mz_storage_controller/persist_handles/read_only_table_worker.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! A tokio tasks (and support machinery) for dealing with the persist handles
//! that the storage controller needs to hold.
use std::collections::{BTreeMap, BTreeSet, VecDeque};
use std::ops::ControlFlow;
use differential_dataflow::lattice::Lattice;
use futures::FutureExt;
use mz_persist_client::write::WriteHandle;
use mz_persist_types::Codec64;
use mz_repr::{Diff, GlobalId, TimestampManipulation};
use mz_storage_client::client::Update;
use mz_storage_types::controller::InvalidUpper;
use mz_storage_types::sources::SourceData;
use timely::progress::{Antichain, Timestamp};
use timely::PartialOrder;
use tracing::Span;
use crate::persist_handles::{append_work, PersistTableWriteCmd};
use crate::StorageError;
/// Handles table updates in read only mode.
///
/// In read only mode, we write to tables outside of the txn-wal system. This is
/// a gross hack, but it is a quick fix to allow us to perform migrations of the
/// built-in tables in the new generation during a deployment. We need to write
/// to the new shards for migrated built-in tables so that dataflows that depend
/// on those tables can catch up, but we don't want to register them into the
/// existing txn-wal shard, as that would mutate the state of the old generation
/// while it's still running. We could instead create a new txn shard in the new
/// generation for *just* system catalog tables, but then we'd have to do a
/// complicated dance to move the system catalog tables back to the original txn
/// shard during promotion, without ever losing track of a shard or registering
/// it in two txn shards simultaneously.
///
/// This code is a nearly line-for-line reintroduction of the code that managed
/// writing to tables before the txn-wal system. This code can (again) be
/// deleted when we switch to using native persist schema migrations to perform
/// mgirations of built-in tables.
pub(crate) async fn read_only_mode_table_worker<
T: Timestamp + Lattice + Codec64 + TimestampManipulation,
>(
mut rx: tokio::sync::mpsc::UnboundedReceiver<(Span, PersistTableWriteCmd<T>)>,
txns_handle: WriteHandle<SourceData, (), T, Diff>,
) {
let mut write_handles = BTreeMap::<GlobalId, WriteHandle<SourceData, (), T, Diff>>::new();
let gen_upper_future = |mut handle: WriteHandle<SourceData, (), T, i64>| {
let fut = async move {
let current_upper = handle.shared_upper();
handle.wait_for_upper_past(¤t_upper).await;
let new_upper = handle.shared_upper();
(handle, new_upper)
};
fut.boxed()
};
let mut txns_upper_future = {
let txns_upper_future = gen_upper_future(txns_handle);
txns_upper_future
};
let shutdown_reason = loop {
tokio::select! {
(handle, upper) = &mut txns_upper_future => {
tracing::debug!("new upper from txns shard: {:?}, advancing upper of migrated builtin tables", upper);
advance_uppers(&mut write_handles, upper).await;
let fut = gen_upper_future(handle);
txns_upper_future = fut;
}
cmd = rx.recv() => {
let Some(cmd) = cmd else {
break "command rx closed".to_string();
};
// Peel off all available commands.
// We do this in case we can consolidate commands.
// It would be surprising to receive multiple concurrent `Append` commands,
// but we might receive multiple *empty* `Append` commands.
let mut commands = VecDeque::new();
commands.push_back(cmd);
while let Ok(cmd) = rx.try_recv() {
commands.push_back(cmd);
}
let result = handle_commands(&mut write_handles, commands).await;
match result {
ControlFlow::Continue(_) => {
continue;
}
ControlFlow::Break(msg) => {
break msg;
}
}
}
}
};
tracing::info!(%shutdown_reason, "PersistTableWriteWorker shutting down");
}
/// Handles the given commands.
async fn handle_commands<T>(
write_handles: &mut BTreeMap<GlobalId, WriteHandle<SourceData, (), T, Diff>>,
mut commands: VecDeque<(Span, PersistTableWriteCmd<T>)>,
) -> ControlFlow<String>
where
T: Timestamp + Lattice + Codec64 + TimestampManipulation,
{
let mut shutdown = false;
// Accumulated updates and upper frontier.
let mut all_updates = BTreeMap::default();
let mut all_responses = Vec::default();
while let Some((span, command)) = commands.pop_front() {
match command {
PersistTableWriteCmd::Register(_register_ts, ids_handles, tx) => {
for (id, write_handle) in ids_handles {
// As of today, we can only migrate builtin (system) tables.
assert!(id.is_system(), "trying to register non-system id {id}");
let previous = write_handles.insert(id, write_handle);
if previous.is_some() {
panic!("already registered a WriteHandle for collection {:?}", id);
}
}
// We don't care if our waiter has gone away.
let _ = tx.send(());
}
PersistTableWriteCmd::Update {
table_id,
handle,
forget_ts: _,
register_ts: _,
tx,
} => {
write_handles.insert(table_id, handle).expect(
"PersistTableWriteCmd::Update only valid for updating extant write handles",
);
// We don't care if our waiter has gone away.
let _ = tx.send(());
}
PersistTableWriteCmd::DropHandles {
forget_ts: _,
ids,
tx,
} => {
// n.b. this should only remove the
// handle from the persist worker and
// not take any additional action such
// as closing the shard it's connected
// to because dataflows might still be
// using it.
for id in ids {
write_handles.remove(&id);
}
// We don't care if our waiter has gone away.
let _ = tx.send(());
}
PersistTableWriteCmd::Append {
write_ts,
advance_to,
updates,
tx,
} => {
let mut ids = BTreeSet::new();
for (id, updates_no_ts) in updates {
ids.insert(id);
let (old_span, updates, _expected_upper, old_new_upper) =
all_updates.entry(id).or_insert_with(|| {
(
span.clone(),
Vec::default(),
Antichain::from_elem(write_ts.clone()),
Antichain::from_elem(T::minimum()),
)
});
if old_span.id() != span.id() {
// Link in any spans for `Append` operations that we
// lump together by doing this. This is not ideal,
// because we only have a true tracing history for
// the "first" span that we process, but it's better
// than nothing.
old_span.follows_from(span.id());
}
let updates_with_ts = updates_no_ts.into_iter().map(|x| Update {
row: x.row,
timestamp: write_ts.clone(),
diff: x.diff,
});
updates.extend(updates_with_ts);
old_new_upper.join_assign(&Antichain::from_elem(advance_to.clone()));
}
all_responses.push((ids, tx));
}
PersistTableWriteCmd::Shutdown => shutdown = true,
}
}
let result = append_work(write_handles, all_updates).await;
for (ids, response) in all_responses {
let result = match &result {
Err(bad_ids) => {
let filtered: Vec<_> = bad_ids
.iter()
.filter(|(id, _)| ids.contains(id))
.cloned()
.map(|(id, current_upper)| InvalidUpper { id, current_upper })
.collect();
if filtered.is_empty() {
Ok(())
} else {
Err(StorageError::InvalidUppers(filtered))
}
}
Ok(()) => Ok(()),
};
// It is not an error for the other end to hang up.
let _ = response.send(result);
}
if shutdown {
ControlFlow::Break("received a shutdown command".to_string())
} else {
ControlFlow::Continue(())
}
}
/// Advances the upper of all registered tables (which are only the migrated
/// builtin tables) to the given `upper`.
async fn advance_uppers<T>(
write_handles: &mut BTreeMap<GlobalId, WriteHandle<SourceData, (), T, Diff>>,
upper: Antichain<T>,
) where
T: Timestamp + Lattice + Codec64 + TimestampManipulation,
{
let mut all_updates = BTreeMap::default();
for (id, write_handle) in write_handles.iter_mut() {
// As of today, we can only migrate builtin (system) tables, and so only
// expect to register those in this read-only table worker.
assert!(id.is_system(), "trying to register non-system id {id}");
// This business of continually advancing the upper is expensive, but
// we're a) only doing it when in read-only mode, and b) only doing it
// for each migrated builtin table, of which there usually aren't many.
let expected_upper = write_handle.fetch_recent_upper().await.to_owned();
// Avoid advancing the upper until the coordinator has a chance to back-fill the shard.
if expected_upper.elements() == &[T::minimum()] {
continue;
}
if PartialOrder::less_equal(&upper, &expected_upper) {
// Nothing to do, and append_work doesn't like being called with a
// new upper that is less_equal the current upper.
continue;
}
all_updates.insert(
*id,
(Span::none(), Vec::new(), expected_upper, upper.clone()),
);
}
let result = append_work(write_handles, all_updates).await;
tracing::debug!(?result, "advanced upper of migrated builtin tables");
}