1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Operators that transform collections that evolve with some timestamp `FromTime` into a
//! collections that evolve with some other timestamp `IntoTime.
//!
//! Reclocking happens in two separate phases, implemented by [ReclockOperator] and
//! [ReclockFollower] respectively.
//!
/// For the first phase, the `ReclockOperator` observes the progress of a stream that is
/// timestamped with some source time `FromTime` and generates bindings that describe how the
/// collection should evolve in target time `IntoTime`.
///
/// For the second phase, the `ReclockFollower` observes both the data and the progress of a
/// collection as it evolves in the `FromTime` domain and reclocks it into a collection that
/// evolves in `IntoTime` according to the reclock decisions that have been taken by the
/// `ReclockOperator`.
use std::cell::RefCell;
use std::fmt::Display;
use std::rc::Rc;
use differential_dataflow::consolidation;
use differential_dataflow::difference::Abelian;
use differential_dataflow::lattice::Lattice;
use mz_persist_client::error::UpperMismatch;
use mz_repr::Diff;
use mz_storage_client::util::remap_handle::RemapHandle;
use mz_timely_util::antichain::AntichainExt;
use timely::order::{PartialOrder, TotalOrder};
use timely::progress::frontier::{Antichain, AntichainRef, MutableAntichain};
use timely::progress::Timestamp;
pub mod compat;
/// A "follower" for the ReclockOperator, that maintains a trace based on the results of reclocking
/// and data from the source. It provides the `reclock` method, which produces messages with their
/// associated timestamps.
///
/// Shareable with `.share()`
pub struct ReclockFollower<FromTime: Timestamp, IntoTime: Timestamp + Lattice + Display> {
/// The `since` maintained by the local handle. This may be beyond the shared `since`
since: Antichain<IntoTime>,
pub inner: Rc<RefCell<ReclockFollowerInner<FromTime, IntoTime>>>,
}
#[derive(Debug)]
pub struct ReclockFollowerInner<FromTime: Timestamp, IntoTime: Timestamp + Lattice + Display> {
/// A dTVC trace of the remap collection containing all updates at `t: since <= t < upper`.
// NOTE(petrosagg): Once we write this as a timely operator this should just be an arranged
// trace of the remap collection
remap_trace: Vec<(FromTime, IntoTime, Diff)>,
/// Since frontier of the partial remap trace
since: MutableAntichain<IntoTime>,
/// Upper frontier of the partial remap trace
upper: Antichain<IntoTime>,
/// The upper frontier in terms of `FromTime`. Any attempt to reclock messages beyond this
/// frontier will result in an error.
source_upper: MutableAntichain<FromTime>,
}
impl<FromTime, IntoTime> ReclockFollower<FromTime, IntoTime>
where
FromTime: Timestamp,
IntoTime: Timestamp + Lattice + Display,
{
/// Constructs a new [ReclockFollower]
pub fn new(as_of: Antichain<IntoTime>) -> Self {
let mut since = MutableAntichain::new();
since.update_iter(as_of.iter().map(|t| (t.clone(), 1)));
Self {
since: as_of,
inner: Rc::new(RefCell::new(ReclockFollowerInner {
remap_trace: Vec::new(),
since,
upper: Antichain::from_elem(IntoTime::minimum()),
source_upper: MutableAntichain::new(),
})),
}
}
pub fn source_upper(&self) -> Antichain<FromTime> {
self.inner.borrow().source_upper.frontier().to_owned()
}
pub fn initialized(&self) -> bool {
let inner = self.inner.borrow();
PartialOrder::less_than(&inner.since.frontier(), &inner.upper.borrow())
}
/// Pushes a new trace batch into this [`ReclockFollower`].
pub fn push_trace_batch(&self, mut batch: ReclockBatch<FromTime, IntoTime>) {
let mut inner = self.inner.borrow_mut();
// Ensure we only add consolidated batches to our trace
consolidation::consolidate_updates(&mut batch.updates);
inner.remap_trace.extend(batch.updates.iter().cloned());
inner.source_upper.update_iter(
batch
.updates
.into_iter()
.map(|(src_ts, _ts, diff)| (src_ts, diff)),
);
inner.upper = batch.upper;
}
/// Reclocks a batch of messages timestamped with `FromTime` and returns an iterator of
/// messages timestamped with `IntoTime`.
///
/// Each item of the resulting iterator will be associated with either the time it should be
/// reclocked to or an error indicating that a reclocking decision could not be taken with the
/// data that we have at hand.
///
/// This method is most efficient when the to be reclocked iterator presents data in contiguous
/// runs with the same `FromTime`.
pub fn reclock<'a, M: 'a>(
&'a self,
batch: impl IntoIterator<Item = (M, FromTime)> + 'a,
) -> impl Iterator<Item = (M, Result<IntoTime, ReclockError<FromTime>>)> + 'a
where
IntoTime: TotalOrder,
{
let mut memo: Option<(FromTime, Result<IntoTime, ReclockError<FromTime>>)> = None;
batch.into_iter().map(move |(msg, src_ts)| {
let result = match &memo {
Some((prev_src_ts, result)) if prev_src_ts == &src_ts => result.clone(),
_ => {
let result = self.reclock_time_total(&src_ts);
memo.insert((src_ts, result)).1.clone()
}
};
(msg, result)
})
}
/// Reclocks a single `FromTime` timestamp into the `IntoTime` time domain.
pub fn reclock_time(
&self,
src_ts: &FromTime,
) -> Result<Antichain<IntoTime>, ReclockError<FromTime>> {
if !self.initialized() {
return Err(ReclockError::Uninitialized);
}
let inner = self.inner.borrow();
if inner.source_upper.less_equal(src_ts) {
return Err(ReclockError::BeyondUpper(src_ts.clone()));
}
// In order to understand the logic of the following section let's first consider an
// example of trying to reclock the FromTime D from this partial ordering:
//
// ,--B----D
// / ,-------F----.
// A / \
// `---C--------E---------G------H
//
// ..into a target time domain where the remap collection varies according to this IntoTime
// partial ordering:
//
// *----*--.---------------*------*
// t0 t1 \ t2 t3
// `--------------------*
// t4
// ..and the FromTime frontiers at times t0, t1, t2, t3, t4 accumulate to:
//
// t0: Antichain{A}
// t1: Antichain{B, C}
// t2: Antichain{F, G}
// t3: Antichain{H}
// t4: Antichain{H}
//
// In the example above the correct answer is {t2, t4}, because this is the smallest
// antichain of IntoTime times such that the remap collection accumulates at each one of
// them to a FromTime frontier `f` such that D is not beyond `f`.
//
// We need to compute the answer by iterating over the consolidated remap trace which will
// present to us one diff at a time. We know that by construction at any given IntoTime
// time the remap collection accumulates to a well formed antichain. That is, it contains
// exactly one copy of mutually incomparable FromTime elements.
//
// We also know that `src_ts` is beyond the since frontier, therefore there exist witness
// timestamps `from_ts` that are less than or equal to `src_ts` and occur at IntoTime times
// with a positive diff. We also know that `src_ts` is not beyond the upper frontier,
// therefore all the positive diffs of the witness times must be retracted at subsequent
// IntoTime times.
//
// This cycle may be repeated an arbitrary amount of times until the final retraction. The
// IntoTime times at which the final retraction happens are the times that `src_ts` should
// be reclocked to.
//
// Therefore, if we filter the remap trace for witness timestamps and construct a
// MutableAntichain of the IntoTime times the witnesses occur at with a negated diff we'll
// end up computing a frontier of all the IntoTime times such that the remap collection
// accumulates to a frontier `f` such that `src_ts` is not beyond `f`, since the witness
// has been retracted.
//
// For our example above the remap trace would look like this:
//
// (A, t0, +1)
//
// (A, t1, -1)
// (B, t1, +1)
// (C, t1, +1)
//
// (B, t2, -1)
// (C, t2, -1)
// (F, t2, +1)
// (G, t2, +1)
//
// (F, t3, -1)
// (G, t3, -1)
// (H, t3, +1)
//
// (B, t4, -1)
// (C, t4, -1)
// (H, t4, +1)
//
// We are interested in reclocking the FromTime D so if we filter the trace for witnesses
// (i.e triplets such that `from_ts` is less than or equal to D) we are left with:
//
// (A, t0, +1)
// (A, t1, -1)
// (B, t1, +1)
// (B, t2, -1)
// (B, t4, -1)
//
// Keeping the IntoTime component and negating the diffs we have the following collection:
//
// (t0, -1)
// (t1, +1)
// (t1, -1)
// (t2, +1)
// (t4, +1)
//
// Processing this through a MutableAntichain will give as the desired frontier {t2, t4}
// since the diffs for t1 cancel out and t0 has a negative diff.
//
// While IntoTime is a partially ordered time and in the example above the answer was two
// separate times, we force that there is actually only one such time by requiring the
// ticker stream to provide a single timestamp per tick and advance its upper on each tick.
// This is just limitation of having the API function signatures from the original reclock
// implementation require a single IntoTime result. We should ideally lift that and make
// the reclock operators fully general.
let mut into_times = MutableAntichain::new();
let mut minimum = IntoTime::minimum();
minimum.advance_by(inner.since.frontier());
into_times.update_iter([(minimum, 1)]);
into_times.update_iter(
inner
.remap_trace
.iter()
.filter(|(from_ts, _, _)| PartialOrder::less_equal(from_ts, src_ts))
.map(|(_, into_ts, diff)| {
let mut diff = *diff;
diff.negate();
(into_ts.clone(), diff)
}),
);
Ok(into_times.frontier().to_owned())
}
/// Reclocks a single `FromTime` timestamp into a totally ordered `IntoTime` time domain.
pub fn reclock_time_total(&self, src_ts: &FromTime) -> Result<IntoTime, ReclockError<FromTime>>
where
IntoTime: TotalOrder,
{
Ok(self
.reclock_time(src_ts)?
.into_option()
.expect("reclock_time produced the empty antichain"))
}
/// Reclocks a `FromTime` frontier into a `IntoTime` frontier.
///
/// The conversion has the property that all messages that are beyond the provided `FromTime`
/// frontier will be relocked at times that will be beyond the returned `IntoTime` frontier.
/// This can be used to drive a `IntoTime` capability forward when the caller knows that a
/// `FromTime` frontier has advanced.
///
/// The method returns an error if the `FromTime` frontier is not beyond the since frontier.
/// The error will contain the offending `FromTime`.
pub fn reclock_frontier(
&self,
source_frontier: AntichainRef<'_, FromTime>,
) -> Result<Antichain<IntoTime>, ReclockError<FromTime>> {
let mut dest_frontier = self.inner.borrow().upper.clone();
for src_ts in source_frontier.iter() {
match self.reclock_time(src_ts) {
Ok(dest_ts) => {
dest_frontier.extend(dest_ts);
}
Err(ReclockError::BeyondUpper(_)) => {}
Err(err @ ReclockError::Uninitialized) => return Err(err),
}
}
Ok(dest_frontier)
}
/// Reclocks an `IntoTime` frontier into a `FromTime` frontier.
/// The conversion has the property that all messages that would be reclocked to times beyond
/// the provided `IntoTime` frontier will be beyond the returned `FromTime` frontier. This can
/// be used to compute a safe starting point to resume producing an `IntoTime` collection at a
/// particular frontier.
pub fn source_upper_at_frontier<'a>(
&self,
frontier: AntichainRef<'a, IntoTime>,
) -> Result<Antichain<FromTime>, ReclockError<AntichainRef<'a, IntoTime>>> {
let inner = self.inner.borrow();
if PartialOrder::less_equal(&frontier, &inner.since.frontier()) {
return Ok(Antichain::from_elem(FromTime::minimum()));
}
if !PartialOrder::less_than(&frontier, &inner.upper.borrow()) {
if PartialOrder::less_equal(&frontier, &inner.upper.borrow()) {
return Ok(inner.source_upper.frontier().to_owned());
} else if frontier.is_empty() {
return Ok(Antichain::new());
} else {
return Err(ReclockError::BeyondUpper(frontier));
}
}
let mut source_upper = MutableAntichain::new();
source_upper.update_iter(inner.remap_trace.iter().filter_map(|(src_ts, ts, diff)| {
if frontier
.iter()
.any(|dest_ts| PartialOrder::less_than(ts, dest_ts))
{
Some((src_ts.clone(), *diff))
} else {
None
}
}));
Ok(source_upper.frontier().to_owned())
}
/// Compacts the trace held by this reclock follower to the specified frontier.
///
/// Reclocking has the property that it commutes with compaction. What this means is that
/// reclocking a collection and then compacting the result to some frontier F will produce
/// exactly the same result with first compacting the remap trace to frontier F and then
/// reclocking the collection.
pub fn compact(&mut self, new_since: Antichain<IntoTime>) {
let inner = &mut *self.inner.borrow_mut();
if !PartialOrder::less_equal(&self.since, &new_since) {
panic!(
"ReclockFollower: new_since={} is not beyond self.since={}. inner.since={}",
new_since.pretty(),
self.since.pretty(),
inner.since.pretty(),
);
}
inner.since.update_iter(
self.since
.iter()
.map(|t| (t.clone(), -1))
.chain(new_since.iter().map(|t| (t.clone(), 1))),
);
self.since = new_since;
// Compact the remap trace according to the computed frontier
for (_src_ts, ts, _diff) in inner.remap_trace.iter_mut() {
ts.advance_by(inner.since.frontier());
}
// And then consolidate
consolidation::consolidate_updates(&mut inner.remap_trace);
}
#[allow(dead_code)]
pub fn since(&self) -> AntichainRef<'_, IntoTime> {
self.since.borrow()
}
#[allow(dead_code)]
pub fn share(&self) -> Self {
self.inner
.borrow_mut()
.since
.update_iter(self.since.iter().map(|t| (t.clone(), 1)));
Self {
since: self.since.clone(),
inner: Rc::clone(&self.inner),
}
}
/// The number of remap bindings in the trace
pub fn size(&self) -> usize {
self.inner.borrow().remap_trace.len()
}
}
impl<FromTime: Timestamp, IntoTime: Timestamp + Lattice + Display> Drop
for ReclockFollower<FromTime, IntoTime>
{
fn drop(&mut self) {
// Release read hold
self.compact(Antichain::new());
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ReclockError<T> {
Uninitialized,
BeyondUpper(T),
}
/// The `ReclockOperator` is responsible for observing progress in the `FromTime` domain and
/// consume messages from a ticker of progress in the `IntoTime` domain. When the source frontier
/// advances and the ticker ticks the `ReclockOperator` will generate the data that describe this
/// correspondence and write them out to its provided remap handle. The output generated by the
/// reclock operator can be thought of as `Collection<G, FromTime>` where `G::Timestamp` is
/// `IntoTime`.
///
/// The `ReclockOperator` will always maintain the invariant that for any time `IntoTime` the remap
/// collection accumulates into an Antichain where each `FromTime` timestamp has frequency `1`. In
/// other words the remap collection describes a well formed `Antichain<FromTime>` as it is
/// marching forwards.
#[derive(Debug)]
pub struct ReclockOperator<
FromTime: Timestamp,
IntoTime: Timestamp + Lattice,
Handle: RemapHandle<FromTime = FromTime, IntoTime = IntoTime>,
> {
/// Upper frontier of the partial remap trace
upper: Antichain<IntoTime>,
/// The upper frontier in terms of `FromTime`. Any attempt to reclock messages beyond this
/// frontier will lead to minting new bindings.
source_upper: MutableAntichain<FromTime>,
/// A handle allowing this operator to publish updates to and read back from the remap collection
remap_handle: Handle,
}
#[derive(Clone, Debug)]
pub struct ReclockBatch<FromTime, IntoTime> {
pub updates: Vec<(FromTime, IntoTime, Diff)>,
pub upper: Antichain<IntoTime>,
}
impl<FromTime, IntoTime, Handle> ReclockOperator<FromTime, IntoTime, Handle>
where
FromTime: Timestamp,
IntoTime: Timestamp + Lattice,
Handle: RemapHandle<FromTime = FromTime, IntoTime = IntoTime>,
{
/// Construct a new [ReclockOperator] from the given collection metadata
pub async fn new(remap_handle: Handle) -> (Self, ReclockBatch<FromTime, IntoTime>) {
let upper = remap_handle.upper().clone();
let mut operator = Self {
upper: Antichain::from_elem(IntoTime::minimum()),
source_upper: MutableAntichain::new(),
remap_handle,
};
// Load the initial state that might exist in the shard
let trace_batch = if upper.elements() != [IntoTime::minimum()] {
operator.sync(upper.borrow()).await
} else {
ReclockBatch {
updates: vec![],
upper: Antichain::from_elem(IntoTime::minimum()),
}
};
(operator, trace_batch)
}
/// Advances the upper of the reclock operator if appropriate
#[cfg(test)]
pub async fn advance(
&mut self,
upper: &Antichain<IntoTime>,
) -> ReclockBatch<FromTime, IntoTime> {
match self.append_batch(vec![], upper).await {
Ok(trace_batch) => trace_batch,
Err(UpperMismatch { current, .. }) => self.sync(current.borrow()).await,
}
}
/// Syncs the state of this operator to match that of the persist shard until the provided
/// frontier
async fn sync(
&mut self,
target_upper: AntichainRef<'_, IntoTime>,
) -> ReclockBatch<FromTime, IntoTime> {
let mut updates: Vec<(FromTime, IntoTime, Diff)> = Vec::new();
// Tail the remap collection until we reach the target upper frontier. Note that, in the
// common case, we are also the writer, so we are waiting to read-back what we wrote
while PartialOrder::less_than(&self.upper.borrow(), &target_upper) {
let (mut batch, upper) = self
.remap_handle
.next()
.await
.expect("requested data after empty antichain");
self.upper = upper;
updates.append(&mut batch);
}
self.source_upper.update_iter(
updates
.iter()
.map(|(src_ts, _dest_ts, diff)| (src_ts.clone(), *diff)),
);
ReclockBatch {
updates,
upper: self.upper.clone(),
}
}
pub async fn mint(
&mut self,
binding_ts: IntoTime,
mut new_into_upper: Antichain<IntoTime>,
new_from_upper: AntichainRef<'_, FromTime>,
) -> ReclockBatch<FromTime, IntoTime> {
assert!(!new_into_upper.less_equal(&binding_ts));
// The updates to the remap trace that occured during minting.
let mut batch = ReclockBatch {
updates: vec![],
upper: self.upper.clone(),
};
while *self.upper == [IntoTime::minimum()]
|| (PartialOrder::less_equal(&self.source_upper.frontier(), &new_from_upper)
&& PartialOrder::less_than(&self.upper, &new_into_upper))
{
// If source is closed, close remap shard as well.
if new_from_upper.is_empty() {
new_into_upper = Antichain::new();
}
// If this is the first binding we mint then we will mint it at the minimum target
// timestamp. The first source upper is always the upper of the snapshot and by mapping
// it to the minimum target timestamp we make it so that the final shard never appears
// empty at any timestamp.
let binding_ts = if *self.upper == [IntoTime::minimum()] {
IntoTime::minimum()
} else {
binding_ts.clone()
};
let mut updates = vec![];
for src_ts in self.source_upper.frontier().iter().cloned() {
updates.push((src_ts, binding_ts.clone(), -1));
}
for src_ts in new_from_upper.iter().cloned() {
updates.push((src_ts, binding_ts.clone(), 1));
}
consolidation::consolidate_updates(&mut updates);
let new_batch = match self.append_batch(updates, &new_into_upper).await {
Ok(trace_batch) => trace_batch,
Err(UpperMismatch { current, .. }) => self.sync(current.borrow()).await,
};
batch.updates.extend(new_batch.updates);
batch.upper = new_batch.upper;
}
batch
}
/// Appends the provided updates to the remap collection at the next available minting
/// IntoTime and updates this operator's in-memory state accordingly.
///
/// If an attempt to mint bindings fails due to another process having raced and appended
/// bindings concurrently then the current global upper will be returned as an error. This is
/// the frontier that this operator must be synced to for a future append attempt to have any
/// chance of success.
async fn append_batch(
&mut self,
updates: Vec<(FromTime, IntoTime, Diff)>,
new_upper: &Antichain<IntoTime>,
) -> Result<ReclockBatch<FromTime, IntoTime>, UpperMismatch<IntoTime>> {
match self
.remap_handle
.compare_and_append(updates, self.upper.clone(), new_upper.clone())
.await
{
// We have successfully produced data in the remap collection so let's read back what
// we wrote to update our local state
Ok(()) => Ok(self.sync(new_upper.borrow()).await),
Err(mismatch) => Err(mismatch),
}
}
}
#[cfg(test)]
mod tests {
use std::collections::BTreeSet;
use std::str::FromStr;
use std::sync::Arc;
use std::sync::LazyLock;
use std::time::Duration;
use itertools::Itertools;
use mz_build_info::DUMMY_BUILD_INFO;
use mz_ore::metrics::MetricsRegistry;
use mz_ore::now::SYSTEM_TIME;
use mz_ore::url::SensitiveUrl;
use mz_persist_client::cache::PersistClientCache;
use mz_persist_client::cfg::PersistConfig;
use mz_persist_client::rpc::PubSubClientConnection;
use mz_persist_client::{Diagnostics, PersistClient, PersistLocation, ShardId};
use mz_persist_types::codec_impls::UnitSchema;
use mz_repr::{GlobalId, RelationDesc, ScalarType, Timestamp};
use mz_storage_client::util::remap_handle::RemapHandle;
use mz_storage_types::controller::CollectionMetadata;
use mz_storage_types::sources::kafka::{self, RangeBound};
use mz_storage_types::sources::{MzOffset, SourceData};
use mz_timely_util::order::Partitioned;
use timely::progress::Timestamp as _;
use tokio::sync::watch;
use super::*;
// 15 minutes
static PERSIST_READER_LEASE_TIMEOUT_MS: Duration = Duration::from_secs(60 * 15);
static PERSIST_CACHE: LazyLock<Arc<PersistClientCache>> = LazyLock::new(|| {
let persistcfg = PersistConfig::new_default_configs(&DUMMY_BUILD_INFO, SYSTEM_TIME.clone());
persistcfg.set_reader_lease_duration(PERSIST_READER_LEASE_TIMEOUT_MS);
Arc::new(PersistClientCache::new(
persistcfg,
&MetricsRegistry::new(),
|_, _| PubSubClientConnection::noop(),
))
});
static PROGRESS_DESC: LazyLock<RelationDesc> = LazyLock::new(|| {
RelationDesc::builder()
.with_column(
"partition",
ScalarType::Range {
element_type: Box::new(ScalarType::Numeric { max_scale: None }),
}
.nullable(false),
)
.with_column("offset", ScalarType::UInt64.nullable(true))
.finish()
});
async fn make_test_operator(
shard: ShardId,
as_of: Antichain<Timestamp>,
) -> (
ReclockOperator<
kafka::KafkaTimestamp,
Timestamp,
impl RemapHandle<FromTime = kafka::KafkaTimestamp, IntoTime = Timestamp>,
>,
ReclockFollower<kafka::KafkaTimestamp, Timestamp>,
) {
let metadata = CollectionMetadata {
persist_location: PersistLocation {
blob_uri: SensitiveUrl::from_str("mem://").expect("invalid URL"),
consensus_uri: SensitiveUrl::from_str("mem://").expect("invalid URL"),
},
remap_shard: Some(shard),
data_shard: ShardId::new(),
status_shard: None,
relation_desc: RelationDesc::empty(),
txns_shard: None,
};
let write_frontier = Rc::new(RefCell::new(Antichain::from_elem(Timestamp::minimum())));
// Always in read-write mode for tests.
let (_read_only_tx, read_only_rx) = watch::channel(false);
let remap_handle = crate::source::reclock::compat::PersistHandle::new(
Arc::clone(&*PERSIST_CACHE),
read_only_rx,
metadata,
as_of.clone(),
write_frontier,
GlobalId::Explain,
"unittest",
0,
1,
PROGRESS_DESC.clone(),
GlobalId::Explain,
)
.await
.unwrap();
let (mut operator, initial_batch) = ReclockOperator::new(remap_handle).await;
let follower = ReclockFollower::new(as_of);
// Push any updates that might already exist in the persist shard to the follower.
if *initial_batch.upper == [Timestamp::minimum()] {
// In the tests we always reclock the minimum source frontier to the minimum target
// frontier, which we do in this step.
follower.push_trace_batch(
operator
.mint(
0.into(),
Antichain::from_elem(1.into()),
Antichain::from_elem(Partitioned::minimum()).borrow(),
)
.await,
);
} else {
follower.push_trace_batch(initial_batch);
}
(operator, follower)
}
/// Generates a [`kafka::NativeFrontier`] antichain where all the provided
/// partitions are at the specified offset and the gaps in between are filled with range
/// timestamps at offset zero.
fn partitioned_frontier<I>(items: I) -> Antichain<kafka::KafkaTimestamp>
where
I: IntoIterator<Item = (i32, MzOffset)>,
{
let mut frontier = Antichain::new();
let mut prev = RangeBound::NegInfinity;
for (pid, offset) in items {
assert!(prev < RangeBound::before(pid));
let gap = Partitioned::new_range(prev, RangeBound::before(pid), MzOffset::from(0));
frontier.extend([
gap,
Partitioned::new_singleton(RangeBound::exact(pid), offset),
]);
prev = RangeBound::after(pid);
}
frontier.insert(Partitioned::new_range(
prev,
RangeBound::PosInfinity,
MzOffset::from(0),
));
frontier
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decNumberFromInt32` on OS `linux`
async fn test_basic_usage() {
let (mut operator, follower) =
make_test_operator(ShardId::new(), Antichain::from_elem(0.into())).await;
// Reclock offsets 1 and 3 to timestamp 1000
let batch = vec![
(
1,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(1)),
),
(
1,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(1)),
),
(
3,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(3)),
),
];
let source_upper = partitioned_frontier([(0, MzOffset::from(4))]);
follower.push_trace_batch(
operator
.mint(
1000.into(),
Antichain::from_elem(1001.into()),
source_upper.borrow(),
)
.await,
);
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(
reclocked_msgs,
&[(1, 1000.into()), (1, 1000.into()), (3, 1000.into())]
);
// This will return the antichain containing 1000 because that's where future messages will
// offset 1 will be reclocked to
let query = partitioned_frontier([(0, MzOffset::from(1))]);
assert_eq!(
Ok(Antichain::from_elem(1000.into())),
follower.reclock_frontier(query.borrow())
);
// Reclock more messages for offsets 3 to the same timestamp
let batch = vec![
(
3,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(3)),
),
(
3,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(3)),
),
];
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(3, 1000.into()), (3, 1000.into())]);
// We're done with offset 3. Now reclocking the source upper will result to the overall
// target upper (1001) because any new bindings will be minted beyond that timestamp.
let query = partitioned_frontier([(0, MzOffset::from(4))]);
assert_eq!(
Ok(Antichain::from_elem(1001.into())),
follower.reclock_frontier(query.borrow())
);
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decNumberFromInt32` on OS `linux`
async fn test_reclock_frontier() {
let persist_location = PersistLocation {
blob_uri: SensitiveUrl::from_str("mem://").expect("invalid URL"),
consensus_uri: SensitiveUrl::from_str("mem://").expect("invalid URL"),
};
let remap_shard = ShardId::new();
let persist_client = PERSIST_CACHE
.open(persist_location)
.await
.expect("error creating persist client");
let mut remap_read_handle = persist_client
.open_critical_since::<SourceData, (), Timestamp, Diff, u64>(
remap_shard,
PersistClient::CONTROLLER_CRITICAL_SINCE,
Diagnostics::from_purpose("test_since_hold"),
)
.await
.expect("error opening persist shard");
let (mut operator, mut follower) =
make_test_operator(remap_shard, Antichain::from_elem(0.into())).await;
let query = Antichain::from_elem(Partitioned::minimum());
// This is the initial source frontier so we should get the initial ts upper
assert_eq!(
Ok(Antichain::from_elem(1.into())),
follower.reclock_frontier(query.borrow())
);
// Mint a couple of bindings for multiple partitions
follower.push_trace_batch(
operator
.mint(
1000.into(),
Antichain::from_elem(1001.into()),
partitioned_frontier([(1, MzOffset::from(10))]).borrow(),
)
.await,
);
follower.push_trace_batch(
operator
.mint(
2000.into(),
Antichain::from_elem(2001.into()),
partitioned_frontier([(1, MzOffset::from(10)), (2, MzOffset::from(10))])
.borrow(),
)
.await,
);
let mut remap_trace = BTreeSet::new();
remap_trace.extend(follower.inner.borrow().remap_trace.clone());
assert_eq!(
remap_trace,
BTreeSet::from_iter([
// Initial state
(
Partitioned::new_range(
RangeBound::NegInfinity,
RangeBound::PosInfinity,
MzOffset::from(0)
),
0.into(),
1
),
// updates from first mint
(
Partitioned::new_range(
RangeBound::NegInfinity,
RangeBound::before(1),
MzOffset::from(0)
),
1000.into(),
1
),
(
Partitioned::new_range(
RangeBound::NegInfinity,
RangeBound::PosInfinity,
MzOffset::from(0)
),
1000.into(),
-1
),
(
Partitioned::new_range(
RangeBound::after(1),
RangeBound::PosInfinity,
MzOffset::from(0)
),
1000.into(),
1
),
(
Partitioned::new_singleton(RangeBound::exact(1), MzOffset::from(10)),
1000.into(),
1
),
// updates from second mint
(
Partitioned::new_range(
RangeBound::after(1),
RangeBound::before(2),
MzOffset::from(0)
),
2000.into(),
1
),
(
Partitioned::new_range(
RangeBound::after(1),
RangeBound::PosInfinity,
MzOffset::from(0)
),
2000.into(),
-1
),
(
Partitioned::new_range(
RangeBound::after(2),
RangeBound::PosInfinity,
MzOffset::from(0)
),
2000.into(),
1
),
(
Partitioned::new_singleton(RangeBound::exact(2), MzOffset::from(10)),
2000.into(),
1
),
])
);
// The initial frontier should now map to the minimum between the two partitions
let query = Antichain::from_elem(Partitioned::minimum());
assert_eq!(
Ok(Antichain::from_elem(1000.into())),
follower.reclock_frontier(query.borrow())
);
// Map a frontier that advances only one of the partitions
let query = partitioned_frontier([(1, MzOffset::from(9))]);
assert_eq!(
Ok(Antichain::from_elem(1000.into())),
follower.reclock_frontier(query.borrow())
);
let query = partitioned_frontier([(1, MzOffset::from(10))]);
assert_eq!(
Ok(Antichain::from_elem(2000.into())),
follower.reclock_frontier(query.borrow())
);
// A frontier that is the upper of both partitions should map to the timestamp upper
let query = partitioned_frontier([(1, MzOffset::from(10)), (2, MzOffset::from(10))]);
assert_eq!(
Ok(Antichain::from_elem(2001.into())),
follower.reclock_frontier(query.borrow())
);
// Advance the operator and confirm that we get to the next timestamp
follower.push_trace_batch(operator.advance(&Antichain::from_elem(3001.into())).await);
let query = partitioned_frontier([(1, MzOffset::from(10)), (2, MzOffset::from(10))]);
assert_eq!(
Ok(Antichain::from_elem(3001.into())),
follower.reclock_frontier(query.borrow())
);
// Compact but not enough to change the bindings
remap_read_handle
.compare_and_downgrade_since(&0, (&0, &Antichain::from_elem(900.into())))
.await
.unwrap();
follower.compact(Antichain::from_elem(900.into()));
let query = partitioned_frontier([(1, MzOffset::from(9))]);
assert_eq!(
Ok(Antichain::from_elem(1000.into())),
follower.reclock_frontier(query.borrow())
);
// Compact enough to compact bindings
remap_read_handle
.compare_and_downgrade_since(&0, (&0, &Antichain::from_elem(1500.into())))
.await
.unwrap();
follower.compact(Antichain::from_elem(1500.into()));
let query = partitioned_frontier([(1, MzOffset::from(9))]);
// Now reclocking the same offset maps to the compacted binding, which is the same result
// as if we had reclocked offset 9 with the uncompacted bindings and then compacted that.
assert_eq!(
Ok(Antichain::from_elem(1500.into())),
follower.reclock_frontier(query.borrow())
);
let query = partitioned_frontier([(1, MzOffset::from(10))]);
assert_eq!(
Ok(Antichain::from_elem(2000.into())),
follower.reclock_frontier(query.borrow())
);
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decNumberFromInt32` on OS `linux`
async fn test_reclock() {
let (mut operator, follower) =
make_test_operator(ShardId::new(), Antichain::from_elem(0.into())).await;
// Reclock offsets 1 and 2 to timestamp 1000
let batch = vec![
(
1,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(1)),
),
(
2,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(2)),
),
];
let source_upper = partitioned_frontier([(0, MzOffset::from(3))]);
follower.push_trace_batch(
operator
.mint(
1000.into(),
Antichain::from_elem(1001.into()),
source_upper.borrow(),
)
.await,
);
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(1, 1000.into()), (2, 1000.into())]);
// Reclock offsets 3 and 4 to timestamp 2000
let batch = vec![
(
3,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(3)),
),
(
4,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(4)),
),
];
let source_upper = partitioned_frontier([(0, MzOffset::from(5))]);
follower.push_trace_batch(
operator
.mint(
2000.into(),
Antichain::from_elem(2001.into()),
source_upper.borrow(),
)
.await,
);
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(3, 2000.into()), (4, 2000.into())]);
// Reclock the same offsets again
let batch = vec![
(
1,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(1)),
),
(
2,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(2)),
),
];
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(1, 1000.into()), (2, 1000.into())]);
// Reclock a batch with offsets that spans multiple bindings
let batch = vec![
(
1,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(1)),
),
(
2,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(2)),
),
(
3,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(3)),
),
(
4,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(4)),
),
];
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(
reclocked_msgs,
&[
(1, 1000.into()),
(2, 1000.into()),
(3, 2000.into()),
(4, 2000.into()),
]
);
// Reclock a batch that contains multiple messages having the same offset
let batch = vec![
(
1,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(1)),
),
(
1,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(1)),
),
(
3,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(3)),
),
(
3,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(3)),
),
];
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(
reclocked_msgs,
&[
(1, 1000.into()),
(1, 1000.into()),
(3, 2000.into()),
(3, 2000.into()),
]
);
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decNumberFromInt32` on OS `linux`
async fn test_reclock_gh16318() {
let (mut operator, follower) =
make_test_operator(ShardId::new(), Antichain::from_elem(0.into())).await;
// First mint bindings for 0 at timestamp 1000
let source_upper = partitioned_frontier([(0, MzOffset::from(50))]);
follower.push_trace_batch(
operator
.mint(
1000.into(),
Antichain::from_elem(1001.into()),
source_upper.borrow(),
)
.await,
);
// Then only for 1 at timestamp 2000
let source_upper = partitioned_frontier([(0, MzOffset::from(50)), (1, MzOffset::from(50))]);
follower.push_trace_batch(
operator
.mint(
2000.into(),
Antichain::from_elem(2001.into()),
source_upper.borrow(),
)
.await,
);
// Then again only for 0 at timestamp 3000
let source_upper =
partitioned_frontier([(0, MzOffset::from(100)), (1, MzOffset::from(50))]);
follower.push_trace_batch(
operator
.mint(
3000.into(),
Antichain::from_elem(3001.into()),
source_upper.borrow(),
)
.await,
);
// Reclockng (0, 50) must ignore the updates on the FromTime frontier that happened at
// timestamp 2000 since those are completely unrelated
let batch = vec![(
50,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(50)),
)];
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(50, 3000.into())]);
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decNumberFromInt32` on OS `linux`
async fn test_compaction() {
let persist_location = PersistLocation {
blob_uri: SensitiveUrl::from_str("mem://").expect("invalid URL"),
consensus_uri: SensitiveUrl::from_str("mem://").expect("invalid URL"),
};
let remap_shard = ShardId::new();
let persist_client = PERSIST_CACHE
.open(persist_location)
.await
.expect("error creating persist client");
let mut remap_read_handle = persist_client
.open_critical_since::<SourceData, (), Timestamp, Diff, u64>(
remap_shard,
PersistClient::CONTROLLER_CRITICAL_SINCE,
Diagnostics::from_purpose("test_since_hold"),
)
.await
.expect("error opening persist shard");
let (mut operator, mut follower) =
make_test_operator(remap_shard, Antichain::from_elem(0.into())).await;
// Reclock offsets 1 and 2 to timestamp 1000
let batch = vec![
(
1,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(1)),
),
(
2,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(2)),
),
];
let source_upper = partitioned_frontier([(0, MzOffset::from(3))]);
follower.push_trace_batch(
operator
.mint(
1000.into(),
Antichain::from_elem(1001.into()),
source_upper.borrow(),
)
.await,
);
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(1, 1000.into()), (2, 1000.into())]);
// Reclock offsets 3 and 4 to timestamp 2000
let batch = vec![
(
3,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(3)),
),
(
4,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(4)),
),
];
let source_upper = partitioned_frontier([(0, MzOffset::from(5))]);
follower.push_trace_batch(
operator
.mint(
2000.into(),
Antichain::from_elem(2001.into()),
source_upper.borrow(),
)
.await,
);
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(3, 2000.into()), (4, 2000.into())]);
// Compact enough so that offsets >= 3 remain uncompacted
remap_read_handle
.compare_and_downgrade_since(&0, (&0, &Antichain::from_elem(1000.into())))
.await
.unwrap();
follower.compact(Antichain::from_elem(1000.into()));
// Reclock offsets 3 and 4 again to see we get the uncompacted result
let batch = vec![
(
3,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(3)),
),
(
4,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(4)),
),
];
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(3, 2000.into()), (4, 2000.into())]);
// Attempting to reclock offset 2 should return compacted bindings
let src_ts = Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(2));
let batch = vec![(2, src_ts.clone())];
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(2, 1000.into())]);
// Starting a new operator with an `as_of` is the same as having compacted
let (_operator, follower) =
make_test_operator(remap_shard, Antichain::from_elem(1000.into())).await;
// Reclocking offsets 3 and 4 should succeed
let batch = vec![
(
3,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(3)),
),
(
4,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(4)),
),
];
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(3, 2000.into()), (4, 2000.into())]);
// But attempting to reclock offset 2 should return an error
let batch = vec![(
2,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(2)),
)];
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(2, 1000.into())]);
}
#[mz_ore::test]
#[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decNumberFromInt32` on OS `linux`
fn test_gh_22128() {
let mut follower: ReclockFollower<u32, u32> = ReclockFollower::new(Antichain::from_elem(0));
assert!(!follower.initialized());
// Create a follower and drop it immediately
let follower2 = follower.share();
drop(follower2);
// Now initialize the original follower and verify that it correctly compacts bindings
let batch = ReclockBatch {
updates: vec![(10, 0, 1), (15, 20, 1), (10, 20, -1)],
upper: Antichain::from_elem(40),
};
follower.push_trace_batch(batch);
// Sanity check that reclocking works. FromTime 12 maps to IntoTime 20
let msgs = vec![("foo", 12)];
let reclocked_msgs = follower
.reclock(msgs)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[("foo", 20)]);
follower.compact(Antichain::from_elem(30));
// Now there should only be one binding in memory
assert_eq!(follower.size(), 1);
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decNumberFromInt32` on OS `linux`
async fn test_sharing() {
let (mut operator, mut follower) =
make_test_operator(ShardId::new(), Antichain::from_elem(0.into())).await;
// Install a since hold
let shared_follower = follower.share();
// First mint bindings for partition 0 offset 1 at timestamp 1000
let source_upper = partitioned_frontier([(0, MzOffset::from(1))]);
follower.push_trace_batch(
operator
.mint(
1000.into(),
Antichain::from_elem(1001.into()),
source_upper.borrow(),
)
.await,
);
// Advance the since frontier on one of the handles at a timestamp that is less than 1000
// to leave the previously minted binding intact. Since we have an active since hold
// through `shared_follower` nothing in the trace is actually compacted.
follower.compact(Antichain::from_elem(500.into()));
// This will release since hold of {0} through `shared_follower` and the overall since
// frontier will become {500} which must now actually compact the in-memory trace.
drop(shared_follower);
// Verify that we reclock partition 0 offset 0 correctly
let batch = vec![(
0,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(0)),
)];
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(0, 1000.into())]);
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decNumberFromInt32` on OS `linux`
async fn test_concurrency() {
// Create two operators pointing to the same shard
let shared_shard = ShardId::new();
let (mut op_a, mut follower_a) =
make_test_operator(shared_shard, Antichain::from_elem(0.into())).await;
let (mut op_b, follower_b) =
make_test_operator(shared_shard, Antichain::from_elem(0.into())).await;
// Reclock a batch from one of the operators
// Reclock offsets 1 and 2 to timestamp 1000 from operator A
let batch = vec![
(
1,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(1)),
),
(
2,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(2)),
),
];
let source_upper = partitioned_frontier([(0, MzOffset::from(3))]);
follower_a.push_trace_batch(
op_a.mint(
1000.into(),
Antichain::from_elem(1001.into()),
source_upper.borrow(),
)
.await,
);
let reclocked_msgs = follower_a
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(1, 1000.into()), (2, 1000.into())]);
follower_a.compact(Antichain::from_elem(1000.into()));
// Reclock a batch that includes messages from the bindings already minted
let batch = vec![
(
1,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(1)),
),
(
2,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(2)),
),
(
3,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(3)),
),
(
4,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(4)),
),
];
let source_upper = partitioned_frontier([(0, MzOffset::from(5))]);
// This operator should attempt to mint in one go, fail, re-sync, and retry only for the
// bindings that still need minting
follower_b.push_trace_batch(
op_b.mint(
11000.into(),
Antichain::from_elem(11001.into()),
source_upper.borrow(),
)
.await,
);
let reclocked_msgs = follower_b
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(
reclocked_msgs,
&[
(1, 1000.into()),
(2, 1000.into()),
(3, 11000.into()),
(4, 11000.into())
]
);
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decNumberFromInt32` on OS `linux`
async fn test_inversion() {
let persist_location = PersistLocation {
blob_uri: SensitiveUrl::from_str("mem://").expect("invalid URL"),
consensus_uri: SensitiveUrl::from_str("mem://").expect("invalid URL"),
};
let remap_shard = ShardId::new();
let persist_client = PERSIST_CACHE
.open(persist_location)
.await
.expect("error creating persist client");
let mut remap_read_handle = persist_client
.open_critical_since::<SourceData, (), Timestamp, Diff, u64>(
remap_shard,
PersistClient::CONTROLLER_CRITICAL_SINCE,
Diagnostics::from_purpose("test_since_hold"),
)
.await
.expect("error opening persist shard");
let (mut operator, mut follower) =
make_test_operator(remap_shard, Antichain::from_elem(0.into())).await;
// SETUP
// Reclock offsets 1 and 2 to timestamp 1000
let batch = vec![
(
1,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(1)),
),
(
2,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(2)),
),
];
let source_upper = partitioned_frontier([(0, MzOffset::from(3))]);
follower.push_trace_batch(
operator
.mint(
1000.into(),
Antichain::from_elem(1001.into()),
source_upper.borrow(),
)
.await,
);
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(1, 1000.into()), (2, 1000.into())]);
// Reclock offsets 3 and 4 to timestamp 2000
let batch = vec![
(
3,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(3)),
),
(
4,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(4)),
),
];
let source_upper = partitioned_frontier([(0, MzOffset::from(5))]);
follower.push_trace_batch(
operator
.mint(
2000.into(),
Antichain::from_elem(2001.into()),
source_upper.borrow(),
)
.await,
);
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(3, 2000.into()), (4, 2000.into())]);
// Reclock offsets 5 and 6 to timestamp 3000
let batch = vec![
(
5,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(5)),
),
(
6,
Partitioned::new_singleton(RangeBound::exact(0), MzOffset::from(6)),
),
];
let source_upper = partitioned_frontier([(0, MzOffset::from(7))]);
follower.push_trace_batch(
operator
.mint(
3000.into(),
Antichain::from_elem(3001.into()),
source_upper.borrow(),
)
.await,
);
let reclocked_msgs = follower
.reclock(batch)
.map(|(m, ts)| (m, ts.unwrap()))
.collect_vec();
assert_eq!(reclocked_msgs, &[(5, 3000.into()), (6, 3000.into())]);
// END SETUP
//
// If we source_upper_at_frontier at the current `upper`, we should get the offset
// upper (strictly greater!!) back!
assert_eq!(
follower
.source_upper_at_frontier(Antichain::from_elem(3001.into()).borrow())
.unwrap(),
partitioned_frontier([(0, MzOffset::from(7))])
);
// Check out "upper strictly greater is correct
assert_eq!(
follower
.source_upper_at_frontier(Antichain::from_elem(3000.into()).borrow())
.unwrap(),
// Note this is the UPPER offset for the previous part of
// the trace.
partitioned_frontier([(0, MzOffset::from(5))])
);
// random time in the middle of 2 pieces of the trace
assert_eq!(
follower
.source_upper_at_frontier(Antichain::from_elem(2500.into()).borrow())
.unwrap(),
// Note this is the UPPER offset for the previous part of
// the trace.
partitioned_frontier([(0, MzOffset::from(5))])
);
// Check startup edge-case (the since is still 0 here) doesn't panic.
assert_eq!(
follower
.source_upper_at_frontier(Antichain::from_elem(Timestamp::minimum()).borrow())
.unwrap(),
Antichain::from_elem(Partitioned::minimum())
);
// Similarly, for an earlier part of the trace,
// we get the upper for that section of the trace
assert_eq!(
follower
.source_upper_at_frontier(Antichain::from_elem(2001.into()).borrow())
.unwrap(),
partitioned_frontier([(0, MzOffset::from(5))])
);
// upper logic, as before
assert_eq!(
follower
.source_upper_at_frontier(Antichain::from_elem(2000.into()).borrow())
.unwrap(),
partitioned_frontier([(0, MzOffset::from(3))])
);
// After compaction it should still work
remap_read_handle
.compare_and_downgrade_since(&0, (&0, &Antichain::from_elem(1000.into())))
.await
.unwrap();
follower.compact(Antichain::from_elem(1000.into()));
assert_eq!(
follower
.source_upper_at_frontier(Antichain::from_elem(2001.into()).borrow())
.unwrap(),
partitioned_frontier([(0, MzOffset::from(5))])
);
// compact as close as we can
remap_read_handle
.compare_and_downgrade_since(&0, (&0, &Antichain::from_elem(2000.into())))
.await
.unwrap();
follower.compact(Antichain::from_elem(2000.into()));
assert_eq!(
follower
.source_upper_at_frontier(Antichain::from_elem(2001.into()).borrow())
.unwrap(),
partitioned_frontier([(0, MzOffset::from(5))])
);
// If we compact too far, we get an error. Note we compact
// to the previous UPPER we were checking.
remap_read_handle
.compare_and_downgrade_since(&0, (&0, &Antichain::from_elem(3000.into())))
.await
.unwrap();
follower.compact(Antichain::from_elem(2001.into()));
assert_eq!(
follower.source_upper_at_frontier(Antichain::from_elem(2001.into()).borrow()),
Ok(Antichain::from_elem(Partitioned::minimum()))
);
}
// Regression test for
// https://github.com/MaterializeInc/database-issues/issues/4216.
#[mz_ore::test(tokio::test(start_paused = true))]
#[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decNumberFromInt32` on OS `linux`
async fn test_since_hold() {
let binding_shard = ShardId::new();
let (mut operator, _follower) =
make_test_operator(binding_shard, Antichain::from_elem(0.into())).await;
// We do multiple rounds of minting. This will downgrade the since of
// the internal listen. If we didn't make sure to also heartbeat the
// internal handle that holds back the overall remap since the checks
// below would fail.
//
// We do two rounds and advance the time by half the lease timeout in
// between so that the "listen handle" will not timeout but the internal
// handle used for holding back the since will timeout.
tokio::time::advance(PERSIST_READER_LEASE_TIMEOUT_MS / 2 + Duration::from_millis(1)).await;
let source_upper = partitioned_frontier([(0, MzOffset::from(3))]);
let _ = operator
.mint(
1000.into(),
Antichain::from_elem(1001.into()),
source_upper.borrow(),
)
.await;
tokio::time::advance(PERSIST_READER_LEASE_TIMEOUT_MS / 2 + Duration::from_millis(1)).await;
let source_upper = partitioned_frontier([(0, MzOffset::from(5))]);
let _ = operator
.mint(
2000.into(),
Antichain::from_elem(2001.into()),
source_upper.borrow(),
)
.await;
// Allow time for background maintenance work, which does lease
// expiration. 1 ms is enough here, we just need to yield to allow the
// background task to be "scheduled".
tokio::time::sleep(Duration::from_millis(1)).await;
// Starting a new operator with an `as_of` of `0`, to verify that
// holding back the `since` of the remap shard works as expected.
let (_operator, _follower) =
make_test_operator(binding_shard, Antichain::from_elem(0.into())).await;
// Also manually assert the since of the remap shard.
let persist_location = PersistLocation {
blob_uri: SensitiveUrl::from_str("mem://").expect("invalid URL"),
consensus_uri: SensitiveUrl::from_str("mem://").expect("invalid URL"),
};
let persist_client = PERSIST_CACHE
.open(persist_location)
.await
.expect("error creating persist client");
let read_handle = persist_client
.open_leased_reader::<SourceData, (), Timestamp, Diff>(
binding_shard,
Arc::new(PROGRESS_DESC.clone()),
Arc::new(UnitSchema),
Diagnostics::from_purpose("test_since_hold"),
true,
)
.await
.expect("error opening persist shard");
assert_eq!(
Antichain::from_elem(0.into()),
read_handle.since().to_owned()
);
}
}