_interval[0] <= low && low < low_interval[1] && high == high_interval[1]);
                    }

                    #[test]
                    fn subsequent_splits_always_match_bounds(
                        (low, high) in bounds(),
                        index: prop::sample::Index) {
                        // This property is true because the distances of split intervals of
                        // are powers of two so the smaller one always divides the larger.

                        let intervals = split_interval([low, high]);
                        let size = (intervals.count - 1) as usize;

                        let interval = intervals.get(index.index(size) as $int_typ);
                        let small_intervals = split_interval(interval);

                        let start = small_intervals.get(0);
                        let end = small_intervals.get(small_intervals.count - 1);
                        let (low_interval, high_interval) = if  start[0] < end[0] {
                            (start, end)
                        } else {
                            (end, start)
                        };

                        prop_assert!(
                            interval[0] == low_interval[0] &&
                            interval[1] == high_interval[1]);
                    }
                }
            }
        }
    };
}

float_sampler!(f32, u32, F32U);
float_sampler!(f64, u64, F64U);