1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Vector utilities.

use std::mem::{align_of, size_of};

#[cfg(feature = "smallvec")]
use smallvec::SmallVec;

/// Create a new vector that re-uses the same allocation as an old one.
/// The element types must have the same size and alignment.
pub fn repurpose_allocation<T1, T2>(mut v: Vec<T1>) -> Vec<T2> {
    assert_eq!(size_of::<T1>(), size_of::<T2>(), "same size");
    assert_eq!(align_of::<T1>(), align_of::<T2>(), "same alignment");

    v.clear();
    let cap = v.capacity();
    let p = v.as_mut_ptr().cast();
    std::mem::forget(v);
    // This is safe because `T1` and `T2` have the same size and alignment,
    // `p`'s allocation is no longer owned by `v` (since that has been forgotten),
    // and `p` was previously allocated with capacity `cap`.
    unsafe { Vec::from_raw_parts(p, 0, cap) }
}

/// A trait for objects that behave like vectors.
pub trait Vector<T> {
    /// Appends an element to the vector.
    fn push(&mut self, value: T);

    /// Copies and appends all elements in a slice to the vector.
    fn extend_from_slice(&mut self, other: &[T])
    where
        T: Copy;
}

impl<T> Vector<T> for Vec<T> {
    fn push(&mut self, value: T) {
        Vec::push(self, value)
    }

    fn extend_from_slice(&mut self, other: &[T])
    where
        T: Copy,
    {
        Vec::extend_from_slice(self, other)
    }
}

#[cfg(feature = "smallvec")]
impl<A> Vector<A::Item> for SmallVec<A>
where
    A: smallvec::Array,
{
    fn push(&mut self, value: A::Item) {
        SmallVec::push(self, value)
    }

    fn extend_from_slice(&mut self, other: &[A::Item])
    where
        A::Item: Copy,
    {
        SmallVec::extend_from_slice(self, other)
    }
}

#[cfg(feature = "compact_bytes")]
impl Vector<u8> for compact_bytes::CompactBytes {
    fn push(&mut self, value: u8) {
        self.push(value)
    }

    fn extend_from_slice(&mut self, other: &[u8]) {
        self.extend_from_slice(other)
    }
}

/// Extension methods for `std::vec::Vec`
pub trait VecExt<T> {
    /// Creates an iterator which uses a closure to determine if an element should be removed.
    ///
    /// If the closure returns true, then the element is removed and yielded.
    /// If the closure returns false, the element will remain in the vector and will not be yielded
    /// by the iterator.
    ///
    /// Using this method and consuming the iterator is equivalent to the following code:
    ///
    /// ```
    /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
    /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
    /// let mut i = 0;
    /// while i < vec.len() {
    ///     if some_predicate(&mut vec[i]) {
    ///         let val = vec.swap_remove(i);
    ///         // your code here
    ///     } else {
    ///         i += 1;
    ///     }
    /// }
    ///
    /// # assert_eq!(vec, vec![1, 5, 4]);
    /// ```
    ///
    /// But `drain_filter_swapping` is easier to use.
    ///
    /// Note that `drain_filter_swapping` also lets you mutate every element in the filter closure,
    /// regardless of whether you choose to keep or remove it.
    ///
    /// # Note
    ///
    /// Because the elements are removed using [`Vec::swap_remove`] the order of elements yielded
    /// by the iterator and the order of the remaining elements in the original vector is **not**
    /// maintained.
    ///
    /// # Examples
    ///
    /// Splitting an array into evens and odds, reusing the original allocation. Notice how the
    /// order is not preserved in either results:
    ///
    /// ```
    /// use mz_ore::vec::VecExt;
    ///
    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
    ///
    /// let evens = numbers.drain_filter_swapping(|x| *x % 2 == 0).collect::<Vec<_>>();
    /// let odds = numbers;
    ///
    /// assert_eq!(evens, vec![2, 4, 14, 6, 8]);
    /// assert_eq!(odds, vec![1, 15, 3, 13, 5, 11, 9]);
    /// ```
    #[must_use = "The vector is modified only if the iterator is consumed"]
    fn drain_filter_swapping<F>(&mut self, filter: F) -> DrainFilterSwapping<'_, T, F>
    where
        F: FnMut(&mut T) -> bool;

    /// Returns whether the vector is sorted using the given comparator function.
    fn is_sorted_by<F>(&self, compare: F) -> bool
    where
        F: FnMut(&T, &T) -> bool;
}

/// Extension methods for `Vec<T>` where `T: PartialOrd`
pub trait PartialOrdVecExt<T> {
    /// Returns whether the vector is sorted.
    // Remove once https://github.com/rust-lang/rust/issues/53485 is stabilized
    fn is_sorted(&self) -> bool;
    /// Returns whether the vector is sorted with strict inequality.
    fn is_strictly_sorted(&self) -> bool;
}

impl<T> VecExt<T> for Vec<T> {
    fn drain_filter_swapping<F>(&mut self, filter: F) -> DrainFilterSwapping<'_, T, F>
    where
        F: FnMut(&mut T) -> bool,
    {
        DrainFilterSwapping {
            vec: self,
            idx: 0,
            pred: filter,
        }
    }

    // implementation is from Vec::is_sorted_by, but with `windows` instead of
    // the unstable `array_windows`
    fn is_sorted_by<F>(&self, mut compare: F) -> bool
    where
        F: FnMut(&T, &T) -> bool,
    {
        self.windows(2).all(|win| compare(&win[0], &win[1]))
    }
}

impl<T> PartialOrdVecExt<T> for Vec<T>
where
    T: PartialOrd,
{
    fn is_sorted(&self) -> bool {
        self.is_sorted_by(|a, b| a <= b)
    }

    fn is_strictly_sorted(&self) -> bool {
        self.is_sorted_by(|a, b| a < b)
    }
}

/// An iterator which uses a closure to determine if an element should be removed.
///
/// This struct is created by [`VecExt::drain_filter_swapping`].
/// See its documentation for more.
///
/// Warning: The vector is modified only if the iterator is consumed!
///
/// # Example
///
/// ```
/// use mz_ore::vec::VecExt;
///
/// let mut v = vec![0, 1, 2];
/// let iter: mz_ore::vec::DrainFilterSwapping<_, _> = v.drain_filter_swapping(|x| *x % 2 == 0);
/// ```
#[derive(Debug)]
pub struct DrainFilterSwapping<'a, T, F> {
    vec: &'a mut Vec<T>,
    /// The index of the item that will be inspected by the next call to `next`.
    idx: usize,
    /// The filter test predicate.
    pred: F,
}

impl<'a, T, F> Iterator for DrainFilterSwapping<'a, T, F>
where
    F: FnMut(&mut T) -> bool,
{
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            let item = self.vec.get_mut(self.idx)?;
            if (self.pred)(item) {
                return Some(self.vec.swap_remove(self.idx));
            } else {
                self.idx += 1;
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, Some(self.vec.len() - self.idx))
    }
}

/// Remove the elements from `v` at the positions indicated by `indexes`, and return the removed
/// elements in a new vector.
///
/// `indexes` shouldn't have duplicates. (Might panic or behave incorrectly in case of
/// duplicates.)
pub fn swap_remove_multiple<T>(v: &mut Vec<T>, mut indexes: Vec<usize>) -> Vec<T> {
    indexes.sort();
    indexes.reverse();
    let mut result = Vec::new();
    for r in indexes {
        result.push(v.swap_remove(r));
    }
    result
}

#[cfg(test)]
mod test {
    use super::*;

    #[crate::test]
    fn miri_test_repurpose() {
        let v: Vec<usize> = vec![0, 1, 2];

        let mut other: Vec<isize> = repurpose_allocation(v);

        assert!(other.is_empty());
        other.push(-1);
        assert_eq!(other[0], -1);

        struct Gus1 {
            s: String,
        }
        impl Drop for Gus1 {
            fn drop(&mut self) {
                println!("happy {}", self.s);
            }
        }

        struct Gus2 {
            s: String,
        }
        impl Drop for Gus2 {
            fn drop(&mut self) {
                println!("happy {}", self.s);
            }
        }

        // also exercise non-`Copy`, `Drop`-impling values as well
        let v: Vec<Gus1> = vec![Gus1 {
            s: "hmm".to_string(),
        }];

        let mut other: Vec<Gus2> = repurpose_allocation(v);

        assert!(other.is_empty());
        other.push(Gus2 {
            s: "hmm2".to_string(),
        });
        assert_eq!(other[0].s, "hmm2");
    }

    #[crate::test]
    #[should_panic(expected = "same size")]
    fn miri_test_wrong_size() {
        let v: Vec<usize> = vec![0, 1, 2];
        let _: Vec<()> = repurpose_allocation(v);
    }

    #[crate::test]
    #[should_panic(expected = "same alignment")]
    fn miri_test_wrong_align() {
        #[repr(align(8))]
        #[derive(Default)]
        struct Gus1 {
            _i: [u8; 16],
        }

        #[repr(align(16))]
        #[derive(Default)]
        struct Gus2 {
            _i: [u8; 8],
        }

        use std::mem::size_of;
        assert_eq!(size_of::<Gus1>(), size_of::<Gus2>(), "same size in test");

        // You need a value in here to have miri catch the problem, if we remove
        // the alignment check
        let v: Vec<Gus1> = vec![Default::default()];
        let _: Vec<Gus2> = repurpose_allocation(v);
    }

    #[crate::test]
    fn test_is_sorted_by() {
        assert!(vec![0, 1, 2].is_sorted_by(|a, b| a < b));
        assert!(vec![0, 1, 2].is_sorted_by(|a, b| a <= b));
        assert!(!vec![0, 1, 2].is_sorted_by(|a, b| a > b));
        assert!(!vec![0, 1, 2].is_sorted_by(|a, b| a >= b));
        assert!(vec![0, 1, 2].is_sorted_by(|_a, _b| true));
        assert!(!vec![0, 1, 2].is_sorted_by(|_a, _b| false));

        assert!(!vec![0, 1, 1, 2].is_sorted_by(|a, b| a < b));
        assert!(vec![0, 1, 1, 2].is_sorted_by(|a, b| a <= b));
        assert!(!vec![0, 1, 1, 2].is_sorted_by(|a, b| a > b));
        assert!(!vec![0, 1, 1, 2].is_sorted_by(|a, b| a >= b));
        assert!(vec![0, 1, 1, 2].is_sorted_by(|_a, _b| true));
        assert!(!vec![0, 1, 1, 2].is_sorted_by(|_a, _b| false));

        assert!(!vec![2, 1, 0].is_sorted_by(|a, b| a < b));
        assert!(!vec![2, 1, 0].is_sorted_by(|a, b| a <= b));
        assert!(vec![2, 1, 0].is_sorted_by(|a, b| a > b));
        assert!(vec![2, 1, 0].is_sorted_by(|a, b| a >= b));
        assert!(vec![2, 1, 0].is_sorted_by(|_a, _b| true));
        assert!(!vec![2, 1, 0].is_sorted_by(|_a, _b| false));

        assert!(!vec![5, 1, 9, 42].is_sorted_by(|a, b| a < b));
        assert!(!vec![5, 1, 9, 42].is_sorted_by(|a, b| a <= b));
        assert!(!vec![5, 1, 9, 42].is_sorted_by(|a, b| a > b));
        assert!(!vec![5, 1, 9, 42].is_sorted_by(|a, b| a >= b));
        assert!(vec![5, 1, 9, 42].is_sorted_by(|_a, _b| true));
        assert!(!vec![5, 1, 9, 42].is_sorted_by(|_a, _b| false));
    }
}